

RADIO TEST REPORT FCC ID: PT7-W16

Product: Tablet PC Trade Mark: PIPO Model No.: W16 Family Model: W10, W11, W12, W13, W14, W15, W17, W18, W19, W20, T7, T8, T9, T10, T11, T12, T13, T14, SF141, SF142, SF143 Report No.: S24052205003001 Issue Date: Jun 19, 2024

Prepared for

PIPO TECHNOLOGY CO., LIMITED

Area C, 3F, Bao Yun Da Logistics Centre, Warehouse Xi Xiang Avenue Bao An Distric, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 7	FEST RESULT CERTIFICATION	3
2 3	SUMMARY OF TEST RESULTS	4
3	FACILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS	5
	GENERAL DESCRIPTION OF EUT	
	DESCRIPTION OF TEST MODES	
6	SETUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2	SUPPORT EQUIPMENT	10
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7	FEST REQUIREMENTS	13
7.1		
7.1		
7.3		
7.4		
7.5		
7.6		
7.7		
7.8	CONDUCTED BAND EDGE MEASUREMENT	31
7.9	SPURIOUS RF CONDUCTED EMISSION	32
7.1	0 ANTENNA APPLICATION	33
7.1	1 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	34
8 7	FEST RESULTS	35
8.1	DWELL TIME	35
8.2		
8.3		
8.4		
8.5		
8.6		
8.7	BAND EDGE	72
8.8		
8.9	CONDUCTED RF SPURIOUS EMISSION	86

1 **TEST RESULT CERTIFICATION**

PIPO TECHNOLOGY CO., LIMITED
Area C, 3F, Bao Yun Da Logistics Centre, Warehouse Xi Xiang Avenue, Bao An Distric, Shenzhen, China
PIPO TECHNOLOGY CO., LIMITED
Area C, 3F, Bao Yun Da Logistics Centre, Warehouse Xi Xiang Avenue, Bao An Distric, Shenzhen, China
Tablet PC
W16
W10, W11, W12, W13, W14, W15, W17, W18, W19,
W20, T7, T8, T9, T10, T11, T12, T13, T14, SF141, SF142, SF143
S240522050003
May 22, 2024 ~ Jun 19, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Joe. Yan Prepared . By '

Joe.Yan (Project Engineer)

Reviewed By Aaron Cheng

(Supervisor)

Approved : By : Alex Li

(Manager)

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±3.7%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Tablet PC	
Trade Mark	PIPO	
FCC ID	PT7-W16	
Model No.	W16	
Family Model	W10, W11, W12, W13, W14, W15, W16, W17, W18, W19, W20, T7, T8, T9, T10, T11, T12, T13, T14, SF141, SF142, SF143	
Model Difference	All the model are the same circuit and RF module, except the model names.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	FPC Antenna	
Antenna Gain	2.41 dBi	
Adapter	Model: FX36U-120300C Input:100-240V~50/60Hz 0.8A Output: 12V 3A (36.0W)	
Battery	DC 7.6V, 5000mAh, 38Wh	
Power supply	DC 7.6V from battery or DC 12V from adapter	
HW Version	N/A	
SW Version	N/A	
h		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01 Revision History				
Report No.	Version	Description	Issued Date	
S24052205003001	Rev.01	Initial issue of report	Jun 19, 2024	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

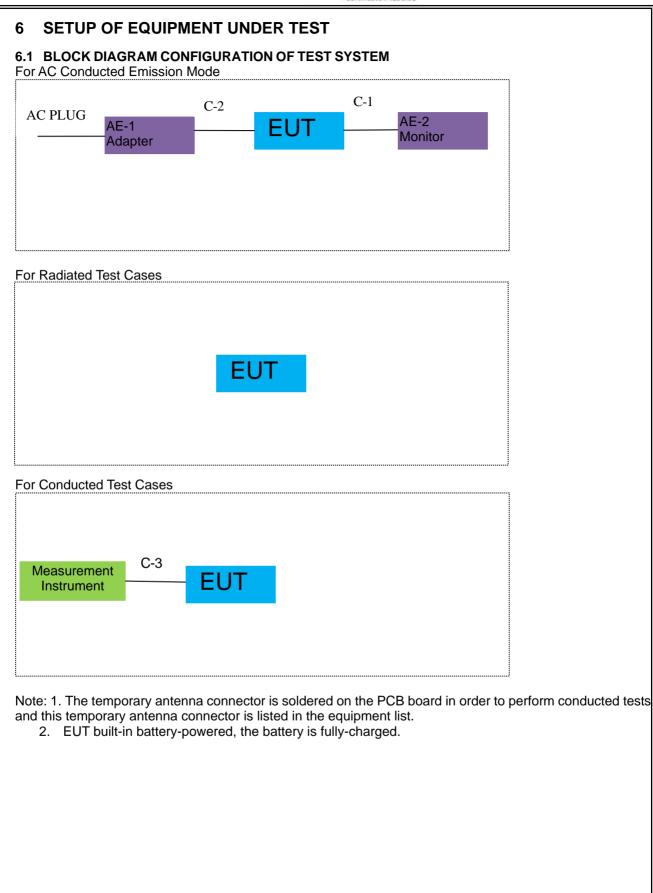
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission					
Final Test Mode	Final Test Mode Description				
Mode 1	normal link mode				

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	FX36U-120300C	N/A	Peripherals
AE-2	Monitor	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Power Cable	YES	NO	1.0m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

aulationa Conducted		cst equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.26	2025.04.25	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.03.12	2025.03.11	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.01.23	2025.01.22	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.27	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

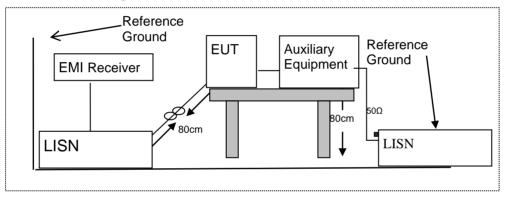
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

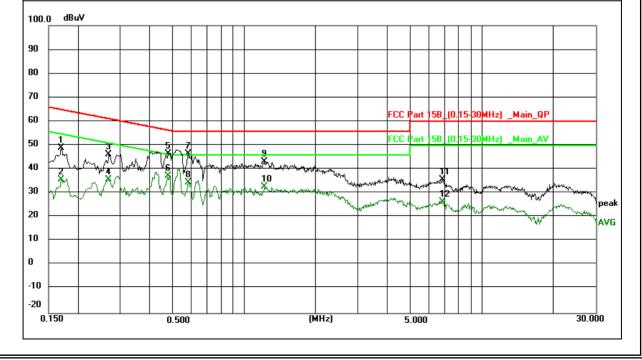
7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results


EUT:	Tablet PC	Model Name :	W16
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

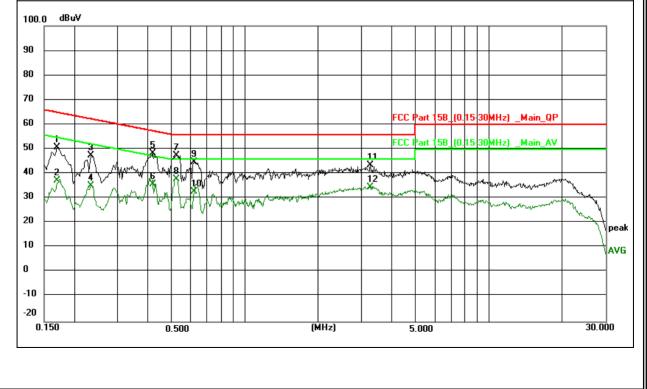
r					I	-
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	38.96	9.97	48.93	64.96	-16.03	QP
0.1700	25.78	9.97	35.75	54.96	-19.21	AVG
0.2700	36.21	10.18	46.39	61.12	-14.73	QP
0.2700	25.61	10.18	35.79	51.12	-15.33	AVG
0.4786	35.96	10.61	46.57	56.36	-9.79	QP
0.4786	26.61	10.61	37.22	46.36	-9.14	AVG
0.5820	35.69	10.81	46.50	56.00	-9.50	QP
0.5820	23.85	10.81	34.66	46.00	-11.34	AVG
1.2140	31.25	12.08	43.33	56.00	-12.67	QP
1.2140	20.82	12.08	32.90	46.00	-13.10	AVG
6.8340	26.12	9.68	35.80	60.00	-24.20	QP
6.8340	16.77	9.68	26.45	50.00	-23.55	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

NTEK 北测[®]


EUT:	Tablet PC	Model Name :	W16
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	40.90	9.97	50.87	64.96	-14.09	QP
0.1700	27.24	9.97	37.21	54.96	-17.75	AVG
0.2340	37.38	10.10	47.48	62.31	-14.83	QP
0.2340	25.17	10.10	35.27	52.31	-17.04	AVG
0.4180	37.75	10.49	48.24	57.49	-8.25	QP
0.4180	25.42	10.49	35.91	47.49	-11.58	AVG
0.5220	36.78	10.69	47.47	56.00	-8.53	QP
0.5220	27.30	10.69	37.99	46.00	-8.01	AVG
0.6180	33.96	10.89	44.85	56.00	-11.15	QP
0.6180	21.79	10.89	32.68	46.00	-13.32	AVG
3.2620	33.81	9.67	43.48	56.00	-12.52	QP
3.2620	25.04	9.67	34.71	46.00	-11.29	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 OO 1 dit15.200, restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

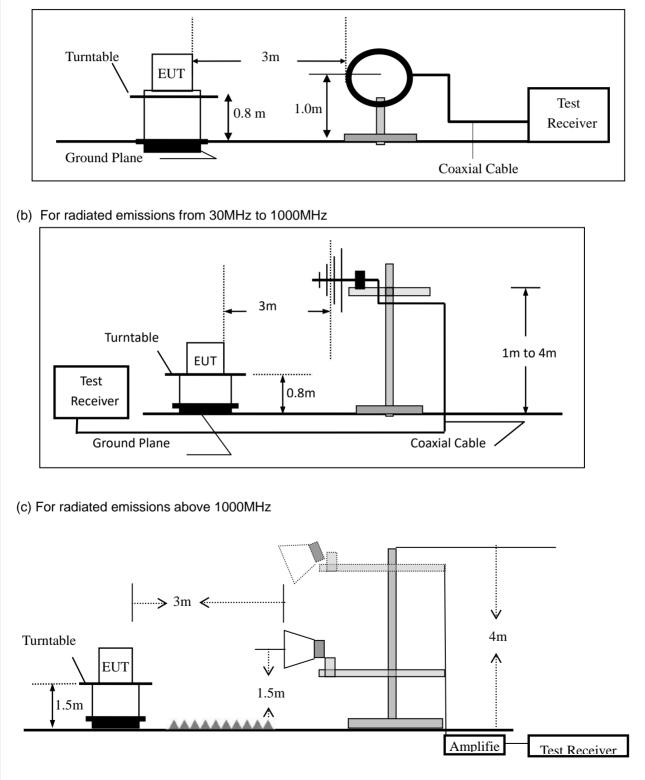
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	ouring the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
Above 4000	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Tablet PC	Model No.:	W16
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	PK AV Í		AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Tablet PC W16 Model Name : Temperature: **25°**℃ 55% **Relative Humidity:** Test Mode: Pressure: 1010hPa Mode 4 DC 7.6V Test Voltage : Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 37.5478 12.63 19.20 31.83 40.00 -8.17 QP QP V 114.5146 12.64 17.99 30.63 43.50 -12.87 V 151.5971 22.31 15.28 37.59 43.50 -5.91 QP QP V 186.4407 16.79 17.52 34.31 43.50 -9.19V 428.0192 12.32 22.71 35.03 -10.97 QP 46.00 V 497.6764 11.91 23.93 35.84 46.00 -10.16 QP **Remark:** Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 80.0 dBuV/m 70 60 CC Part15 RE-Class B_30-1000MHz 50 40 5 30 an. Where to 20 10 0.0 (MHz) 1000.000 30.000 60.00 300.00

NTEK 北测[®]

Polar	Freque	ency		eter ading	Factor	Emis Lev		Lim	its	Margir		Remark
(H/V)	(MH	z)	(dl	BuV)	(dB)	(dBu	V/m)	(dBu	V/m)	(dB)		
Н	148.9	624	22	2.63	15.17	37.	80	43.	50	-5.70		QP
Н	187.0	956	17	7.94	17.65	35.	59	43.	50	-7.91		QP
Н	300.3	672	13	3.13	20.05	33.	18	46.	00	-12.82	2	QP
Н	341.9	786	15	5.81	21.05	36.	86	46.	00	-9.14		QP
Н	428.0	192	15	5.68	22.71	38.	39	46.	00	-7.61		QP
Н	513.6	331	11	1.99	23.97	35.	96	46.	00	-10.04	-	QP
	on Level= BuV/m	Meter	Readi	ng+ Fa	ctor, Margi	n= Emis	sion L	_evel - Li	mit	1		
70												
60								FCC Part1	5 RE-Clas	s\$ B_30-1000	MHz	
50								Hargin -G				
40					1 X	2			5	6 X		
30 20	popertrapplications	wather	Kuk,		WWY WANT AND IN THE	Mund John	hander	when they	www.l.m.w	6 X Marshanika	Werlin an	
10			W.Andanida	4 MARTINE C	ψ							
0.0		60.0				MHz)		300.00				1000.000

Spurious I	Emission /	Above 10	GHz (1GHz	z to 25GH	z)				
EUT:	Table	et PC		Mode	l No.:	W	16		
Temperature:	Temperature:20 °CRelative Humidity:48%								
Test Mode:	Test Mode: Mode2/Mode3/Mode4 Test By: Joe.Yan								
All the modula	All the modulation modes have been tested, and the worst result was report as below:								
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limit	s Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	m) (dB)		
		Lo	w Channel	(2402 MHz	z)(π/4-DQPS	SK)Abo	ve 1G		
4804.214	64.73	5.21	35.59	44.30	61.23	74.00) -12.77	Pk	Vertical
4804.214	43.60	5.21	35.59	44.30	40.10	54.00	-13.90	AV	Vertical
7206.265	62.05	6.48	36.27	44.60	60.20	74.00	-13.80	Pk	Vertical
7206.265	42.18	6.48	36.27	44.60	40.33	54.00	-13.67	AV	Vertical
4804.109	62.58	5.21	35.55	44.30	59.04	74.00	-14.96	Pk	Horizontal
4804.109	41.92	5.21	35.55	44.30	38.38	54.00	-15.62	AV	Horizontal
7206.224	61.41	6.48	36.27	44.52	59.64	74.00	-14.36	Pk	Horizontal
7206.224	40.87	6.48	36.27	44.52	39.10	54.00	-14.90	AV	Horizontal
		Μ	id Channel	(2441 MHz	:)(π/4-DQPS	SK)Abo	ve 1G		
4882.396	64.87	5.21	35.66	44.20	61.54	74.00		Pk	Vertical
4882.396	43.84	5.21	35.66	44.20	40.51	54.00) -13.49	AV	Vertical
7323.241	63.20	7.10	36.50	44.43	62.37	74.00) -11.63	Pk	Vertical
7323.241	43.68	7.10	36.50	44.43	42.85	54.00) -11.15	AV	Vertical
4882.108	62.71	5.21	35.66	44.20	59.38	74.00	-14.62	Pk	Horizontal
4882.108	42.42	5.21	35.66	44.20	39.09	54.00) -14.91	AV	Horizontal
7323.132	61.71	7.10	36.50	44.43	60.88	74.00) -13.12	Pk	Horizontal
7323.132	42.48	7.10	36.50	44.43	41.65	54.00) -12.35	AV	Horizontal
		Hig	h Channel	(2480 MH	<u>z)(</u> π/4-DQPS	SK) Abo	ove 1G		
4960.397	64.60	5.21	35.52	44.21	61.12	74.00) -12.88	Pk	Vertical
4960.397	43.91	5.21	35.52	44.21	40.43	54.00	-13.57	AV	Vertical
7440.201	63.68	7.10	36.53	44.60	62.71	74.00) -11.29	Pk	Vertical
7440.201	42.67	7.10	36.53	44.60	41.70	54.00) -12.30	AV	Vertical
4960.225	62.98	5.21	35.52	44.21	59.50	74.00	-14.50	Pk	Horizontal
4960.225	42.27	5.21	35.52	44.21	38.79	54.00) -15.21	AV	Horizontal
7440.298	61.17	7.10	36.53	44.60	60.20	74.00	-13.80	Pk	Horizontal
7440.298	42.47	7.10	36.53	44.60	41.50	54.00) -12.50	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

		Emission ir	n Restric	cted Band	<u>231</u> 0-239	0MHz and	2483.	5-250	0MHz		
ΕL	JT:	Tablet PC				odel No.: W16		W16			
Те	mperature:	20 ℃			Relat	Relative Humidity: 48%			%		
Те	st Mode:	Mode2/ M	ode4		Test	By:		Joe.۱	(an		
Α	All the modulation modes have been tested, and the worst result was report as below:										
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
				2Mb	ps(π/4-DQ	PSK)-Non-h	opping)			
	2310.00	59.32	2.97	27.80	43.80	46.29	7	'4	-27.71	Pk	Horizontal
	2310.00	45.35	2.97	27.80	43.80	32.32	5	54	-21.68	AV	Horizontal
	2310.00	59.46	2.97	27.80	43.80	46.43	7	'4	-27.57	Pk	Vertical
	2310.00	43.31	2.97	27.80	43.80	30.28	5	54	-23.72	AV	Vertical
	2390.00	58.72	3.14	27.21	43.80	45.27	7	'4	-28.73	Pk	Vertical
	2390.00	43.55	3.14	27.21	43.80	30.10 54		54	-23.90	AV	Vertical
	2390.00	56.99	3.14	27.21	43.80	30 43.54		'4	-30.46	Pk	Horizontal
	2390.00	43.99	3.14	27.21	43.80	30.54		54	-23.46	AV	Horizontal
	2483.50	60.09	3.58	27.70	44.00	47.37	7	'4	-26.63	Pk	Vertical
	2483.50	44.15	3.58	27.70	44.00	31.43	5	54	-22.57	AV	Vertical
	2483.50	59.61	3.58	27.70	44.00	46.89	7	'4	-27.11	Pk	Horizontal
	2483.50	44.15	3.58	27.70	44.00	31.43	5	54	-22.57	AV	Horizontal
				21	Abps(π/4-D	DQPSK)-hop	ping				
	2310.00	52.24	2.97	27.80	43.80	39.21	74	.00	-34.79	Pk	Vertical
	2310.00	42.21	2.97	27.80	43.80	29.18	54	.00	-24.82	AV	Vertical
	2310.00	53.14	2.97	27.80	43.80	40.11	74	.00	-33.89	Pk	Horizontal
	2310.00	44.19	2.97	27.80	43.80	31.16	54	.00	-22.84	AV	Horizontal
	2390.00	54.34	3.14	27.21	43.80	40.89	74	.00	-33.11	Pk	Vertical
	2390.00	42.81	3.14	27.21	43.80	29.36	54	.00	-24.64	AV	Vertical
	2390.00	52.98	3.14	27.21	43.80	39.53	74	.00	-34.47	Pk	Horizontal
	2390.00	41.18	3.14	27.21	43.80	27.73	54	.00	-26.27	AV	Horizontal
	2483.50	55.35	3.58	27.70	44.00	42.63	74	.00	-31.37	Pk	Vertical
	2483.50	44.15	3.58	27.70	44.00	31.43	54	.00	-22.57	AV	Vertical
	2483.50	54.31	3.58	27.70	44.00	41.59	74	.00	-32.41	Pk	Horizontal
	2483.50	45.66	3.58	27.70	44.00	32.94	54	.00	-21.06	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:		et PC	leu banu		Mode	-18000MH; I No :	2	W16			
emperature:	emperature: 20 °C					ve Humidit		48%			
•							у.		/		
	est Mode: Mode2/ Mode4 Il the modulation modes have been tested, a					By:	11 -	Joe.\		L.	
All the modula	ation mode	es nave	been teste	ea, a	and th	e worst res	uit wa	is repo	ort as be	IOW:	
Frequency	Reading Level	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
3260	60.57	4.04	29.57	44	4.70	49.48	7	'4	-24.52	Pk	Vertical
3260	55.31	4.04	29.57	44	4.70	44.22	5	64	-9.78	AV	Vertical
3260	61.57	4.04	29.57	44	4.70	50.48	7	'4	-23.52	Pk	Horizontal
3260	58.14	4.04	29.57	44	4.70	47.05	5	54	-6.95	AV	Horizontal
3332	65.09	4.26	29.87	44	4.40	54.82	7	'4	-19.18	Pk	Vertical
3332	54.31	4.26	29.87	44	4.40	44.04	5	54	-9.96	AV	Vertical
3332	61.97	4.26	29.87	44	4.40	51.70	7	'4	-22.30	Pk	Horizontal
3332	53.82	4.26	29.87	44	4.40	43.55	5	54	-10.45	AV	Horizonta
17797	44.84	10.99	43.95	43	3.50	56.28	7	'4	-17.72	Pk	Vertical
17797	33.06	10.99	43.95	43	3.50	44.50	5	54	-9.50	AV	Vertical
17788	44.62	11.81	43.69	44	4.60	55.52	7	'4	-18.48	Pk	Horizonta
17788	31.13	11.81	43.69	44	4.60	42.03	5	64	-11.97	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Tablet PC	Model No.:	W16
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Joe.Yan

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Tablet PC	Model No.:	W16
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Tablet PC	Model No.:	W16
Temperature:	20 ℃	Relative Humidity:	W16 48% Joe.Yan
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Tablet PC	Model No.:	W16
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Tablet PC	Model No.:	W16
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Tablet PC	Model No.:	W16
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Joe.Yan

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached FPC Antenna (Gain: 2.41dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

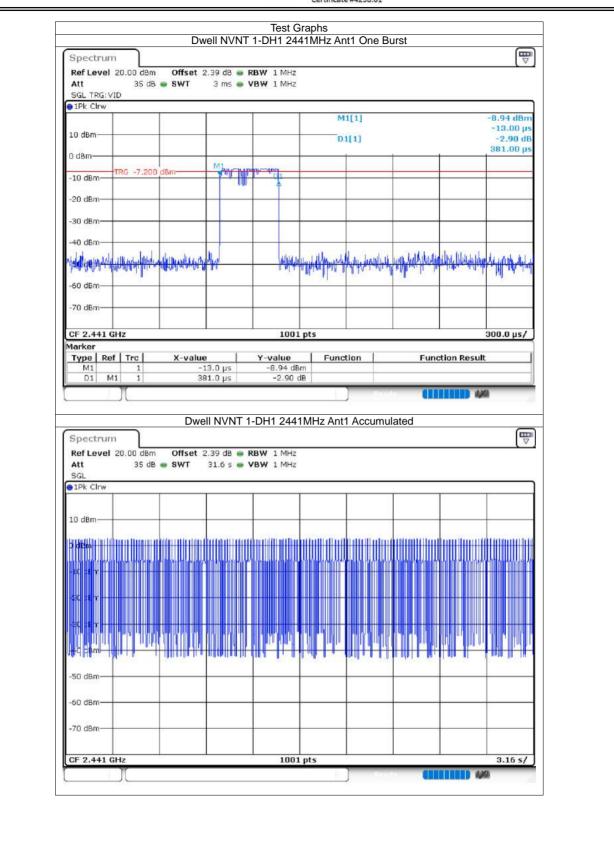
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS


8.1 **DWELL TIME**

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.381	84.963	223	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.635	202.74	124	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.888	283.024	98	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.39	85.8	220	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.645	213.85	130	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.896	283.808	98	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.39	85.41	219	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.64	209.92	128	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.896	249.056	86	31600	400	Pass

®

					(1-1			4 50 10
10 dBm	W1				[1]		0.0	4.58 dBm
0 dBm	*			D1 D1	[1]		1	-0.10 dB .63500 ms
-10 dBm) dBm							
-20 dBm								
-30 dBm								
-40 dBm	1			al dis	dia ang	de la dita	to the state	Constant of the
aliter and the second second second				App 4 mp	Andertre house	- Albertalia (Albertalia)	hould have been been been been been been been be	-pathana parth
-60 dBm-	+							
-70 dBm	+							
CF 2.441 GHz	1		1001	pts				500.0 µs/
Marker Type Ref Trc	X-value	1	Y-value	Funct	ion	Eupe	tion Result	
M1 1 D1 M1 1		.0 s	4.58 dBn -0.10 di	1		Tune	alon Result	
	1.035	ms	-0,10 0			611		
	Dwell N	NVNT 1-	DH3 2441	MHz Ant1	Accumul	ated		
Spectrum Ref Level 20.00 dBm	Offset 2.39	9 dB 🥌 RB	BW 1 MHz					∇
Att 35 dB SGL	8 e SWT 31	.6 s 💩 VI	BW 1 MHz					
1Pk Clrw								
10 dBm								
0 cBm	an ann a stirighta	n en senteses	Internet Reference	9011 1011-01811 10	0.00000.00000	CHARGE CARACT	THE DEBUG STATES	NAME & A DESCRIPTION
-16 сбт								
-20 (Ex								
	and a state of the	8 1 1 1 1		, en la den.	P P P P P	r Mi	A Protecte	2013 1-10
-30, (E))								
30 cE x			A DECEMBER OF THE PARTY OF THE		120 AC 745	23.1.1.00001223	10 PA INC 42 1 200 74	San Carlotter
-30 сБУ <u>Боло () () ()</u> -49 сбр		n dia dia Canada	10.000	or to Macadian				
:30, dБ у -40 ⁰ 06 h -50 dBm	HIMULUHUU MU	n an						
-50 dBm		1000 Budda ta B						
		TOTO THAT OF A TO						
-60 dBm		1010.00001.010	1001					3.16 s/

●1Pk Clrw	ID								
10.10					M	1[1]		0.0	2.03 dBm 00000000 s
10 dBm	M1			D1	D	1[1]		5	-0.10 dB
0 dBm-									
-10 dBm	TRG -8.000	dBm							
-20 dBm								-	
-30 dBm									-
-40 dBm					-				-
NUSAH & BALLAND	, Ma			ų	MILANSKA, PHIL	pairstrumph	Hundrey Myran	Albert Automatic	hypothypother
-60 dBm									
-70 dBm									
-70 0511									
CF 2.441 0	Hz			1001	pts				800.0 µs/
Marker Type Re		X-value		Y-value	Func	tion	Fund	tion Result	:]
M1 D1 M	1	2.1	0.0 s 888 ms	2.03 dB -0.10 d					
][]] 100		annad 🏘	9
		Dwo		-DH5 244'			lated		
Spectrun		Dwe		-0113 244			aleu		
Ref Level	20.00 dBm		2.39 dB 👜 F						, v
Att	35 dB	💩 SWT	31.6 s 💩 \	BW 1 MHz					
SGL									
SGL 91Pk Clrw		-	1	1		1	1		
●1Pk Clrw									
●1Pk Clrw									
● 1Pk Clrw 10 dBm									
● 1Pk Clrw 10 dBm									
● 1Pk Clrw 10 dBm									
● 1Pk Clrw 10 dBm									
1Pk Clrw 10 dBm d dBm									
1Pk Clrw 10 dBm 4 dBm									
1Pk Clrw 10 dBm d dBm									
1Pk Clrw 10 dBm 4 dBm									
1Pk Clrw 10 dBm d dBm -UC d3 n -2C d3 n -3C d3 n -3C d3 n -50 dBm -60 dBm									
1Pk Clrw 10 dBm d dBm -UE d3 n -2E d3 n -3E d3 n -3E d3 n -3E d3 n -50 dBm									
1Pk Clrw 10 dBm d dBm -UC d3 n -2C d3 n -3C d3 n -3C d3 n -50 dBm -60 dBm									3.16 s/

10 dBm-					1[1]			10.90 dBm -139.00 μs
				D	[1]			3.45 dB 390.00 µs
0 dBm	.300 d8m M3	MANA-MAN	(Q1					
-10 dBm		JI						
-20 dBm							-	
-30 dBm								
-40 dBm	EL 10 (2000 100					- de sa		
	delineration		- Land Martin	population and the second s	ruy philipping	erdhafighaga	and a second second	all and the first thirds
								-
-70 dBm								
CF 2.441 GHz			1001	pts				300.0 µs/
Marker Type Ref Trc			Y-value	Funct	ion	Func	tion Result	
M1 1 D1 M1 1		19.0 µs 10.0 µs	-10.90 dB 3.45 c					
] Read			A
	Dwe	II NVNT 2	-DH1 244'	1MHz Ant1	Accumul	ated		
Spectrum								
Ref Level 20.00 Att 3	dBm Offset 2 5 dB 🐵 SWT		RBW 1 MHz					
SGL	5 UD 🕌 3 WT	51.0 5 🖝 🕯						
1Pk Clrw								
10 dBm								
ledistri Lourout			dominant	en en ditte tetter		d a data from	an dan Dara	
All of States and States and States	i pangalagi ng pangang	a sa ang ang ang ang ang ang ang ang ang an	المتعاديه والمتعادية		a sa sa sa sa sa a	hanna llanga a	kan salah sa	in is is a survey
-20 : 6 h				4 8 4 1 1 1 1				
-3C 26 h					4	t -		PU
-20 25 T								
-10 56 n				1.1.1		<u>.</u>		
-3C 36 7		1.91 1.105161						
-3C 26 1				- A.				
-50 dBm				- A.				
+4Q ¢B 11 ¹ 1 - 11 - 11 - 11				- A.				
₩€ ₽5 ₩₩₩₩₩₩₩ -50 dBm				- A.				
-50 dBm								3.16 s/

1Pk Clrw			2
	N	11[1]	-12.20 dBm -145.00 μs
10 dBm		1[1]	4.72 dB
0 dBm-		1	1.64500 ms
-10 dBm TRG -7\\800 dBm 10 mm	which and a start with a start of the		
-20 dBm			
-30 dBm			
-40 dBm	links of all a	La data da Cara da Car	an the provide a president
pastang the apartition of the second s	Manu Medina Mi	and can have a	directive the multiplicity and a
-60 dBm			
-70 dBm			
CF 2.441 GHz	1001 pts		500.0 u= /
Marker			500.0 µs/
Type Ref Trc X-value M1 1 -145.0		ction Fun	ction Result
D1 M1 1 1.645 r	ns 4.72 dB		
Dwell N	/NT 2-DH3 2441MHz An	1 Accumulated	
Spectrum			
Ref Level 20.00 dBm Offset 2.39 Att 35 dB SWT 31.6	dB 🚥 RBW 1 MHz s 📼 VBW 1 MHz		
SGL 91Pk Clrw			
DTEK CILM			
10 dBm-			-
said the chemiles movies	note the to the cuttille	and this adds to base t	a Hubber Burger
O dBm Dinisia (nistani ang bina ing bina minaka	a na di na mana dalara mana mandalara	and and a set in the second of	dahar kan kan saar Stadion - a
+10 ¢6m			
-20.cGin			
-30 f6+			and a state of the second s
189 #5 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
-50 dBm			
ou ubin			
-60 dBm			
-70 dBm			
CF 2.441 GHz	1001 pts		3.16 s/

SGL TRG: VID IPk Clrw							
			M	1[1]			-9.07 dBm
10 dBm-			D	1[1]			-16.00 μs 0.57 dB
0 dBm		Second Country				2	.89600 ms
-10 dBm TRG -7.700 d	างขางปูมที่ทางในเกิดที่ได้เป็นไปเป็นไป IBM	Laturat about					
-20 dBm							
-30 dBm							
-40 dBm				(1	ang ing ang sa	n z coulid-	a constant
reason of the second se		W	per minister and	y hange yay	Re-Alling Barris	Armer Brundone	What was granded
-60 dBm				-			
-70 dBm							
1. 1999 (1997) 1							
CF 2.441 GHz Marker		1001	l pts				800.0 µs/
Type Ref Trc	X-value	Y-value	Func	tion	Fund	tion Result	
M1 1 D1 M1 1	-16.0 µs 2.896 ms	-9.07 dB 0.57 d					
) Prof			1
	Dwell NVNT 2				atod		
Spectrum	Dweirittitt	- 0110 244		Recumu			₽
Ref Level 20.00 dBm	Offset 2.39 dB 👜 I	RBW 1 MHz					(v)
Att 35 dB SGL	• SWT 31.6 s 🖝 '	VBW 1 MHz					
1Pk Clrw							
10.00 - 20		-					
10 dBm							
10 dBm							
AND AND AND AND A							
AND AND AND AND A							
AND AND AND AND A							
0 dłm -10 :6 v							
o däm -10 :6m -20 :6m -30 :6m							
0 dłm -10 :6 v							
o däm -10 :6m -20 :6m -30 :6m							
0 d im -10 :6r -20 :6r -30 :6r -50 dBm							
0 d im -10 :6r -20 :6r -30 :6r 							
0 d im -10 :6r -20 :6r -30 :6r -50 dBm							
0 d H -10 :5 r -20 :5 r -30 :5 ⁺ -50 dBm -60 dBm -70 dBm							
0 d t m -10 :6 r -20 :6 r -20 :6 r -30 :26 - -50 dBm -60 dBm			pts				3.16 s/

SGL TRG:VI					M	[1]			0.84 dBm
10 dBm		-	S-Am			[1]			-1.00 µs 0.70 dB
0 dBm			M1	man DI		4.*1			390.00 µs
-10 dBm	RG -6.800	dBm							
-20 dBm								c	
-30 dBm									-
-40 dBm									
HADELABARAINAN	milli Libertore.	bill mine di the be	AN	La La	M. M. M. M. M. M.	the wellow h	A. L. Middle and	Monadala	AND MARK
	and all d	Inst. a Ma	(a 10)	Man	one dimendale	i hoirinlahai	ACL ROWING	1 y .w.u	. M. h. M. Malia i I
-60 dBm									
-70 dBm									
CF 2.441 G	Hz	6 B		1001	pts				300.0 µs/
Marker Type Ref		X-value		Y-value	Funct	ion (Fund	tion Result	
M1 D1 M1	1		10.0 ns 10.0 µs	0.94 dB 0.70 (
][]					Re of			1 . J.
		Dwe	II NVNT 3	-DH1 244	1MHz Ant1	Accumu	ated		
Spectrum									
Ref Level 2 Att				BW 1 MHz					
SGL									
10 dBm									
-11 CEF	A CHARACT		na na marina ku	our and the		an chi chi shike		and the second	NOR MUMPL
-21 680		** <u>1</u> 11						11 wegg	
-32 cer									
+41 qBit									
-50 dBm			CVC.255.775			NU XV	23		
-30 UBII									
-60 dBm									
-70 dBm									
05.0.111.0	-			1001					0.15 cl
	Y			1001	pts		(11		3.16 s/
CF 2.441 G						ł.			

SGL TRG: VID 9 1Pk Clrw							9
			M	1[1]			-9.63 dBm -145.00 µs
10 dBm			D	1[1]			3.64 dB
0 dBm-	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		1				.64000 ms
-10 dBm	d8m	1.10					
-20 dBm		_					
-30 dBm		_					-
-40 dBm							_
425206680							
-59 demonstration			under the states	1994 Weller Marken	upper and the second	eder performant	enershipship
-60 dBm-							
-70 dBm							8
CF 2.441 GHz		1001	. pts				500.0 µs/
Marker Type Ref Trc	X-value	Y-value	Fund	tion	Eupr	tion Result	
M1 1 D1 M1 1	-145.0 µs 1.64 ms	-9.63 dB 3.64 d	m		1 310		
	1.07103	5.011		1			9
				,			
<u> </u>	Dwell NVNT	3-DH3 244	1MHz Ant	1 Accumul	ated		
							Reduction of the second
Spectrum Ref Level 20.00 dBm	Offset 2 39 dB	RBW 1 MHz					V V
RefLevel 20.00 dBm Att 30 dB	Offset 2.39 dB SWT 31.6 s						
Ref Level 20.00 dBm							(v
RefLevel 20.00 dBm Att 30 dB SGL							
RefLevel 20.00 dBm Att 30 dB SGL							
Ref Level 20.00 dBm Att 30 dB SGL PIPK CInw							
Ref Level 20.00 dBm Att 30 dB SGL 1Pk Clrw 10 dBm							
Ref Level 20.00 dBm Att 30 dB SGL PIPK CInw							
Ref Level 20.00 dBm Att 30 dB SGL 1Pk Clrw 10 dBm							
Ref Level 20.00 dBm Att 30 dB SGL 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw							
Ref Level 20.00 dBm Att 30 dB SGL 1Pk Clrw 10 dBm							
Ref Level 20.00 dBm Att 30 dB SGL 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw							
Ref Level 20.00 dBm Att 30 dB SGL 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw							
Ref Level 20.00 dBm Att 30 dB SGL 10k Cirw 10 dBm 10k Cirw 10 dBm 10k Cirw 20 C Bm 10k Cirw 3C SBm 10k Cirw							
Ref Level 20.00 dBm Att 30 dB SGL 10 k Clrw 10 dBm 10 c Bm 10 c Bm 10 c Bm 20 c Bm 10 c Bm -50 dBm -60 dBm							
Ref Level 20.00 dBm Att 30 dB SGL 10k Clrw 10 dBm 30 dB 20 c Bm 30 c Bm 3C s Bm 50 dBm							
Ref Level 20.00 dBm Att 30 dB SGL 10k Clrw 10 dBm 30 dB 10 dBm 30 dB 20 cBm 30 dB -50 dBm -60 dBm -70 dBm -70 dBm							
Ref Level 20.00 dBm Att 30 dB SGL 10k Clrw 10 dBm 10k Clrw 20 c Bm 10k Clrw 30 c Bm 10k Clrw -50 dBm 10k Clrw							3.16 s/

Ref Level 3 Att SGL TRG: VI	35 dB	Offset 2 SWT		RBW 1 MHz /BW 1 MHz					
●1Pk Clrw									-
					M	1[1]		0.0	1.48 dBm 00000000 s
10 dBm-	M1			D1	D	1[1]			0.59 dB
0 dBm	- promo	had a second	from a gallon and a second	werener pursing t		p	-	12	2.89600 ms
to dom	RG -6.800	dBm					-		
-10 dBm									
-20 dBm							-	5	
-30 dBm									-
-40 dBm	J.				1.0.14	Million of	Column 1	a data ta a	Inter taidh
-solaer and	<u>uv</u>			9	AN WORLD CAN BEEN	MUMPHART	phromogene	Manhanny	entine Autoria in
-60 dBm					-				
1.0000000000000									
-70 dBm									
CF 2.441 G	Ηz	5. S		1001	pts			-	800.0 µs/
Marker									
Type Ref	Trc 1	X-value	0.0 s	Y-value 1.48 dB	Func m	tion	Fund	tion Result	
D1 M1		2.6	396 ms	0.59 (
][]]	011	aaaad 🦇	8
		_		BUE 644					
		Dwe	II NVNT 3	-DH5 244	i MHZ ANT	1 Accumu	lated		
Spectrum									
Ref Level 2 Att				RBW 1 MHz					
Att SGL		offset 2 SWT							
Att						1			
Att SGL 91Pk Clrw									
Att SGL									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 91Pk Clrw									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm				/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 dBm 10 dBm 20 dBm 20 dBm 30 dBm 30 dBm				/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm				/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 d\$m 10 dBm 20 dBm 20 dBm 20 dBm 20 dBm				/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 d\$m 10 dBm 20 dBm 20 dBm 30 dBm -50 dBm				/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 d9m 10 dBm 20 d8m 20 d8m 20 d8m 20 d8m 50 dBm				/BW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 dBm 10 dBm 20 dBm 20 dBm -50 dBm -60 dBm -70 dBm	35 dB			/BW 1 MHz					
Att SGL 10 dBm 0 d\$m 10 dBm 10 dBm 20 dBm 20 dBm -50 dBm -60 dBm	35 dB			/BW 1 MHz					3.16 s/
Att SGL 1Pk Clrw 10 dBm 0 dBm 10 dBm 20 dBm 20 dBm -50 dBm -60 dBm -70 dBm	35 dB			/BW 1 MHz					
Att SGL 10 dBm 0 dBm 10 dBm 10 dBm 20 dBm 20 dBm -50 dBm -60 dBm -70 dBm	35 dB			/BW 1 MHz					

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	2.52	21	Pass
NVNT	1-DH5	2441	Ant1	2.42	21	Pass
NVNT	1-DH5	2480	Ant1	2.56	21	Pass
NVNT	2-DH5	2402	Ant1	3.27	21	Pass
NVNT	2-DH5	2441	Ant1	3.12	21	Pass
NVNT	2-DH5	2480	Ant1	3.29	21	Pass
NVNT	3-DH5	2402	Ant1	1.41	21	Pass
NVNT	3-DH5	2441	Ant1	1.33	21	Pass
NVNT	3-DH5	2480	Ant1	1.42	21	Pass

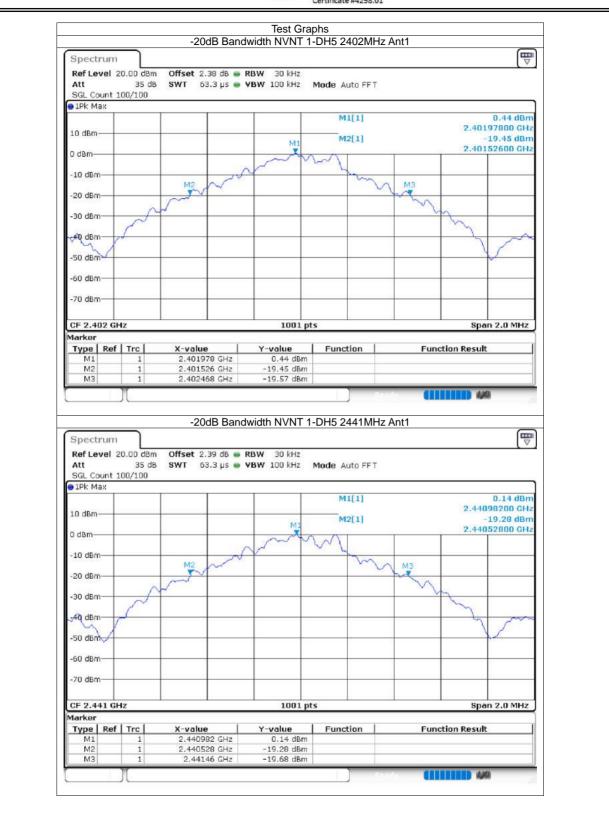
Spectrum]			
Ref Level 20.00	35 dB SWT	2.38 dB ● RBW 2 MHz 1 ms ● VBW 2 MHz	Mode Auto Sweep	
ACD PIGA			M1[1]	2.52 dBm
10 dBm				 2.40214990 GHz
			M1	
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm		1		
-70 dBm				0
Spectrum Ref Level 20.00		Power NVNT 1-D	DH5 2441MHz Ant	Span 5.0 MHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1	35 dB SWT	Power NVNT 1-D	DH5 2441MHz Ant	AASA
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1	35 dB SWT	Power NVNT 1-D	DH5 2441MHz Ant	₽ ₩
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm	35 dB SWT	Power NVNT 1-D	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att :: SGL Count 100/1 1Pk Max 10 dBm -10 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
SGL Count 100/1) IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att :: SGL Count 100/1 1Pk Max 10 dBm -10 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att :: SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1 PK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att :: SGL Count 100/1 1Pk Max 10 dBm -10 dBm -20 dBm	35 dB SWT	Power NVNT 1-C 2.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩
Spectrum Ref Level 20.00 Att :: SGL Count 100/1 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	35 dB SWT	Power NVNT 1-E	Mode Auto Sweep	2.42 dBm 2.44078520 GHz
Spectrum Ref Level 20.000 Att :: SGL Count 100/1) IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	35 dB SWT	Power NVNT 1-E	DH5 2441MHz Ant Mode Auto Sweep	₽ ₩

SGL Count 100/100		dB 🖷 RBW 2 MHz ns 🖷 VBW 2 MHz	Mode Auto Sweep		□
1Pk Max		1	M1[1]	2.	.56 dBm
10 dBm			2	 2.47985	
		MI		р с	
D dBm					
-10 dBm					-
					1
-20 dBm				 17	
-30 dBm					
-40 dBm					
-50 dBm				 	
-60 dBm					
-70 dBm					
CF 2.48 GHz		1001			.0 MHz
Ref Level 20.00 dBm	Offset 2.38 (db 🖷 RBW 2 MHz	H5 2402MHz Ant1		₽
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.38 (db 🖷 RBW 2 MHz	Mode Auto Sweep		Ð
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.38 (db 🖷 RBW 2 MHz			.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep	3. 2.40195-	.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm	Offset 2.38 (db 🖷 RBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -28' dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -40 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep		.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 0 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep	2.40195	.27 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm	Offset 2.38 (dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto Sweep	2.40195-	.27 dBm 450 GHz

Att SGL Count 100	35 dB SWT	et 2.39 dB 👄 RBN 1 ms 👄 VBN		ode Auto Sweep			
1Pk Max				M1[1]			3.12 dBm
				(infit)		2.440	90260 GHz
10 dBm	0		MI				
0 dBm							
-10 dBm	-						
-28 dBm-							
-20 OBIN							1
-30 dBm							
-40 dBm							
-50 dBm							
Messoan.							
-60 dBm							
-70 dBm							
CF 2.441 GHz		8.0 Get	1001 pts		1. X	Spar	1 6.5 MHz
]		Power N	VNT 2-DH5	2480MHz Ant1			
Spectrum Ref Level 20. Att SGL Count 100	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz	2480MHz Ant1 ode Auto Sweep			
Spectrum Ref Level 20.	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz			2.479	
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100) IPk Max 10 dBm 0 dBm	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm	35 dB SWT	et 2.42 dB 👳 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz W 2 MHz Mo	ode. Auto Sweep		2.479	3.29 dBm
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz Mc	M1[1]			3.29 dBm 38700 GHz
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz W 2 MHz Mo	M1[1]		Spar	3.29 dBm 38700 GHz
Spectrum Ref Level 20. Att SGL Count 100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	35 dB SWT	et 2.42 dB 🖷 RBN	W 2 MHz Mc	M1[1]			3.29 dBm 38700 GHz

Ref Level 20.0 Att SGL Count 100/	35 dB SWT	.38 dB 🖷 RBW 2 MHz 1 ms 🖶 VBW 2 MHz	Mode Auto Sweep			
1Pk Max						
	1		M1[1]		1.41 dB 2.40205940 G	
10 dBm	0			-		
0 dBm			M1			
o ubili						
-10 dBm						-
-20.dBm						
-20 06/11						1
-30 dBm					·	-
-40 dBm						
-40 UBIN						
-50 dBm		<u> </u>				-
-60 dBm						
UD UDIT						
-70 dBm						
CF 2.402 GHz		100	11 pts	18 28	Span 6.5 MH	z
Ref Level 20.0	D dBm Offset 2 35 dB SWT	.39 dB 🖷 RBW 2 MHz			(C	₽
Att SGL Count 100/	35 dB SWT	.39 dB 🖷 RBW 2 MHz				₿
Ref Level 20.0 Att	35 dB SWT	.39 dB 🖷 RBW 2 MHz			1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ 1Pk Max	35 dB SWT	.39 dB 🖷 RBW 2 MHz	Mode Auto Sweep		[3m
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm -10 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ SGL Count 100/ 100/ IPk Max 0 0 dBm 0 dBm -0 0 dBm -10 dBm -0 0 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm -60 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ SGL Count 100/ 100/ IPk Max 0 0 dBm 0 dBm -00 dBm -00 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm	35 dB SWT	.39 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep		1.33 dE	3m
Ref Level 20.0 Att SGL Count 100/ SGL Count 100/ 100/ ID dBm 0 0 10 dBm - 0 0 -10 dBm - 0 - -20 dBm - - - -30 dBm - - - -50 dBm - - - -70 dBm - - -	35 dB SWT	.39 dB RBW 2 MHz 1 ms VBW 2 MHz	Mode Auto Sweep		1.33 de 2.44098050 G	3m Hz
Ref Level 20.0 Att SGL Count 100/ SGL Count 100/ 100/ IPk Max 0 0 dBm 0 dBm -0 0 dBm -10 dBm -0 0 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm -60 dBm	35 dB SWT	.39 dB RBW 2 MHz 1 ms VBW 2 MHz	Mode Auto Sweep		1.33 de 2.44098050 G	3m Hz
Ref Level 20.0 Att SGL Count 100/ SGL Count 100/ 100/ IPk Max 10 dBm 0 0 dBm	35 dB SWT	.39 dB RBW 2 MHz 1 ms VBW 2 MHz	Mode Auto Sweep		1.33 de 2.44098050 G	3m Hz

Spectrum		(
RefLevel 20.00 dBm Offset 2.42 dB ● RBW Att 35 dB SWT 1 ms ● VBW SGL Count 100/100			_
1Pk Max	M1[1]	1.42 d 2.48007790 (
10 dBm	M1		
D dBm			-
10 dBm			_
20 dBm			-
30 dBm			
40 dBm			_
50 dBm			_
60 dBm			_
70 dBm			
CF 2.48 GHz	1001 atc	Span 6.5 Mi	
	1001 pts	opan 0.3 Mi	12



8.3 -20DB BANDWIDTH

8.3 -20 [DB BA	NDWIDTH				
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.942	0	Pass
NVNT	1-DH5	2441	Ant1	0.932	0	Pass
NVNT	1-DH5	2480	Ant1	0.946	0	Pass
NVNT	2-DH5	2402	Ant1	1.478	0	Pass
NVNT	2-DH5	2441	Ant1	1.438	0	Pass
NVNT	2-DH5	2480	Ant1	1.418	0	Pass
NVNT	3-DH5	2402	Ant1	1.444	0	Pass
NVNT	3-DH5	2441	Ant1	1.436	0	Pass
NVNT	3-DH5	2480	Ant1	1.462	0	Pass



Spectrum					
Ref Level 20.00			Mode Auto FFT		
Att 3 SGL Count 100/1	35 dB SWT 63.3 µs 👄 LOO	ADM TOO KHS	Mode Auto FFT		
IPk Max					
			M1[1]	-0.72 dB	
10 dBm			M2[1]	2.44097800 G -20.56 dB	
0 dBm		MI		2.44025600 G	
d dbin		hart	n		
-10 dBm	- mark has		mm	V	
-20 dBm	No x			M3	
- 1				- Vn	
-30 dBm					
-40 dBm					-
FO dDee					
-50 dBm					
-60 dBm					-
-70 dBm					
			2		
CF 2.441 GHz		1001 pts	5	Span 2.0 MH	z
Marker	1944 - 2000 - 11 - 11				
Type Ref Tro	c X-value 1 2.440978 GHz	-0.72 dBm	Function	Function Result	
	1 2.440256 GHz	-20.56 dBm			
M3	1 2.441694 GHz	-20.44 dBm			
Ĭ			- Pro		
· · · · · · · · · · · · · · · · · · ·					
	-20dB Band	width NVNT 2-	DH5 2480MHz /	Ant1	
Spectrum	-20dB Band	width NVNT 2-	DH5 2480MHz /		E.
Spectrum]		DH5 2480MHz /		₽
Ref Level 20.00]	RBW 30 kHz			₽
Ref Level 20.00 Att 3 SGL Count 100/1) dBm Offset 2.42 dB == 35 dB SWT 63.3 µs ==	RBW 30 kHz			₽
Ref Level 20.00 Att) dBm Offset 2.42 dB == 35 dB SWT 63.3 µs ==	RBW 30 kHz	Mode Auto FFT	[
Ref Level 20.00 Att 3 SGL Count 100/1 PK Max) dBm Offset 2.42 dB == 35 dB SWT 63.3 µs ==	RBW 30 kHz			Im
Ref Level 20.00 Att 3 SGL Count 100/1) dBm Offset 2.42 dB == 35 dB SWT 63.3 µs ==	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 G -20.76 dB	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 PK Max) dBm Offset 2.42 dB == 35 dB SWT 63.3 µs ==	RBW 30 kHz	Mode Auto FFT	-1.01 dB 2.47997600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 10 dBm 0 dBm) dBm Offset 2.42 dB == 35 dB SWT 63.3 µs ==	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 G -20.76 dB	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 10 dBm 0 -10 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 G -20.76 dB	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 10 dBm 0 dBm -10 dBm M3 -20 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm M2 M2	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 3 10 dBm 0 -10 dBm -0 -20 dBm -10 -30 dBm -30 -50 dBm -50 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 0 dBm 0 -10 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20,00 Att 3 SGL Count 100/1 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 IPk Max 10 0 dBm 0 -10 dBm 10 -20 dBm 10 -30 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm
Ref Level 20.00 Att 3 SGL Count 100/1 IPk Max 10 0 dBm 0 -10 dBm 10 -20 dBm 10 -30 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M	Mode Auto FFT M1[1] M2[1]	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm Hz
Ref Level 20.00 Att 3 SGL Count 100/1 IPk Max 10 0 dBm 0 dBm -10 dBm 0 dBm -20 dBm	Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M M1 M1 M1 M1 M1 M1 M1 M1 M1 M	Mode Auto FFT M1[1] M2[1] 	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm Hz
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 10 dBm 10 -10 dBm 10 -20 dBm 10 -30 dBm 10 -50 dBm 10 -60 dBm 10 -70 dBm 10	C X-value	RBW 30 kHz VBW 100 kHz M M1 M1 M1 M1 M1 M1 M1 M1 M1 M	Mode Auto FFT M1[1] M2[1]	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm Hz
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 10 dBm 0 -10 dBm M2 -20 dBm M2 -30 dBm M2 -60 dBm -60 dBm -70 dBm CF 2.48 GHz Marker Type Ref Tro	Offset 2.42 dB 35 dB SWT 63.3 μs 100	RBW 30 kHz VBW 100 kHz M M1 M1 M1 M1 M1 M1 M1 M1 M1 M	Mode Auto FFT M1[1] M2[1] 	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm Hz
Ref Level 20.00 Att 3 SGL Count 100/1 IPk Max 10 0 dBm 0 -10 dBm -0 -20 dBm -0 -30 dBm -0 -50 dBm -0 -60 dBm -0 -70 dBm -0	c X-volue 1 2.479976 GHz	RBW 30 kHz VBW 100 kHz M M1 M1 M1 M1 M1 M1 M1 M1 M1 M	Mode Auto FFT M1[1] M2[1] 	-1.01 dB 2.47997600 GI -20.76 dB 2.47927600 GI	Sm Hz Sm Hz

Spectrum					
Ref Level 20.00 Att 3	dBm Offset 2.38 dB 35 dB SWT 63.3 µs	8 - RBW 30 kHz	Mada Auto CET		
SGL Count 100/1		S = YDYY IUU KHZ	HODE AUTO FF (
●1Pk Max					10
			M1[1]	9	-2.65 dBm 40197600 GHz
10 dBm	1		M2[1]	2.	-22.63 dBm
0 dBm		M1		2.	40126200 GHz
10 d0m		about	m on		
-10 dBm	a contra		and a	m	
-20 dBm	~~~			MB	
-30 dBm					man and a start of the start of
-40 dBm					~
-40 OBIII					1
-50 dBm					5
-60 dBm					
20 d8-					
-70 dBm			2	3 - B	
CF 2.402 GHz		1001 pt	5		Span 2.0 MHz
Marker	1. 10 m				
Type Ref Tro	X-value 1 2,401976 GH	Y-value 1z -2.65 dBm	Function	Function Re	sult
M2	1 2.401262 GH	iz -22.63 dBm			
M3	1 2.402706 GH	iz -22.52 dBm]
			- Pro		4/8
Spectrum	-20dB B	andwidth NVNT 3-	DH5 2441MHz	Ant1	
Att 3 SGL Count 100/1	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	6 🖶 RBW 30 kHz		Ant1	W (7)
Ref Level 20.00 Att 3	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	6 🖶 RBW 30 kHz	Mode Auto FFT	Ant1	
Ref Level 20.00 Att 3 SGL Count 100/1 PIPK Max	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	6 🖶 RBW 30 kHz	Mode Auto FFT M1[1]		-2.59 dBm 44098000 GHz
Ref Level 20.00 Att 3 SGL Count 100/1 IPk Max 3 10 dBm 3	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20.00 Att 3 SGL Count 100/1 PIPK Max	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	6 🖶 RBW 30 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz
Ref Level 20.00 Att 3 SGL Count 100/1 INK Max 10	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20.00 Att 3 SGL Count 100/1 IPk Max 10 dBm -10 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20,00 Att 3 SGL Count 100/1 1Pk Max 10 dBm -10 dBm -20 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20.00 Att 3 SGL Count 100/1 INK Max 10 dBm 0 dBm -10 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20.00 Att 3 SGL Count 100/1 INK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20,00 Att 3 SGL Count 100/1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20,00 Att 3 SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20,00 Att 3 SGL Count 100/1 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20.00 Att 3 SGL Count 100/1 • IPk Max 10 dBm • 10 dBm • 10 dBm • 20 dBm • 20 dBm • 30 dBm • 40 dBm • 50 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20,00 Att 3 SGL Count 100/1 1Pk Max 3 10 dBm 0 -10 dBm -10 -20 dBm M2 -30 dBm -40 -50 dBm -50	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1]	2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20,00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	dBm Offset 2.39 dB 35 dB SWT 63.3 µs	3 • RBW 30 kHz 5 • VBW 100 kHz	Mode Auto FFT M1[1] M2[1]	2. 2.	-2.59 dBm 44098000 GHz -22.52 dBm
Ref Level 20.00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm GF 2.441 GHz Marker	dBm Offset 2.39 dB 35 dB SWT 63.3 µs 00	RBW 30 kHz VBW 100 kHz M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	Mode Auto FFT M1[1] M2[1] M2[1] S	2. 2. 	-2.59 dBm 44098000 GHz -22.52 dBm 44026400 GHz
Ref Level 20,00 Att 3 SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm GF 2.441 GHz Marker Type Ref M1	dBm Offset 2.39 dB 15 dB SWT 63.3 µs 00	RBW 30 kHz VBW 100 kHz M1 M1 M1 M1 M1 U01 pt: Y-volue Iz -2.59 dBm	Mode Auto FFT M1[1] M2[1]	2. 2.	-2.59 dBm 44098000 GHz -22.52 dBm 44026400 GHz
Ref Level 20,00 Att 3 SGL Count 100/1 • IPk Max 10 dBm • 0 dBm • 10 dBm • 10 dBm • 20 dBm • 20 dBm • 30 dBm • 40 dBm • 50 dBm • 60 dBm • 70 dBm	dBm Offset 2.39 dB 15 dB SWT 63.3 µs 00	B RBW 30 kHz VBW 100 kHz I M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	Mode Auto FFT M1[1] M2[1] M2[1] S	2. 2. 	-2.59 dBm 44098000 GHz -22.52 dBm 44026400 GHz
Ref Level 20.00 Att 3 SGL Count 100/1 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Ref M2	dBm Offset 2.39 dB 15 dB SWT 63.3 µs 00	RBW 30 kHz VBW 100 kHz M1 M1 M1 1001 pt: Z -2.59 dBm Z -2.59 dBm	Mode Auto FFT M1[1] M2[1] M2[1] S	2. 2. 	-2.59 dBm 44098000 GHz -22.52 dBm 44026400 GHz

Spect	rum						
Att		0.00 dBm 35 dB			1ode Auto FFT		
SGL Co 1Pk M		00/100					
TEK M					M1[1]		-3.03 dBm
.0 dBm							2.48014790 GHz
					M2[1]		-23.01 dBm
) dBm–	-			-	M1		2.47925800 GHz
			1000	honda	~		
10 dBn	ا ا	100	m			m	
20 dBn	- 13	M2				m	M3
LO GDA	·]-	J					we have
30 dBn	1						M.
1	-						h
40 dBn	·					-	1
50 dBn							L.
60 dBn	-					-	
70 /0							
70 dBn	1				2	24	
							0.00101
CF 2.4 larker	8 GHZ			1001 pts			Span 2.0 MHz
Type	Pof	Trol	X-value	Y-value	Function	Functio	n Recult
M1	1.01	1	2.4801479 GHz	-3.03 dBm	rangaon	ranceo	IT NO SUIL
M2		1	2.479258 GHz	-23.01 dBm			
M3		1	2.48072 GHz	-22.90 dBm			

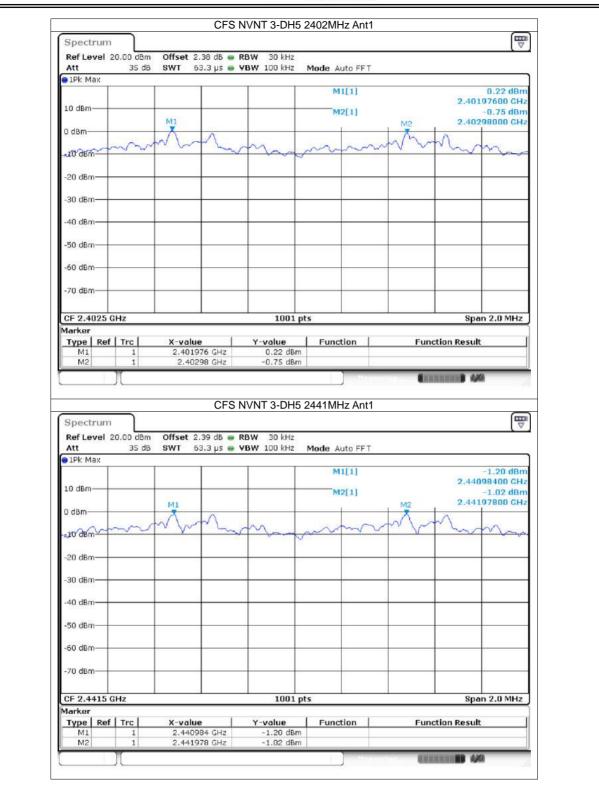
8.4 OCCUPIED CHANNEL BANDWIDTH

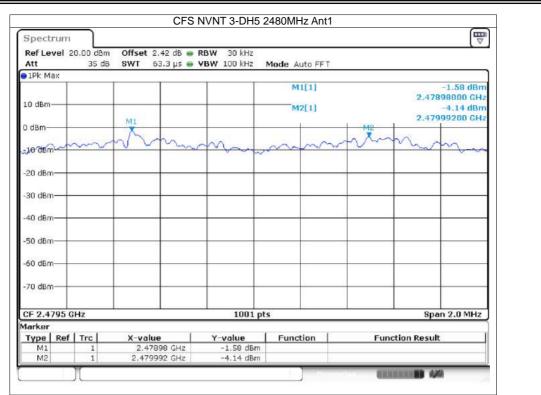
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.873
NVNT	1-DH5	2441	Ant1	0.899
NVNT	1-DH5	2480	Ant1	0.905
NVNT	2-DH5	2402	Ant1	1.353
NVNT	2-DH5	2441	Ant1	1.365
NVNT	2-DH5	2480	Ant1	1.357
NVNT	3-DH5	2402	Ant1	1.361
NVNT	3-DH5	2441	Ant1	1.369
NVNT	3-DH5	2480	Ant1	1.355

Ref Level 20.00 d	Bm Offset 2.42 d	B 📾 RBW 30 kHz			
		IS S VBW 100 kHz	Mode Auto FFT		
5GL Count 100/100)				
1Pk Max					
			M1[1]		2.39 dBm
0 dBm			Occ Bw		7600 GHz 5355 MHz
U UBIII			OLC BW	1.33464	0300 MH2
dBm		M1			
ubin		X			
10 dBm		a for and t	man man		
010000000000	mon	~~~~	Just Mar		
	\sim			NM 12	
20 dBm				n n	
				N N	
30 dBgwc					X-
10 dBm					h
50 dBm					
JO UBIT					
50 dBm					
op op n					
70 dBm					
O UDIT					
		1 1		1 1	

8.5 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.976	2402.96	0.984	0.628	Pass
NVNT	1-DH5	Ant1	2440.978	2441.98	1.002	0.621	Pass
NVNT	1-DH5	Ant1	2478.974	2479.976	1.002	0.631	Pass
NVNT	2-DH5	Ant1	2401.976	2403.004	1.028	0.985	Pass
NVNT	2-DH5	Ant1	2440.984	2441.996	1.012	0.959	Pass
NVNT	2-DH5	Ant1	2478.974	2479.974	1	0.945	Pass
NVNT	3-DH5	Ant1	2401.976	2402.98	1.004	0.963	Pass
NVNT	3-DH5	Ant1	2440.984	2441.978	0.994	0.957	Pass
NVNT	3-DH5	Ant1	2478.98	2479.992	1.012	0.975	Pass





8.6 NUMBER OF HOPPING CHANNEL

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

Spectru	ım					Г 1-DH5 24				
Ref Leve Att	el 20	00 dBm 35 dB			RBW 100 VBW 300		Auto Sweep	2		
1Pk Max		55 66		1 112	1011 000					
10 dBm-							41[1]		2.4	1.97 dBm 019205 GHz
M1		1				0.5.5	42[1]		2.4	1.83 dBm 802435 GHz
0 d8m	MAA	MAA	MAN	11. Main	PRANADAN	ALDS//ALS	10000000		MMM	MAAAAA
-14 4644	1	HAR AN	<u> 184888</u>	<u>AMAKAN</u> A	AAAAAAAA	HADAMAAA	<u>AAAAAAA</u>	AAAAAAAAA	14AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	YUUUU
-20 dBm-	-			-						
-30 dBm-	+-				_	-	-	14		
40 dBm-	-		-	_	_	_				
∦50 dBm-				_		_				
-60 dBm-										The
-70 dBm-										
Start 2.4 Marker	GHz				10	01 pts			Stop	2.4835 GHz
Type I M1	Ref	1		9205 GHz		dBm	ction	Fund	tion Resu	lt
M2		1	2.480	2435 GHz	1.83	dBm				
(1001-00			000	CONTRACTOR OF A	100
		[] ******	600		XA.
				Hopping	No. NVN	Г 2-DH5 24) 02MHz Ar		10.000 10 4	
Spectru			Offset) D2MHz Ar		*********	
Ref Lev Att	el 20	.00 dBm 35 dB		2.38 dB 🖷	No. NVN RBW 100 VBW 300	(Hz	D2MHz Ar	nt1	********	<u>»</u>
Ref Lev	el 20			2.38 dB 🖷	RBW 100	(Hz (Hz Mode		nt1		-0.85 dBm
Ref Lev Att	el 20			2.38 dB 🖷	RBW 100	KHZ KHZ Mode	Auto Sweep	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm
Ref Leve Att PIPk May 10 dBm- M1	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Leve Att PIPk May 10 dBm—	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	KHZ KHZ Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Leve Att PIPk Max 10 dBm- M1 OrdBm+ M1	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Lev. Att 10 dBm- M1 -10 dBm- -20 dBm-	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Levi Att IV dBm- M1 M1 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Levi Att 10 dBm	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Levi Att IV dBm- M1 M1 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Levi Att 10 dBm	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Levi Att 10 dBm M1 0 dBm 20 dBm 20 dBm 30 dBm 50 dBm	el 20	35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Levi Att ID dBm M1 00 dBm 20 dBm 20 dBm 30 dBm -50 dBm -50 dBm		35 dB	SWT	2.38 dB 🖷 1 ms 🖷	RBW 100 VBW 300	(Hz (Hz Mode	Auto Sweep 11[1] 12[1]	nt1	2.4 2.4 WWWWW	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz
Ref Levi Att 10 dBm 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm -50 dBm -50 dBm -70 dBm Start 2.4 Marker	E GHZ	35 dB	SWT	2.38 dB	RBW 100 VBW 300	Hz Hz Mode	Auto Sweep 11[1] 12[1]		2.4 2.4 WWWWW	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz www.www.
Ref Levi Att PIPk Mai 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm 50 dBm -50 dBm -50 dBm 50 dBm Start 2.4	E GHZ	35 dB	SWT	2.38 dB	RBW 100 VBW 300	Hz Mode I I <td>Auto Sweep 11[1] 12[1] 142[1]</td> <td></td> <td>2.4 2.4 WWWWW</td> <td>-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz www.www.</td>	Auto Sweep 11[1] 12[1] 142[1]		2.4 2.4 WWWWW	-0.85 dBm 017535 GHz -6.12 dBm 805775 GHz www.www.

Spectru	Im	1								
Ref Leve	el 20.	.00 dBr	n Offset 2	2.38 dB 👳	RBW 100 kHz					
Att	or of the stead	35 d	B SWT	1 ms 👄	VBW 300 kHz	Mode A	uto Sweep			
) 1Pk Max					~ ~					
						M	1[1]			-2.05 dBm
10 dBm—	_						2010			15865 GHz
To abili-						M	2[1]			-3.13 dBm
1 de la de	000	CLASS	A CONTRACTOR OF A	and the second second	a des a des ser estas		and the second			04105 GHz
ARMIN	VWW	veryv	in an and the	upur mu	anadotrage	VANAN	Annah	MAANAMAA	MAANIA	MAN WAY
10 dBm-	1		1.1.1.1.1.1	1 S. S. W.	3	211 22 1	Sec. 17.84	1. No. 1 1. 1. 1.	60° 20.2 Ma	1000
CO GDIM										
20 dBm-										
CO ODIT										
30 dBm-										
SU UDITI-										
40 dBm-										
HU UBIII-										
-50 dBm-										4.
50 UBIII-										14/1
60 dBm-										
oo ubin-										
70 dBm-										
-70 aBm-										
	_									
Start 2.4	GHz				1001 p	ts			Stop 2.	4835 GHz
1arker										
Type I	Ref	Trc	X-valu	e	Y-value	Funct	ion	Fund	tion Result	1
M1		1		365 GHz	-2.05 dBm					
M2		1	2.4804	105 GHz	-3.13 dBm					

I

8.7 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-51.66	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-54.48	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-47.63	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-50.21	-20	Pass
NVNT	3-DH5	2402	Ant1	No-Hopping	-49.61	-20	Pass
NVNT	3-DH5	2480	Ant1	No-Hopping	-47.29	-20	Pass

Spectrum		-			o-Hopping Ref		₽
Ref Level 20. Att SGL Count 100 9 1Pk Max	35 dB SWT	t 2.38 dB 👄 🖡 18.9 µs 👄 🕻		Mode Auto FF	F T		
TEK Max				M1[1]			2.43 dBm
10 dBm					1	2.4021	4390 GHz
10 0011			I.	41		S	
0 dBm		-	m	1		-	
-10 dBm				7			
-20 dBm		-					
				X			
-30 dBm		-					
-40 dBm		1		h	•		
-50 dBm	A	nort	+ +		mm		2
winn	m				d and	m	m
-60 dBm							
-70 dBm		_					
CF 2.402 GHz		-	1001			Span	8.0 MHz
CF 2.402 GHz			1001	pts		UT (T) T) (S	oro mane
		ge NVNT 1-			lopping Emissi		, în
Spectrum Ref Level 20. Att	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H			(₩
Spectrum Ref Level 20.	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H			, în
Spectrum Ref Level 20, Att SGL Count 100 PIPk Max	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H		on	(₩ ▼ 1.80 dBm
Spectrum Ref Level 20. Att SGL Count 100	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H Mode Auto F		2.4020 -4	(₩ 1.80 dBm 5000 GHz 8.47 kd Bm
Spectrum Ref Level 20, Att SGL Count 100 PIPk Max	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H Mode Auto F		2.4020 -4	
Spectrum Ref Level 20. Att SGL Count 100 PIPk Max 10 dBm	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H Mode Auto F		2.4020 -4	(₩ 1.80 dBm 5000 GHz 8.47 kd Bm
Spectrum Ref Level 20. Att SGL Count 100 9 1Pk Max 10 dBm 0 dBm -10 dBm	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H Mode Auto F		2.4020 -4	(₩ 1.80 dBm 5000 GHz 8.47 kd Bm
Spectrum Ref Level 20. Att SGL Count 100 • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H Mode Auto F		2.4020 -4	(₩ 1.80 dBm 5000 GHz 8.47 kd Bm
Spectrum Ref Level 20, Att SGL Count 100 PIPK Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H Mode Auto F		2.4020 -4	(₩ 1.80 dBm 5000 GHz 8.47 kd Bm
Spectrum Ref Level 20. Att SGL Count 100 • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	Band Edg	t 2.38 dB 🖷	DH5 2402M RBW 100 kHz	Hz Ant1 No-H Mode Auto F		2.4020 -4	1.80 dBm 5000 GHz 9.47xdBm 0000 GHz
Spectrum Ref Level 20, Att SGL Count 100 PK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band Edg	t 2.38 dB 227.5 µs	DH5 2402M RBW 100 kHz VBW 300 kHz	Hz Ant1 No-H Mode Auto F M1[1] M2[1]	FFT	2.4020 -4 2.4000	1.80 dBm 5000 GHz 9.47×tBm 0000 GHz
Spectrum Ref Level 20, Att SGL Count 100 PK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band Edg	t 2.38 dB 227.5 µs	DH5 2402M RBW 100 kHz VBW 300 kHz	Hz Ant1 No-H Mode Auto F	FFT	2.4020 -4 2.4000	1.80 dBm 5000 GHz 9.47×tBm 0000 GHz
Spectrum Ref Level 20. Att SGL Count 100 9 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band Edg	t 2.38 dB 227.5 µs	DH5 2402M RBW 100 kHz VBW 300 kHz	Hz Ant1 No-H Mode Auto F M1[1] M2[1]	FFT	2.4020 -4 2.4000	1.80 dBm 5000 GHz 9.47×tBm 0000 GHz
Spectrum Ref Level 20, Att SGL Count 100 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	Band Edg	t 2.38 dB 227.5 µs	DH5 2402M RBW 100 kHz VBW 300 kHz	Hz Ant1 No-H Mode Auto F M1[1] M2[1]	FFT	2.4020 -4 2.4000	1.80 dBm 5000 GHz 9.47×tBm 0000 GHz
Spectrum Ref Level 20, Att SGL Count 100 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	Band Edg	t 2.38 dB 227.5 µs	DH5 2402M RBW 100 kHz VBW 300 kHz	Hz Ant1 No-H Mode Auto F M1[1] M2[1]	FFT	2.4020 -4 2.4000 -4 2.4000	1.80 dBm 5000 GHz 9.47×tBm 0000 GHz
Spectrum Ref Level 20. Att SGL Count 100 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Stort 2.306 G Marker	Band Edg	t 2.38 dB 227.5 µs		Hz Ant1 No-H Mode Auto F M1[1] M2[1]	FT	2.4020 -4 2.4000 -4 2.4000	
Spectrum Ref Level 20. Att SGL Count 100 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm	Band Edg	t 2.38 dB 227.5 µs М4 м4 ими или ими и ими или ими или ими или ими и ими и ими или ими и и или ими и и или ими и и ими и и и и и и и и и и и и и	DH5 2402M RBW 100 kHz VBW 300 kHz I I I I I I I I I I I I I I I I I I I	Hz Ant1 No-H	FT	00 2.4020 -4 2.4000	
Spectrum Ref Level 20. Att SGL Count 100 PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Stort 2.306 G Marker Type Ref	Band Edg	t 2.38 dB 227.5 µs •	DH5 2402M	Hz Ant1 No-H	FT	00 2.4020 -4 2.4000	

Ref Level Att	20.00 dBm 35 dB	Offset 2.42 SWT 18.9			Mode Au	to FFT			
SGL Count	100/100								
TER INGS					M1	[1]			1.91 dBm
10 dBm					E			2.479	98400 GHz
ro ubii				ML				2	
0 dBm					1				
-10 dBm				1	1				
-20 dBm				1					
-20 dbm					1				
-30 dBm									
			2			2			
-40 dBm	ji		1		V	1		-	
-50 dBm						Ja			
h	nn.	m	~~			× V 1	min	m	mm
-60 dBm	V								
00000000									
-70 dBm								-	
CF 2.48 GH	IZ			1001 p	ots			Spa	in 8.0 MHz
									1
	J	and Edge N	VNT 1-D	H5 2480MI	Hz Ant1 N	lo-Hoppir	ng Emissio	n	
Spectrum Ref Level Att	20.00 dBm	Offset 2.4	2 dB 💩 RI	BW 100 kHz			ng Emissio	on	(W)
Ref Level Att SGL Count	1 20.00 dBm 35 dB		2 dB 💩 RI	BW 100 kHz			ng Emissio	on	
Ref Level Att	1 20.00 dBm 35 dB	Offset 2.4	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT	ng Emissio	n	10
Ref Level Att SGL Count 9 1Pk Max	1 20.00 dBm 35 dB	Offset 2.4	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissic	2.479	1.85 dBm 995000 GHz
Ref Level Att SGL Count 1Pk Max	1 20.00 dBm 35 dB	Offset 2.4	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissic	2.479	1.85 dBm 95000 GHz -55.16 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm M1 0 dBm	1 20.00 dBm 35 dB	Offset 2.4	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissio	2.479	1.85 dBm 995000 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissio	2.479	1.85 dBm 95000 GHz -55.16 dBm
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm	1 20.00 dBm 35 dB	Offset 2.4 SWT 227.	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissic	2.479	1.85 dBm 95000 GHz -55.16 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm -10 dBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissic	2.479	1.85 dBm 95000 GHz -55.16 dBm
Ref Level Att SGL Count IPk Max I0 dBm N1 0 dBm -10 dBm -20 cBm -30 cBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissio	2.479	1.85 dBm 95000 GHz -55.16 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	2 dB 💩 RI	BW 100 kHz	Mode A	uto FFT [1]	ng Emissio	2.479	1.85 dBm 95000 GHz -55.16 dBm
Ref Level Att SGL Count IPk Max I0 dBm N1 0 dBm -10 dBm -20 cBm -30 cBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	12 dB ● RI	BW 100 kHz BW 300 kHz	Mode Ai	uto FFT [1] [1]		2.479	1.85 dBm 95000 GHz -55.16 dBm -50000 GHz
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	12 dB ● RI	BW 100 kHz	Mode Ai	uto FFT [1] [1]		2.479	1.85 dBm 95000 GHz -55.16 dBm -50000 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	12 dB ● RI	BW 100 kHz BW 300 kHz	Mode Ai	uto FFT [1] [1]		2.479	1.85 dBm 95000 GHz -55.16 dBm -50000 GHz
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -10 dBm -20 cBm -30 cBm -40 dBm -50 dBm	20.00 dBm 35 dB 100/100	Offset 2.4 SWT 227.	12 dB ● RI	BW 100 kHz BW 300 kHz	Mode Ai	uto FFT [1] [1]		2.479	1.85 dBm 95000 GHz -55.16 dBm -50000 GHz
Ref Level Att SGL Count IPk Max I0 dBm 10 dBm -10 dBm -20 cBm -30 cBm -40 dBm -50 dBm -50 dBm -70 dBm Start 2.476	20.00 dBm 35 dB 100/100 D1 -18.185	Offset 2.4 SWT 227.	12 dB ● RI	BW 100 kHz BW 300 kHz	Mode An M1 M2	uto FFT [1] [1]		2.479 2.483	1.85 dBm 95000 GHz -55.16 dBm -50000 GHz
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 cBm -30 cBm -40 dBm -50 dBm -70 dBm Start 2.476 Marker	20.00 dBm 35 dB 100/100 D1 -18.185	Offset 2.4 SWT 227.	12 dB ● RI	BW 100 kHz BW 300 kHz	Mode An M1 M2	uto FFT [1] [1]	honder affly stars and a	2.475 2.485 All of ^{Char} Mark Stop	1.85 dBm 95000 GHz -55.16 dBm ເ50000 GHz
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.476 Marker Type M1	20.00 dBm 35 dB 100/100 D1 -18.185	Offset 2.4 SWT 227.	2 dB ■ R 5 μs ■ VI	BW 100 kHz BW 300 kHz	Mode Ar	uto FFT [1] [1]	honder affly stars and a	2.479 2.483	1.85 dBm 95000 GHz -55.16 dBm ເ50000 GHz
Ref Level Att SGL Count IPk Max I0 dBm 0 dBm -10 dBm -20 cBm -30 cBm -30 cBm -50 dBm -50 dBm -50 dBm -70 dBm Start 2.476 Marker Type M1 M2	20.00 dBm 35 dB 100/100 01 -18.185 	Offset 2.4 SWT 227.	2 dB R VI	BW 100 kHz BW 300 kHz '''''''''''''''''''''''''''''''''''	Mode Ar	uto FFT [1] [1]	honder affly stars and a	2.475 2.485 All of ^{Char} Mark Stop	1.85 dBm 95000 GHz -55.16 dBm ເ50000 GHz
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 2.476 Marker Type M1	20.00 dBm 35 dB 100/100 D1 -18.185	Offset 2.4 SWT 227.	2 dB R F F F F F F F F F F F F F	BW 100 kHz BW 300 kHz	Mode Ai M1 M2	uto FFT [1] [1]	honder affly stars and a	2.475 2.485 All of ^{Char} Mark Stop	1.85 dBm 95000 GHz -55.16 dBm ເ50000 GHz

Ref Level 20.00 Att 3 SGL Count 100/10 9 1Pk Max	5 dB SWT 18		RBW 100 kHz VBW 300 kHz I	Mode Auto FFT		
TEK Max				M1[1]		-1.50 dBm
10 dBm				12	2	.40211190 GHz
0 dBm			M1	m		
-10 dBm			F			
-10 080			1	1		
-20 dBm				<u>}</u>		
-30 dBm			.			
-40 dBm		mt				
EQ dom		\sim		Sw	Y A	
-50 dBm	man				Munn	mont
-60 dBm	4 St. 17					and the set of the set of
-70 dBm						
CF 2.402 GHz			1001 pt			Span 8.0 MHz
Spectrum Ref Level 20.00	dBm Offset 2.	.38 dB 👳	-DH5 2402MH	z Ant1 No-Hopp	CITATING CONTRACTOR	
Spectrum Ref Level 20.00	dBm Offset 2. 5 dB SWT 22	.38 dB 👳	-DH5 2402MH	Te -	CITATING CONTRACTOR	4/8
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10	dBm Offset 2. 5 dB SWT 22	.38 dB 👳	-DH5 2402MH	z Ant1 No-Hopp	ing Emission	0.85 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10	dBm Offset 2. 5 dB SWT 22	.38 dB 👳	-DH5 2402MH	z Ant1 No-Hopp Mode Auto FFT	ing Emission	0.85 dBm 40215000 GHz -48.98,¢βm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 9 1Pk Max	dBm Offset 2. 5 dB SWT 22	.38 dB 👳	-DH5 2402MH	Z Ant1 No-Hopp Mode Auto FFT M1[1]	ing Emission	0.85 dBm .40215000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 PIPk Max 10 dBm	dBm Offset 2. 5 dB SWT 22	.38 dB 👳	-DH5 2402MH	Z Ant1 No-Hopp Mode Auto FFT M1[1]	ing Emission	0.85 dBm 40215000 GHz -48.98,¢βm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 9 1Pk Max 10 dBm 0 dBm -10 dBm	dBm Offset 2. 5 dB SWT 22' 00	.38 dB 👳	-DH5 2402MH	Z Ant1 No-Hopp Mode Auto FFT M1[1]	ing Emission	0.85 dBm 40215000 GHz -48.98,¢βm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm -10 dBm -20 dBm 01 -21	dBm Offset 2. 5 dB SWT 22	.38 dB 👳	-DH5 2402MH	Z Ant1 No-Hopp Mode Auto FFT M1[1]	ing Emission	0.85 dBm 40215000 GHz -48.98,¢βm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 2. 5 dB SWT 22' 00	.38 dB 👳	-DH5 2402MH	Z Ant1 No-Hopp Mode Auto FFT M1[1]	ing Emission	0.85 dBm 40215000 GHz -48.98,¢βm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 2. 5 dB SWT 22' 00	38 dB ● 7.5 µs ●	-DH5 2402MH	Z Ant1 No-Hopp Mode Auto FFT M1[1]	ing Emission	0.85 dBm 40215000 GHz -48.98,¢βm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 2. 5 dB SWT 22' 00	38 dB — 7.5 µs —	-DH5 2402MH RBW 100 kHz VBW 300 kHz	Z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.85 dBm .40215000 GHz .48.98,dBm .40000000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/11 P IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	dBm Offset 2. 5 dB SWT 22' 00	38 dB — 7.5 µs —	-DH5 2402MH RBW 100 kHz VBW 300 kHz	Z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	ing Emission	0.85 dBm .40215000 GHz .48.98,dBm .40000000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/11 ID dBm 10 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm	dBm Offset 2. 5 dB SWT 22' 00	38 dB — 7.5 µs —	-DH5 2402MH RBW 100 kHz VBW 300 kHz	Z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.85 dBm .40215000 GHz .48.98,dBm .40000000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ●1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	dBm Offset 2. 5 dB SWT 22' 00	38 dB — 7.5 µs —	-DH5 2402MH	Z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	22 22 2	0.85 dBm 0.85 dBm 40215000 GHz -48.98,t@m 40000000 GHz MB MB MB
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 2. 5 dB SWT 22' 00	38 dB — 7.5 µs —	-DH5 2402MH RBW 100 kHz VBW 300 kHz	Z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	22 22 2	0.85 dBm .40215000 GHz .48.98,dBm .40000000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 GHz Marker Type Ref	dBm Offset 2. 5 dB SWT 22 10 1.496 dBm 1.496 dBm 1.496 dBm 1.496 dBm	38 dB 7.5 µs	-DH5 2402MH RBW 100 kHz VBW 300 kHz 	Z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	22 22 2	0.85 dBm 40215000 GHz -48.99,tBm 40000000 GHz رينها المعار المعار top 2.406 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ● 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm Start 2.306 GHz Marker Type Ref M2 M2	dBm Offset 2. 5 dB SWT 22' 10 1.496 dBm 	38 dB 7.5 μs	-DH5 2402MH RBW 100 kHz VBW 300 kHz 	z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	ing Emission	0.85 dBm 40215000 GHz -48.99,tBm 40000000 GHz رينها المعار المعار top 2.406 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 GHz Marker Type Ref M1 1	dBm Offset 2. 5 dB SWT 22 00 	.38 dB	-DH5 2402MH RBW 100 kHz VBW 300 kHz 	z Ant1 No-Hopp Mode Auto FFT M1[1] M2[1]	ing Emission	0.85 dBm 40215000 GHz -48.99,tBm 40000000 GHz رينها المعار المعار top 2.406 GHz

Ref Level	20.00 dBm	Offset 2	42 dB 😑 PI	BW 100 kHz					
Att	35 dB			BW 300 kHz	Mode A	uto FFT			
SGL Count :	100/100								
-		· · · · · · · · · · · · · · · · · · ·			M	1[1]		Plante and	0.25 dBm
10 dBm						2 3	1	2.479	98400 GHz
				MI					
0 dBm				N	m				
10 40				1	2				
-10 dBm				ſ	J				
-20 dBm					1			£	
			/						
-30 dBm						1			
-40 dBm		-	1						
			ml			hom			
-50 dBm	nn P	mon					mm		
-60 dBm	(v V							and mar	www.
SS ODIT									
-70 dBm									
CF 2.48 GH	7	10 at		1001	pts	20 (č	· · · · · · · · · · · · · · · · · · ·	Spa	n 8.0 MHz
Spectrum	JLB			DH5 2480M	IHz Ant1) No-Hoppir	ng Emissio		
Spectrum Ref Level 3 Att SGL Count 3	B 20,00 dBm 35 dB	Offset 2	2.42 dB 🕳 F	DH5 2480M RBW 100 kHz VBW 300 kHz	IHz Ant1				
Ref Level 3 Att	B 20,00 dBm 35 dB	Offset 2	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : : Mode	Auto FFT			
Ref Level 2 Att SGL Count 2 9 1Pk Max	B 20,00 dBm 35 dB	Offset 2	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : Mode Mode	Auto FFT		2.479	1.36 dBm 95000 GHz
Ref Level 2 Att SGL Count 2 P1Pk Max 10 dBm M1	B 20,00 dBm 35 dB	Offset 2	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : Mode Mode	Auto FFT		2.479	1.36 dBm 95000 GHz •53.82 dBm
Ref Level 2 Att SGL Count 2 PIPk Max	B 20,00 dBm 35 dB	Offset 2	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : Mode Mode	Auto FFT		2.479	1.36 dBm 95000 GHz
Ref Level 2 Att SGL Count 2 P1Pk Max 10 dBm M1	B 20,00 dBm 35 dB	Offset 2	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : Mode Mode	Auto FFT		2.479	1.36 dBm 95000 GHz •53.82 dBm
Ref Level 3 Att SGL Count 3 IPk Max 10 dBm M1 0 dBm -10 dBm	B 20,00 dBm 35 dB	Offset 2 SWT 22	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : Mode Mode	Auto FFT		2.479	1.36 dBm 95000 GHz •53.82 dBm
Ref Level 3 Att SGL Count 3 IPk Max 10 dBm M1 0 dBm -10 dBm	B 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : Mode Mode	Auto FFT		2.479	1.36 dBm 95000 GHz •53.82 dBm
Ref Level 2 Att SGL Count 2 IPk Max 10 dBm M1 D dBm -10 cBm -20 dBm -30 dBm	B 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.42 dB 🕳 F	RBW 100 kHz	IHz Ant1 : Mode Mode	Auto FFT		2.479	1.36 dBm 95000 GHz •53.82 dBm
Ref Level 3 Att SGL Count 3 P1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	B 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.42 dB — Г 27.5 µs — Г	28 W 100 kHz 78 W 300 kHz	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483	1.36 dBm 195000 GHz 53.82 dBm 150000 GHz
Ref Level 2 Att SGL Count 2 1Pk Max 10 dBm -10 dBm -10 cBm -26 dBm -30 dBm -30 dBm -50 dBm	B 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.42 dB — Г 27.5 µs — Г	RBW 100 kHz	IHz Ant1	Auto FFT 1[1] 2[1]		2.479 2.483	1.36 dBm 195000 GHz 53.82 dBm 150000 GHz
Ref Level 3 Att SGL Count 3 P1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	B 20.00 dBm 35 dB 100/100	Offset 2 SWT 22 dBm-	2.42 dB — Г 27.5 µs — Г	28 W 100 kHz 78 W 300 kHz	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483	1.36 dBm 195000 GHz 53.82 dBm 150000 GHz
Ref Level 2 Att SGL Count 2 1Pk Max 10 dBm -10 dBm -10 cBm -26 dBm -30 dBm -30 dBm -50 dBm	B 20.00 dBm 35 dB 100/100	Offset 2 SWT 22 dBm-	2.42 dB — Г 27.5 µs — Г	28 W 100 kHz 78 W 300 kHz	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483	1.36 dBm 195000 GHz 53.82 dBm 150000 GHz
Ref Level 2 Att SGL Count 2 IPk Max 10 dBm M1 0 dBm -10 dBm -26 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm	B 20.00 dBm 35 dB 100/100	Offset 2 SWT 22 dBm-	2.42 dB — Г 27.5 µs — Г	100 kHz אשע 300 kHz	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483 2.483	1.36 dBm 95000 GHz 53.82 dBm 50000 GHz
Ref Level 2 Att SGL Count 2 IPk Max 10 dBm -10 cBm -26 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.476 Marker	B 20.00 dBm 35 dB 100/100 01 -19.750 A4 GHz	dBm-	2,42 dB • Γ 27.5 μs • Γ	100 kHz איז איז איז איז איז איז איז איז איז איז	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483 2.483	1.36 dBm 95000 GHz 53.82 dBm 50000 GHz իիլչդընեշվեր 2.576 GHz
Ref Level 2 Att SGL Count 2 IPk Max 10 dBm -10 cBm -26 dBm -30 dBm -40 dBm -50 dBm -50 dBm Start 2.476 Marker Type	B. 20.00 dBm 35 dB 100/100 01 -19.750 A4 GHz Trc	Offset 2 SWT 22 dBm	2.42 dB • Γ 27.5 μs • Γ	RBW 100 kHz /BW 300 kHz /BW 300 kHz	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483 2.483	1.36 dBm 95000 GHz 53.82 dBm 50000 GHz իիլչդընեշվեր 2.576 GHz
Ref Level 2 Att SGL Count 2 IPk Max 10 dBm -10 dBm -10 dBm -26 dBm -30 dBm	B 20.00 dBm 35 dB 100/100 01 -19.750 A4 GHz Trc 1 1 1	Offset 2 SWT 22 dBm- dBm- ctores ctor	2,42 dB 27.5 μs V V V V V V V V V V V V V	XBW 100 kHz //BW 300 kHz <td>IHz Ant1</td> <td>Auto FFT 1[1] 2[1]</td> <td>ng Emissio</td> <td>2.479 2.483 2.483</td> <td>1.36 dBm 95000 GHz 53.82 dBm 50000 GHz իիլչդընեշվեր 2.576 GHz</td>	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483 2.483	1.36 dBm 95000 GHz 53.82 dBm 50000 GHz իիլչդընեշվեր 2.576 GHz
Ref Level 2 Att SGL Count 2 1Pk Max 10 dBm 0 dBm -10 dBm -26 dBm -30 dBm -40 dBm -30 dBm -50 dBm -70 dBm Start 2.476 Marker M1	B: 20.00 dBm 35 dB 100/100 01 -19.750 A4 GHz Trc 1 1	Offset 2 SWT 22 dBm- dBm- x-value 2.479 2.48 2	2.42 dB • Γ	RBW 100 kHz /BW 300 kHz ////////////////////////////////////	IHz Ant1	Auto FFT 1[1] 2[1]	ng Emissio	2.479 2.483 2.483	1.36 dBm 95000 GHz 53.82 dBm 50000 GHz իիլչդընեշվեր 2.576 GHz

Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 9 1Pk Max	ο Offset 2.38 dB 👄 δ SWT 18.9 μs 🖷		Mode Auto FFT		
			M1[1]	2.40	-0.67 dBm 198400 GHz
10 dBm			20		
0 dBm		- 10			
-10 dBm		- Maria	~		
-20 dBm			1		
		1			
-30 dBm					
-40 dBm					
-50 dBm	morm		Jun	mann	~
-60 dBm	Y				run
-70 dBm					
-70 upin					
CF 2.402 GHz	510 - 40 ⁴	1001 pts	s	Spa	an 8.0 MHz
	Band Edge NVNT 3	-DH5 2402MH2	z Ant1 No-Hoppi	ng Emission	
E Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PIPk Max	o Offset 2.38 dB 🖷	RBW 100 kHz	Mode Auto FFT	ng Emission	
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 P1Pk Max	o Offset 2.38 dB 🖷	RBW 100 kHz	Mode Auto FFT		-1.19 dBm 195000 GHz
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 P1Pk Max 10 dBm	o Offset 2.38 dB 🖷	RBW 100 kHz	Mode Auto FFT	2.40	-1.19 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 P1Pk Max	o Offset 2.38 dB 🖷	RBW 100 kHz	Mode Auto FFT	2.40	-1.19 dBm 195000 GHz -51.68 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PIPk Max 10 dBm 0 dBm	Offset 2.38 dB SWT 227.5 μs	RBW 100 kHz	Mode Auto FFT	2.40	-1.19 dBm 195000 GHz -51.68 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 INK Max 10 dBm 0 dBm -10 dBm	Offset 2.38 dB SWT 227.5 μs	RBW 100 kHz	Mode Auto FFT	2.40	-1.19 dBm 195000 GHz -51.68 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 INK Max 10 dBm -10 dBm -20 dBm D1 -20.660	Offset 2.38 dB SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	Mode Auto FFT	2.40	-1.19 dBm 195000 GHz -51.68 dBm
Spectrum Ref Level 20.00 dbm Att 35 dB SGL Count 100/100 Ith Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	6 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1] 	2.40	-1.19 dBm 195000 GHz -51.68 dBm 0000001GHz
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 INK Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	6 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1] 	2.40	-1.19 dBm 195000 GHz -51.68 dBm 0000001GHz
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 INK Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm	6 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1] 	2.40	-1.19 dBm 195000 GHz -51.68 dBm 0000001GHz
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 INK Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	6 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT	2.40 2.40	-1.19 dBm 195000 GHz -51.68 dBm 0000001GHz
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 INK Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 2.306 GHz Marker Type Ref	Confiset 2.38 dB SWT 227.5 μs SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	Mode Auto FFT	2.40 2.40	-1.19 dBm 195000 GHz -51.68 dBm 000000 GHz -51.68 dBm 000000 GHz
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 INK Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 GHz Marker	6 Offset 2.38 dB SWT 227.5 μs 6 dBm 6 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT M1[1] M2[1] 	2.40 2.40 2.40	-1.19 dBm 195000 GHz -51.68 dBm 000000 GHz -51.68 dBm 000000 GHz

Spectrum Ref Level 20.0 Att SGL Count 100/	35 dB 🛛 S			3W 100 kHz BW 300 kHz	Mode A	uto FFT			₹
9 1Pk Max	100								
					M	1[1]		1000000	-1.15 dBm
10 dBm						2 3	-	2.480	14390 GHz
0 dBm					M1		-		
				~~~~	ind				
-10 dBm				1	5				
-20 dBm				1					
20 000			1	1		Ν			
-30 dBm						1			
			1						
-40 dBm									
-50 dBm		h	s.			4A	h		
m	M	~~~				- 87 - 14 A	mun	mm	m
-60 dBm									-
TO down									
-70 dBm									
CF 2.48 GHz				1001			ļ,	0	n 8.0 MHz
CF 2.40 GH2				1001	pes			aha	11 8.0 MHZ
Spectrum				DH5 2480M		) No-Hoppir	ng Emissio	on	a (₩
Spectrum Ref Level 20.0 Att SGL Count 100/	0 dBm 0 35 dB <b>S</b>	)ffset 2.4	42 dB 😑 F	DH5 2480M RBW 100 kHz ZBW 300 kHz			ng Emissio	on	l I I I I I I I I I I I I I I I I I I I
Ref Level 20.0 Att	0 dBm 0 35 dB <b>S</b>	)ffset 2.4	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT	ng Emissio	on	
Ref Level 20.0 Att SGL Count 100/ 1Pk Max	0 dBm 0 35 dB <b>S</b>	)ffset 2.4	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /		ng Emissio		-3.06 dBm 15000 GHz
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm	0 dBm 0 35 dB <b>S</b>	)ffset 2.4	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT	ng Emissio	2.480	-3.06 dBm 15000 GHz 53.20 dBm
Ref Level 20.0 Att SGL Count 100/ 1Pk Max	0 dBm 0 35 dB <b>S</b>	)ffset 2.4	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT 1[1]	ng Emissio	2.480	-3.06 dBm 15000 GHz
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm	0 dBm 0 35 dB <b>S</b>	)ffset 2.4	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT 1[1]	ng Emissio	2.480	-3.06 dBm 15000 GHz 53.20 dBm
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm	00 dBm 0 35 dB 8 /100	offset 2.4 WT 227	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT 1[1]	ng Emissio	2.480	-3.06 dBm 15000 GHz 53.20 dBm
Ref Level 20.0 Att SGL Count 100/ ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm 01 -	0 dBm 0 35 dB <b>S</b>	offset 2.4 WT 227	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT 1[1]		2.480	-3.06 dBm 15000 GHz 53.20 dBm
Ref Level 20.0 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm 0 1 - -30 dBm	00 dBm 0 35 dB 8 /100	offset 2.4 WT 227	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT 1[1]		2.480	-3.06 dBm 15000 GHz 53.20 dBm
Ref Level 20.0 Att SGL Count 100/ ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm 01 -	00 dBm 0 35 dB 8 /100	offset 2.4 WT 227	42 dB 😑 F	<b>BW</b> 100 kHz	Mode /	Auto FFT 1[1]		2.480	-3.06 dBm 15000 GHz 53.20 dBm
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           M4	0 dBm 0 35 dB 8 /100	0ffset 2.4 WT 227	∔2 dB ● F .5 μs ● Υ	XBW 100 kHz YBW 300 kHz	Mode / M	Auto FFT  1[1]  2[1]		2.480	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           M4	0 dBm 0 35 dB S /100	offset 2.4 WT 227	∔2 dB ● F .5 μs ● Υ	<b>BW</b> 100 kHz	Mode / M	Auto FFT  1[1]  2[1]		2.480	-3.06 dBm 15000 GHz 53.20 dBm
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -40 dBm           -60 dBm	0 dBm 0 35 dB 8 /100	0ffset 2.4 WT 227	∔2 dB ● F .5 μs ● Υ	XBW 100 kHz YBW 300 kHz	Mode / M	Auto FFT  1[1]  2[1]		2.480	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz
Ref Level 20.0 Att SGL Count 100/ ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -40 dBm M4	0 dBm 0 35 dB 8 /100	0ffset 2.4 WT 227	∔2 dB ● F .5 μs ● Υ	XBW 100 kHz YBW 300 kHz	Mode / M	Auto FFT  1[1]  2[1]		2.480	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -70 dBm           -70 dBm           -70 dBm           Start 2.476 GH	-21.148 dBr	0ffset 2.4 WT 227	∔2 dB ● F .5 μs ● Υ	XBW 100 kHz YBW 300 kHz	Mode / M M	Auto FFT  1[1]  2[1]		2.480 - 2.483 	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -70 dBm           -70 dBm           -70 dBm           Start 2.476 GH           Marker	21.148 d8r	0ffset 2.4 WT 227	∔2 dB ● F .5 μs ● Υ	28 100 kHz 28 300 kHz	Mode / M M M	Auto FFT 1[1] 2[1]	ll and the second se	2.480 - 2.483 	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz ქკეკაკიკისითა 2.576 GHz
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -70 dBm           Start 2.476 GH           Marker           Type         Ref           M1	21.140 dBr -21.140 dBr	MO X-value 2.48015	+2 dB • F .5 μs • Υ	200 kHz 200 kH	Mode / M M M M M	Auto FFT 1[1] 2[1]	ll and the second se	2.480 - 2.483 	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz ქკეკაკიკისითა 2.576 GHz
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           -70 dBm           Start 2.476 GH           Marker           Type           Ref           M2	21.148 dBr -21.148	MO X-value 2.48015 2.4805	+2 dB • F .5 μs • V	200 kHz 200 kH	Mode / M M M M M	Auto FFT 1[1] 2[1]	ll and the second se	2.480 - 2.483 	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz ქკეკაკიკისითა 2.576 GHz
Ref Level 20.0           Att           SGL Count 100/           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.476 GH           Marker           Type           M1	21.140 dBr -21.140 dBr	MO X-value 2.48015 2.4805	+2 dB • F .5 μs • V	200 kHz 200 kH	Mode / M M M M M M M	Auto FFT 1[1] 2[1]	ll and the second se	2.480 - 2.483 	-3.06 dBm 15000 GHz 53.20 dBm 50000 GHz ქკეკაკიკისითა 2.576 GHz





I

## 8.8 BAND EDGE(HOPPING)

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-52.21	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-52.98	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-50.23	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-52.66	-20	Pass
NVNT	3-DH5	2402	Ant1	Hopping	-50.94	-20	Pass
NVNT	3-DH5	2480	Ant1	Hopping	-47.58	-20	Pass





	Ban	d Edge(Hopp	oing) NVNT 1-DH	15 2402MHz Ai	nt1 Hopping F	Ref	_
Spectrum							[₩
Ref Level 20 Att	35 dB		<ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul>	Mode Auto FF1			
SGL Count 80	00/8000						
				M1[1]			2.49 dBm
10 dBm						2.403	501300 GHz
TO UBII						M1	5 5
0 dBm			,~~	y my	Fring	M	~
				A A A			$\lambda$
-10 dBm				1	$\langle \rangle$	11	1
			ſ	w	Y	V	v.
-20 dBm							
-30 dBm							
100000000000000000000000000000000000000							
-40 dBm			/M			4	
10000000							
-50 dBm	m	mmm				-	
-60 dBm-							
-70 dBm							
05 0 400 011							
CF 2.402 GHz	2		1001	pts		Spa	an 8.0 MHz
	[	Edge(Hopping	1001 3) NVNT 1-DH5		Hopping Em		4
Spectrum	Band E	Offset 2.38 dB	3) NVNT 1-DH5	2402MHz Ant1	Hopping Em		an 8.0 MHz
Spectrum Ref Level 20 Att SGL Count 12	Band E	Offset 2.38 dB	) NVNT 1-DH5	2402MHz Ant1	Hopping Em		4
Spectrum Ref Level 20 Att	Band E	Offset 2.38 dB	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF	Hopping Em		Ø (₩ ▽
Spectrum Ref Level 20 Att SGL Count 12 9 1Pk Max	Band E	Offset 2.38 dB	3) NVNT 1-DH5	2402MHz Ant1	Hopping Em	ission	4
Spectrum Ref Level 20 Att SGL Count 12 P 1Pk Max 10 dBm	Band E	Offset 2.38 dB	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF	Hopping Em	ission 2.40	1.99 dBm 1.99 dBm 495000 GHz -52.49 dBm
Spectrum Ref Level 20 Att SGL Count 12 9 1Pk Max	Band E	Offset 2.38 dB	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF M1[1]	Hopping Em	ission 2.40	( ▼ 1.99 dBm 195000 CH2
Spectrum Ref Level 20 Att SGL Count 12 PIPk Max 10 dBm	Band E	Offset 2.38 dB	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF M1[1]	Hopping Em	ission 2.40	1.99 dBm 195000 GHz -52.49 dBm 000000 GH
Spectrum Ref Level 20 Att SGL Count 12 PIPK Max 10 dBm -10 dBm	Band E	Offset 2.38 db SWT 227.5 µ:	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF M1[1]	Hopping Em	ission 2.40	1.99 dBm 1.99 dBm 495000 GHz -52.49 dBm
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm -10 dBm -20 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 db SWT 227.5 µ:	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF M1[1]	Hopping Em	ission 2.40	1.99 dBm 195000 GHz -52.49 dBm 000000 GH
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 db SWT 227.5 µ:	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF M1[1]	Hopping Em	ission 2.40	1.99 dBm 195000 GHz -52.49 dBm 000000 GH
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm -10 dBm -20 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 db SWT 227.5 µ:	<ul> <li>a) NVNT 1-DH5</li> <li>b) RBW 100 kHz</li> <li>c) VBW 300 kHz</li> </ul>	2402MHz Ant1 Mode Auto FF M1[1]	Hopping Em	ission 2.40	1.99 dBm 195000 GH 52.49 dBm 000000 GH
Spectrum Ref Level 20 Att SGL Count 12 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 dt SWT 227.5 µ:	<ul> <li>NVNT 1-DH5</li> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul>	2402MHz Ant1 Mode Auto FF 	Hopping Em	2.404 2.400	1.99 dBm I95000 GHz -52.49 dBm -52.49 dBm -
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 dt SWT 227.5 µ:	<ul> <li>a) NVNT 1-DH5</li> <li>b) RBW 100 kHz</li> <li>c) VBW 300 kHz</li> </ul>	2402MHz Ant1 Mode Auto FF 	Hopping Em	2.40 2.40	1.99 dBm I95000 GHz -52.49 dBm -52.49 dBm -
Spectrum Ref Level 20 Att SGL Count 12 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 dt SWT 227.5 µ:	<ul> <li>NVNT 1-DH5</li> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul>	2402MHz Ant1 Mode Auto FF 	Hopping Em	2.404 2.400	1.99 dBm I95000 GHz -52.49 dBm -52.49 dBm -
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 dt SWT 227.5 µ:	<ul> <li>NVNT 1-DH5</li> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul>	2402MHz Ant1 Mode Auto FF 	Hopping Em	2.404 2.400	1.99 dBm I95000 GHz -52.49 dBm -52.49 dBm -
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -50 dBm -60 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 dt SWT 227.5 µ:	3) NVNT 1-DH5	2402MHz Ant1 Mode Auto FF M1[1] M2[1]	Hopping Em	2.40 2.40 2.40	1.99 dBm I95000 GHz -52.49 dBm -52.49 dBm -
Spectrum Ref Level 20 Att SGL Count 12 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 db SWT 227.5 µ		2402MHz Ant1 Mode Auto FF M1[1] M2[1] M2[1] M2[1] M2[1]	Hopping Em	2.404 2.404 2.400	1.99 dBm 195000 GHz 52.49 dBm 000000 GHz Ma Ma 2.406 GHz
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 de SWT 227.5 µ:	)) NVNT 1-DH5 3 • RBW 100 kHz 5 • VBW 300 kHz 100 kHz 100 kHz 100 kHz 100 kHz 100 kHz	2402MHz Ant1 Mode Auto FF M1[1] M2[1] M2[1] M2[1] M2[1]	Hopping Em	2.40 2.40 2.40	1.99 dBm 195000 GHz 52.49 dBm 000000 GHz Ma Ma 2.406 GHz
Spectrum Ref Level 20 Att SGL Count 12 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Band E .00 dBm 35 dB 00/1200	Offset 2.38 db SWT 227.5 µ		2402MHz Ant1 Mode Auto FF M1[1] M2[1] M2[1] M2[1] M2[1] M2[1]	Hopping Em	2.404 2.404 2.400	1.99 dBm 195000 GHz 52.49 dBm 000000 GHz Ma Ma 2.406 GHz
Spectrum Ref Level 20 Att SGL Count 12 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Band E .00 dBm 35 dB 00/1200 -17.509 dE 	Offset 2.38 dB SWT 227.5 µs 3m 3m 4m 2.40495 GHz 2.40495 GHz		2402MHz Ant1 Mode Auto FF M1[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2	Hopping Em	2.404 2.404 2.400	1.99 dBm 195000 GHz 52.49 dBm 000000 GHz Ma Ma 2.406 GHz





Ref Level 20.00 dBm	Offcat 0 40 -b	RBW 100 kHz					[₩
Att 35 dB	<b>SWT</b> 18.9 μs	<ul> <li>VBW 300 kHz</li> </ul>	Mode Aut	to FFT			
SGL Count 8000/8000							
91Pk Max			M1	[1]			1.55 dBr
10 40-						2.478	97700 GH
10 dBm		M3	0		1	Ē.	
DdBm m	m	M1 ~~~	~				-
-10 dBm	1 Vf	h	1			1	
W W		V	1				
-20 dBm							
-30 dBm						-	
			V.	~			
-40 dBm							
-50 dBm							
JU UDIT				~~	$\sim$	m	mur
-60 dBm							
-70 dBm					2.	-	
CF 2.48 GHz	-146 - 167	1001	pts			Spa	an 8.0 MHz
L IL							<b>W</b>
Bon	d Edge(Honning		2480144-7	Ant1 Hon	ning Emi	ssion	
	d Edge(Hopping	) NVNT 1-DH5	2480MHz	Ant1 Hop	ping Emi	ssion	Ē
Spectrum				Ant1 Hop	ping Emis	ssion	
Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 2,42 dB SWT 227.5 µs				ping Emis	ssion	(H
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 1200/1200	Offset 2,42 dB SWT 227.5 µs	s 🖷 RBW 100 kHz			ping Emis	ssion	(The second seco
Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 2,42 dB SWT 227.5 µs	s 🖷 RBW 100 kHz		uto FFT	ping Emit	ssion	1.60 dBr
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 1200/1200 P1Pk Max 10 dBm	Offset 2,42 dB SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	ping Emis	2.477	1.60 dBr 795000 GH
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 1200/1200 P 1Pk Max 10 dBm M1	Offset 2,42 dB SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	ping Emis	2.477	1.60 dBr
Spectrum           Ref Level 20.00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           M1           JdBm	Offset 2,42 dB SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	ping Emis	2.477	1.60 dBr 795000 GH -52.68 dBr
Spectrum           Ref Level         20.00 dBm           Att         35 dB           SGL         Count         1200/1200           IPk Max         10 dBm         10 dBm           IO dBm         10 dBm         10 dBm	Offset 2.42 dE SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	ping Emis	2.477	1.60 dBr 795000 GH -52.68 dBr
Spectrum           Ref Level 20.00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           M1           SidBm	Offset 2.42 dE SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	pping Emis	2.477	1.60 dBr 795000 GH -52.68 dBr
Spectrum           Ref Level         20.00 dBm           Att         35 dB           SGL Count         1200/1200           IPk Max         10 dBm           M1         10 dBm           J10 dBm         10 dBm	Offset 2.42 dE SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	ping Emis	2.477	1.60 dBr 795000 GH -52.68 dBr
Spectrum           Ref Level         20.00 dBm           Att         35 dB           SGL Count         1200/1200           IPk Max         10 dBm           10 dBm         -           -10 dBm         -           -20 dBm         01 -18.446           -30 dBm         -	Offset 2.42 dE SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	ping Emis	2.477	1.60 dBr 795000 GH -52.68 dBr
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 1200/1200 PIPk Max 10 dBm 10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -40 dBm	Offset 2.42 de SWT 227.5 µs	s 🖷 RBW 100 kHz	Mode Au	uto FFT [1]	ping Emis	2.477	1.60 dBr 795000 GH -52.68 dBr
Spectrum           Ref Level 20.00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           M1           PidBm           -20 dBm           -30 dBm	Offset 2.42 dE SWT 227.5 µs	8 • RBW 100 kHz 5 • VBW 300 kHz	Mode Au	uto FF T [1] [1]		2.477	1.60 dBr 795000 GH -52.68 dBr
Spectrum           Ref Level         20.00 dBm           Att         35 dB           SGL Count         1200/1200           IPk Max         10 dBm           10 dBm         10 dBm           -20 dBm         01 -18.446           -30 dBm         -18.446           -30 dBm         -50 dBm	Offset 2.42 dB SWT 227.5 µs	8 • RBW 100 kHz 5 • VBW 300 kHz	Mode Au M1	uto FF T [1] [1]		2.477	1.60 dBr 795000 GH -52.68 dBr 350000 GH
Spectrum           Ref Level 20.00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	Offset 2.42 dB SWT 227.5 µs	8 • RBW 100 kHz 5 • VBW 300 kHz	Mode Au M1	uto FF T [1] [1]		2.477	1.60 dBr 795000 GH -52.68 dBr 350000 GH
Spectrum           Ref Level 20,00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           M1           PidBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	Offset 2.42 dB SWT 227.5 µs	8 • RBW 100 kHz 5 • VBW 300 kHz	Mode Au M1	uto FF T [1] [1]		2.477	1.60 dBr 795000 GH -52.68 dBr 350000 GH
Spectrum           Ref Level 20.00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           M1           PldBm           -20 cBm           -20 cBm           -30 cBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.476 GHz	Offset 2.42 dB SWT 227.5 µs	8 • RBW 100 kHz 5 • VBW 300 kHz	Mode Au M1 M2	uto FF T [1] [1]		2.477 2.48:	1.60 dBr 795000 GH -52.68 dBr 350000 GH
Spectrum           Ref Level 20.00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           H1           PdBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.476 GHz	Offset 2.42 dB SWT 227.5 µs	<ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> <li>VBW 300 kHz</li> </ul>	Mode Au M1	uto FFT [1] [1]	source for the form	2.477 2.485	1.60 dBr 795000 GH -52.68 dBr 350000 GH 
Spectrum           Ref Level 20,00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           M1           I/M dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.476 GHz           Marker           Type         Ref           M1         1	Offset 2.42 dB SWT 227.5 ps dBm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 M3 M3 MM M3 MM M3 MM M3 MM M3 MM M MM M	RBW 100 kHz     VBW 300 kHz     VBW 300 kHz	Mode Au M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	uto FFT [1] [1]	source for the form	2.477 2.48:	1.60 dBr 795000 GH -52.68 dBr 350000 GH 
Spectrum           Ref Level 20.00 dBm           Att 35 dB           SGL Count 1200/1200           IPk Max           10 dBm           -20 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.476 GHz           Marker           Type         Ref           M1         1           M2         1	Offset 2.42 dB SWT 227.5 µs dBm M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	RBW 100 kHz     VBW 300 kHz     VBW 300 kHz	Mode Au M1 M2 M2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m	uto FFT [1] [1]	source for the form	2.477 2.485	1.60 dBr 795000 GH -52.68 dBr 350000 GH 
Spectrum           Ref Level         20.00 dBm           Att         35 dB           SGL Count         1200/1200           IPk Max         10 dBm           10 dBm	Offset 2.42 dB SWT 227.5 ps dBm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 mm M3 M3 M3 MM M3 MM M3 MM M3 MM M3 MM M MM M	RBW 100 kHz     VBW 300 kHz     VBW 300 kHz	Mode Au M1 M2	uto FFT [1] [1]	source for the form	2.477 2.485	1.60 dBr 795000 GH -52.68 dBr 350000 GH 





Att SGL Count 8	35 dB			RBW 100 kHz VBW 300 kHz	Mode Aut	o FFT			E
●1Pk Max					M1[	11			1.24 dBr
10 45-					12			2.40	395800 GH
10 dBm					20		MI		12
0 dBm				ma		Am	An	~~~~	h ~
				man	-	- V		~~ ~	m
-10 dBm									
-20 dBm								-	
20 00.00									
-30 dBm				2					-
10-10-			a						
-40 dBm		X	0.004						
-50 dBm		Same							(
mm	ha	and a second second second							
-60 dBm									
-70 dBm									
JU GOIL									
CF 2.402 GH	z	10 824		1001 p	ots	180	,	Sn	an 8.0 MHz
<u> </u>	1								<b>1</b> 01
Spectrum Ref Level 2				VNT 2-DH5 2		Ant1 Hop	ping Emi		(T
Ref Level 2 Att SGL Count 1	0.00 dBm 35 dB	Offset 2.	38 dB 👳						( <del>"</del>
Ref Level 2 Att	0.00 dBm 35 dB	Offset 2.	38 dB 👳	RBW 100 kHz	Mode Au	ito FFT			-0.83 dBr
Ref Level 2 Att SGL Count 1	0.00 dBm 35 dB	Offset 2.	38 dB 👳	RBW 100 kHz	Mode Au M1[	ito FFT		2.405	-0.83 dBr 585000 GH
Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm	0.00 dBm 35 dB	Offset 2.	38 dB 👳	RBW 100 kHz	Mode Au	ito FFT		2.403	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2 Att SGL Count 1 1 Pk Max 10 dBm 0 dBm	0.00 dBm 35 dB	Offset 2.	38 dB 👳	RBW 100 kHz	Mode Au M1[	ito FFT		2.403	-0.83 dBr 585000 GH -51.91 dBr
Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB 👳	RBW 100 kHz	Mode Au M1[	ito FFT		2.403	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2 Att SGL Count 1 1 Pk Max 10 dBm 0 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB 👳	RBW 100 kHz	Mode Au M1[	ito FFT		2.403	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB 👳	RBW 100 kHz	Mode Au M1[	ito FFT		2.403	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2 Att SGL Count 1 9 1Pk Max 10 dBm -10 dBm -20 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB — 7.5 µs —	RBW 100 kHz	Mode Au M1[	ito FFT		2.403	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2 Att SGL Count 1 9 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB 7.5 μs 	RBW 100 kHz YBW 300 kHz	Mode Au M1[ 	1] 1]		2.404 2.404	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2           Att           SGL Count 1           ● 1PK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB	RBW 100 kHz	Mode Au M1[ 	1] 1]		2.403 2.401	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2           Att           SGL Count 1           ● 1PK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB	RBW 100 kHz YBW 300 kHz	Mode Au M1[ 	1] 1]	ping Emi	2.404 2.404	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2           Att           SGL Count 1           ● 1PK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB	RBW 100 kHz YBW 300 kHz	Mode Au M1[ 	1] 1]	ping Emi	2.404 2.404	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2           Att           SG. Count 1           • IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB	RBW 100 kHz	Mode Au M1[ 	1] 1]	ping Emi	2.40 2.40 2.40	-0.83 dBr 585000 GH -51.91 dBr 000000 GH ////////////////////////////////////
Ref Level 2           Att           SGL Count 1           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm	0.00 dBm 35 dB 200/1200	Offset 2. SWT 227	38 dB	RBW 100 kHz YBW 300 kHz	Mode Au M1[ 	1] 1]	ping Emi	2.40 2.40 2.40	-0.83 dBr 585000 GH -51.91 dBr 000000 GH
Ref Level 2           Att           SGL Count 1           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -70 dBm           Start 2.306           Marker           Type	0.00 dBm 35 dB 200/1200 1 -18.757 44/04/1000 GHz	Offset 2. SWT 227	38 dB 7.5 μs M4	RBW 100 kHz	Mode Au M1[ 	1] 1]	ping Emi	2.40 2.40 2.40	-0.83 dBr 585000 GH
Ref Level 2           Att           SGL Count 1           ● 1PK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.306           Marker	0.00 dBm 35 dB 200/1200 1 -18.757	Offset 2. SWT 227	38 dB 7.5 μs M4	RBW 100 kHz	Mode Au M1[ M2[ M2[ M2[ M2[ M2[ M2[ M2[ M2	1] 1]	ping Emi	<u>Ssion</u> 2.404 2.401 برستار ۲.410 Stop	-0.83 dBr 585000 GH
Ref Level 2           Att           SGL Count 1           ● 1PK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Btart 2.306           Marker           Type           M1           M2           M3	0.00 dBm 35 dB 200/1200 1 -18.757 dw%vkjuur GHz Trc 1 1 1	Offset 2. SWT 227 dBm dBm <u>به ۲۰۰۵</u> 2.4058 2.4058	38 dB ● 7.5 µs ● 	RBW 100 kHz VBW 300 kHz	Mode Au M1[ 	1] 1]	ping Emi	<u>Ssion</u> 2.404 2.401 برستار ۲.410 Stop	-0.83 dBr 585000 GH
Ref Level 2           Att           SG. Count 1           • IPK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Marker           Type           Ref           M1           M2	0.00 dBm 35 dB 200/1200 1 -18.757 Awayayayayayayayayayayayayayayayayayayay	Offset 2. SWT 227	38 dB ● 7.5 µs ● 	RBW 100 kHz VBW 300 kHz	Mode Au M1[ 	1] 1]	ping Emi	<u>Ssion</u> 2.404 2.401 برستار ۲.410 Stop	-0.83 dBr 585000 GH





Att SGL Count		Offset 2.42 SWT 18.9				uto FFT			[₩
😏 1Pk Max					M	1[1]			0.51 dBn
10 dBm						<u>n</u>	1	2.478	97700 GH
TO USIN			MI						1
0 dBm		Ann	A	the second	han	-			
a vin	mon	mon	June 1.	mum	- M				
-10 dBm					1				
-20 dBm									
					1	1			
-30 dBm				+ +		1			
-40 dBm						1			
-40 ubin-						hy		1950	
-50 dBm						" VY	m m	A	
New 7251							w		and a
-60 dBm									-
-70 dBm									
CF 2.48 G	Hz			1001	nts			Sna	n 8.0 MHz
	Band n 20.00 dBm	Edge(Hopp	42 dB 👳 I	VNT 2-DH5	2480MHz		pping Emis		
Ref Level Att SGL Count	Band n 20.00 dBm	Offset 2.4	42 dB 👳 I	VNT 2-DH5	2480MHz				
Ref Level Att	Band n 20.00 dBm 35 dB	Offset 2.4	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT		ssion	-0.54 dBm
Ref Level Att SGL Count	Band n 20.00 dBm 35 dB	Offset 2.4	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT 1[1]		2.479	-0,54 dBn 985000 GHa
Ref Level Att SGL Count 1Pk Max 10 dBm- M1	Band n 20.00 dBm 35 dB	Offset 2.4	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT		2.479	-0,54 dBn
Ref Level Att SGL Count PIPk Max 10 dBm- M1 0 dBm-	Band n 20.00 dBm 35 dB	Offset 2.4	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT 1[1]		2.479	-0.54 dBn 85000 GHa 53.09 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm- M1 0 dBm- 10 dBm- 10 dBm-	Band n 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT 1[1]		2.479	-0.54 dBn 85000 GHa 53.09 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm- 10 dBm- 10 dBm- 10 dBm-	Band n 20.00 dBm 35 dB	Offset 2.4 SWT 227	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT 1[1]		2.479	-0.54 dBn 85000 GHa 53.09 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm- M1 0 dBm- 10 dBm- 10 dBm-	Band n 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT 1[1]		2.479	-0.54 dBn 85000 GHa 53.09 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm- 10 dBm- 1/V4 -10 dBm- -20 uBm-	Band n 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT 1[1]		2.479	-0.54 dBn 85000 GHa 53.09 dBn
Ref Level Att SGL Count 1Pk Max 10 dBm- 10 dBm- 10 dBm- -20 dBm- -30 dBm- -40 dBm-	Band n 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227	42 dB 👳 I	VNT 2-DH5	2480MHz z z Mode A	Auto FFT 1[1]		2.479 2.483	-0.54 dBn 85000 GH; 53.09 dBn 50000 GH;
Ref Level Att SGL Count 1Pk Max 10 dBm- -0 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	Band n 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227	42 dB 👳 I		2480MHz Z Mode A M3	Auto FFT 1[1] 2[1]		2.479 2.483	-0.54 dBn 85000 GH; 53.09 dBn 50000 GH;
Ref Level Att SGL Count 1Pk Max 10 dBm- 10 dBm- 10 dBm- -20 dBm- -30 dBm- -40 dBm-	Band n 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227	42 dB ● I .5 μs ● '		2480MHz Z Mode A M3	Auto FFT 1[1] 2[1]		2.479 2.483	-0.54 dBm 85000 GH; 53.09 dBm 50000 GH;
Ref Level Att SGL Count 1Pk Max 10 dBm- -0 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	Band n 20.00 dBm 35 dB 1200/1200	Offset 2.4 SWT 227	42 dB ● I .5 μs ● '		2480MHz Z Mode A M3	Auto FFT 1[1] 2[1]		2.479 2.483	-0.54 dBm 85000 GH; 53.09 dBm 50000 GH;
Ref Level Att SGL Count ISGL Count ID dBm	Band 20.00 dBm 35 dB 1200/1200 -01 -19.488	Offset 2.4 SWT 227	42 dB ● I .5 μs ● '		2480MHz	Auto FFT 1[1] 2[1]		2.479 2.483	-0.54 dBm 85000 GH; 53.09 dBm 50000 GH;
Ref Level Att SGL Count ISGL Count ID dBm- OdBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -70 dBm- -70 dBm-	Band 20.00 dBm 35 dB 1200/1200 -01 -19.488	Offset 2.4 SWT 227	42 dB ● I .5 μs ● '		2480MHz	Auto FFT 1[1] 2[1]		2.479 2.483	-0.54 dBm 85000 GH; 53.09 dBm 50000 GH;
Ref Level           Att           SGL Count           IPk Max           10 dBm           0 dBm           -10 cBm           -20 cBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -50 dBm           50 dBm           50 dBm           Start 2.47           Marker           Type	Band 20.00 dBm 35 dB 1200/1200 -01 -19.488 -01 -19.488 -00 -19.4	Offset 2.4 SWT 227	42 dB ● I .5 μs ● '	VNT 2-DH5 RBW 100 kH; YBW 300 kH;	2480MHz	Suto FFT 1[1] 2[1]		2.479 2.483	-0.54 dBm 85000 GH; 53.09 dBm 50000 GH;
Ref Level           Att           SGL Count           9 IPk Max           10 dBm           0 dBm           -10 cBm           -20 cBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.47           Marker	Band 20.00 dBm 35 dB 1200/1200 -01 -19.488 -01 -19.488 -01 -19.488 -01 -19.488	Offset 2.4 SWT 227	42 dB ● 1 .5 µs ● 1		2480MHz	Suto FFT 1[1] 2[1]		2.479 2.483 2.483	-0.54 dBm 85000 GH; 53.09 dBm 50000 GH;
Ref Level           Att           SGL Count           IPk Max           10 dBm           M1           0 dBm           -10 cBm           -20 cBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.47           Marker           Type           M1           M2           M3	Band 20.00 dBm 35 dB 1200/1200 01 -19.488 00.000 mm 6 GHz 6 GHz 6 GHz	Offset 2.4 SWT 227	42 dB • 1	VNT 2-DH5 RBW 100 kH2 VBW 300	2480MHz	Suto FFT 1[1] 2[1]		2.479 2.483 2.483	-0.54 dBm 85000 GH; 53.09 dBm 50000 GH;
Ref Level           Att           SGL Count           SGL Count           10 dBm           10 dBm           -10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.47           Marker           Type           M1           M2	Band n 20.00 dBm 35 dB 1200/1200 -01 -19.488 -01 -1	Offset 2.4 SWT 227	42 dB • 1	VNT 2-DH5 RBW 100 kH; VBW 300 kH; VBW 300 kH; VBW 300 kH; IO01 IO01 Y-value -0.54 dB(-53.09 dB(-53.09))))))))))))))))))))))))))))))))))))	2480MHz	Suto FFT 1[1] 2[1]		2.479 2.483 2.483	-0.54 dBn 85000 GH; 53.09 dBn 50000 GH; 2.576 GHz





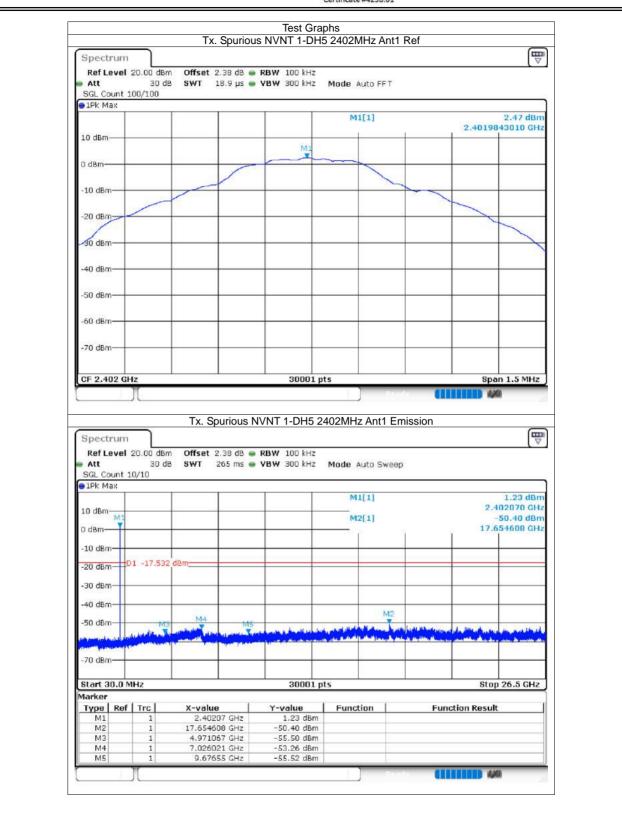
Ref Level 3				BW 100 kHz					
Att SGL Count 8		SWT 18	.9 µs 🖷 V	BW 300 kHz	Mode Au	uto FFT			
⊜1Pk Max									
					M	1[1]		2 40	1.45 dB 414190 GF
10 dBm						8		2.40	+1+190 Gr
							M1	1.11	
0 dBm				m	m	min	m	man	mm
-10 dBm				$\int_{-\infty}^{\infty}$	· w	V		2	V.
-10 08/1				1					
-20 dBm									2
			)						
-30 dBm								-	-
-40 dBm			na l			-			
IS SDIT		Л	~~						
-50 dBm	- A	no		+ +					
mon	V	× ·							
-60 dBm				+ +					
-70 dBm									
a second									
CF 2.402 G	Hz			1001 p	its	9 <del></del>		Sny	an 8.0 MH:
,								-	10
	Τ								Sec. 1
	π					,		****	
	JBand	I Edge(Hop	oping) N	/NT 3-DH5 2	2402MHz	z Ant1 Hop	oping Emi	ssion	
Spectrum	J	l Edge(Hop	oping) N	/NT 3-DH5 2	2402MHz	z Ant1 Hop	oping Emi	ssion	-
Ref Level	20.00 dBm	Offset 2	.38 dB 👳	RBW 100 kHz			oping Emi	ssion	
	20.00 dBm 35 dB	Offset 2	.38 dB 👳				oping Emi	ssion	
Ref Level 3 Att SGL Count 3	20.00 dBm 35 dB	Offset 2	.38 dB 👳	RBW 100 kHz	Mode 4	auto FFT	oping Emi	ssion	
Ref Level 2 Att SGL Count 2 9 1Pk Max	20.00 dBm 35 dB	Offset 2	.38 dB 👳	RBW 100 kHz	Mode 4		oping Emi		0.08 dB
Ref Level 3 Att SGL Count 3	20.00 dBm 35 dB	Offset 2	.38 dB 👳	RBW 100 kHz	Mode /	auto FFT	oping Emi	2.40	0.08 dB 595000 GF -53.99 dB
Ref Level 2 Att SGL Count 2 9 1Pk Max	20.00 dBm 35 dB	Offset 2	.38 dB 👳	RBW 100 kHz	Mode /	outo FFT	oping Emi	2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 2 Att SGL Count 2 1Pk Max	20.00 dBm 35 dB	Offset 2	.38 dB 👳	RBW 100 kHz	Mode /	outo FFT	oping Emi	2.40	0.08 dB 595000 GF -53.99 dB
Ref Level 2 Att SGL Count 1 PIPk Max 10 dBm -10 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB 👳	RBW 100 kHz	Mode /	outo FFT	oping Emi	2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3 Att SGL Count 1 PIPk Max 10 dBm -10 dBm	20.00 dBm 35 dB	Offset 2 SWT 22	.38 dB 👳	RBW 100 kHz	Mode /	outo FFT	oping Emi	2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 2 Att SGL Count 1 PIPk Max 10 dBm -10 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB 👳	RBW 100 kHz	Mode /	outo FFT	oping Emi	2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3 Att SGL Count 3 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB	RBW 100 kHz	Mode /	outo FFT	oping Emi	2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3 Att SGL Count 3 9 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dВ 7.5 µs М4	RBW 100 kHz	Mode /	Suto FFT 1[1] 2[1]		2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3           Att           SGL Count 3           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dB	RBW 100 kHz	Mode /	Suto FFT 1[1] 2[1]	pping Emi	2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3 Att SGL Count 3 9 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dВ 7.5 µs	RBW 100 kHz	Mode 4	Suto FFT 1[1] 2[1]		2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3           Att           SGL Count 3           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dВ 7.5 µs	RBW 100 kHz	Mode 4	Suto FFT 1[1] 2[1]		2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3 Att SGL Count 3 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dВ 7.5 µs	RBW 100 kHz	Mode 4	Suto FFT 1[1] 2[1]		2.40 2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3           Att           SGL Count 3           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.306	20.00 dBm 35 dB 1200/1200	Offset 2 SWT 22	.38 dВ 7.5 µs	RBW 100 kHz	Mode 4	Suto FFT 1[1] 2[1]		2.40 2.40	0.08 dB 595000 GF -53.99 dB 000000 GF
Ref Level 3 Att SGL Count 3 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dBm 35 dB 1200/1200 01 -18.555	Offset 2 SWT 22 dBm dBm	.38 dB	RBW 100 kHz YBW 300 kHz	Mode 4	suto FFT 1[1] 2[1]	on the shares	2.40 2.40	0.08 dB 595000 GH
Ref Level 3           Att           SGL Count 3           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm	20.00 dBm 35 dB 1200/1200 01 -18.555 01 -18.5555 01 -18.5555 01 -18.5555 01 -18.5555 01 -18.5555 01	Offset 2 SWT 22 dBm dBm X-value 2.4059	.38 dB 7.5 μs 	RBW 100 kHz VBW 300 kHz	Mode A M M M	suto FFT 1[1] 2[1]	on the shares	2.40 2.40	0.08 dB 595000 GH
Ref Level 3           Att           SGL Count 3           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.306           Marker           Type           M1           M2           M3	20.00 dBm 35 dB 1200/1200 01 -18.555 01 -18.555 01 -18.555 01 -18.555 01 -18.555 01 -18.555 01 -18.555	Offset 2 SWT 22 dBm dBm <u>x-value</u> 2.4055 2.3	.38 dB 7.5 μs 	RBW 100 kHz VBW 300 kHz	Mode # M M: M: M: M: M: M: M: M: M: M: M: M: M	suto FFT 1[1] 2[1]	on the shares	2.40 2.40	0.08 dB 595000 GH
Ref Level 3           Att           SGL Count 3           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Marker           Type           Ref           Marker	20.00 dBm 35 dB 1200/1200 01 -18.555 01 -18.5550 01 -18.5550 01 -18.5550 01 -18.5550000000000000000	Offset 2 SWT 22 dBm dBm <u>x-value</u> 2.4055 2.3	.38 dB 7.5 μs 	RBW 100 kHz VBW 300 kHz	Mode # M M: M: M: M: M: M: M: M: M: M: M: M: M	suto FFT 1[1] 2[1]	on the shares	2.40 2.40	0.08 dB 595000 GH





Att 35 SGL Count 8000/80	3m Offset 2.42 dB 👄 dB SWT 18.9 µs 👄 100		Mode Auto FFT		
●1Pk Max			M1[1]		0.86 dBm
10 dBm			17	2.4	7613990 GHz
M1	0		20		32 J.
dBm A		A	-		_
1 mm	man	man	my		
-10 dBm			1		
00 d0m					
-20 dBm			Ν		
-30 dBm					
			6		
-40 dBm		+ +			
-50 dBm				~ A	
So doin				2 pm	from
-60 dBm					
100000000					
-70 dBm		+ +			
Spectrum Ref Level 20.00 d	and Edge(Hopping) N	RBW 100 kHz	2480MHz Ant1 H	CHINNER	ipan 8.0 MHz MA
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12	8m Offset 2.42 dB 🖷 dB SWT 227.5 µs 🖷	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H	CHINNER	44
Ba Spectrum Ref Level 20.00 d Att 35	8m Offset 2.42 dB 🖷 dB SWT 227.5 µs 🖷	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H	CHINNER	44
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12	8m Offset 2.42 dB 🖷 dB SWT 227.5 µs 🖷	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission	-0.18 dBm 17805000 GHz
Baccont Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 P1Pk Max 10 dBm M1	8m Offset 2.42 dB 🖷 dB SWT 227.5 µs 🖷	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H Mode Auto FFT	opping Emission	-0.18 dBm
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 IPk Max 10 dBm M1 0 dBm M1 0 dBm	8m Offset 2.42 dB 🖷 dB SWT 227.5 µs 🖷	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission	-0.18 dBm 7805000 GHz -52.60 dBm
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 PIPk Max 10 dBm M1 O dBm -10 cBm	Bm Offset 2.42 dB dB SWT 227.5 μs 00	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission	-0.18 dBm 7805000 GHz -52.60 dBm
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 IPk Max 10 dBm M1 0 dBm M1 0 dBm	Bm Offset 2.42 dB dB SWT 227.5 μs 00	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission	-0.18 dBm 7805000 GHz -52.60 dBm
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 PIPk Max 10 dBm M1 O dBm -10 cBm	Bm Offset 2.42 dB dB SWT 227.5 μs 00	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission	-0.18 dBm 7805000 GHz -52.60 dBm
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 9 1Pk Max 10 dBm M1 -10 dBm -20 dBm -30 dBm -30 dBm	Bm Offset 2.42 dB dB SWT 227.5 μs 00	NVNT 3-DH5 2 RBW 100 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission	-0.18 dBm 7805000 GHz -52.60 dBm
Ba Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 P1Pk Max 10 dBm M1 0718m -20 dBm -20 dBm -40 dBm M4 -40 dBm M4	Bm Offset 2.42 dB dB SWT 227.5 μs 000	IVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission  2.  2.  2.	-0.18 dBm +7805000 GHz -52.60 dBm 88350000 GHz
B2 Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 9 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -10 dBm	Bm Offset 2.42 dB dB SWT 227.5 μs 00	IVNT 3-DH5 2 RBW 100 kHz YBW 300 kHz	2480MHz Ant1 H Mode Auto FFT M1[1]	opping Emission  2.  2.  2.	-0.18 dBm 7805000 GHz -52.60 dBm
Bz Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 9 1Pk Max 10 dBm M1 -10 dBm -20 dBm -40 dBm -50 dBm -50 dBm ² -50 dBm ²	Bm Offset 2.42 dB dB SWT 227.5 μs 000	IVNT 3-DH5 2 RBW 100 kHz YBW 300 kHz	2480MHz Ant1 H Mode Auto FFT M1[1] M2[1]	opping Emission  2.  2.  2.	-0.18 dBm +7805000 GHz -52.60 dBm #8350000 GHz
B2 Spectrum Ref Level 20.00 d Att 35 SGL Count 1200/12 9 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -10 dBm	Bm Offset 2.42 dB dB SWT 227.5 μs 000	IVNT 3-DH5 2 RBW 100 kHz YBW 300 kHz	2480MHz Ant1 H Mode Auto FFT M1[1] M2[1]	opping Emission  2.  2.  2.	-0.18 dBm +7805000 GHz -52.60 dBm #8350000 GHz
Backson           Ref Level 20.00 d           Att 35           SGL Count 1200/12           ID dBm           M1           D dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm	Bm Offset 2.42 dB dB SWT 227.5 μs 000	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2480MHz Ant1 H Mode Auto FF T M1[1] M2[1]	2. 2. 2. 2. 2.	-0.18 dBm 7805000 GHz -52.60 dBm 18350000 GHz
Back           Spectrum           Ref Level 20.00 d           Att 35           SGL Count 1200/12           IPk Max           10 dBm           M1           OfBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.476 GHz	Bm Offset 2.42 dB dB SWT 227.5 μs 000	IVNT 3-DH5 2 RBW 100 kHz YBW 300 kHz	2480MHz Ant1 H Mode Auto FF T M1[1] M2[1]	2. 2. 2. 2. 2.	-0.18 dBm +7805000 GHz -52.60 dBm #8350000 GHz
Backson           Ref Level 20.00 dl           Att 35           SGL Count 1200/12           ID dBm           SGL Count 1200/12           ID dBm           ID dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.476 GHz           Marker           Type         Ref	Bm Offset 2.42 dB dB SWT 227.5 μs 000	IVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz 	2480MHz Ant1 H Mode Auto FFT M1[1] M2[1] wienewykaitentyjk	2. 2. 2. 2. 2.	-0.18 dBm +7805000 GHz -52.60 dBm #8350000 GHz
Backson           Ref Level 20.00 dl           Att 35           SGL Count 1200/12           ID dBm           M1           O'IBm           -10 dBm           -20 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           Marker           Type   Ref   Trc   M1   1	Bm Offset 2.42 dB dB SWT 227.5 μs 100 145 dBm 145 dBm 1	IVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz 	2480MHz Ant1 H Mode Auto FFT M1[1] M2[1] M2[1]	2 2 2 2 2 2 2 2 2 2	-0.18 dBm +7805000 GHz -52.60 dBm #8350000 GHz
Back           Ref Level 20.00 d           Att 35           SGL Count 1200/12           ID dBm           M1           Add Bm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.475 GHz           M1           M3	Bm Offset 2.42 dB dB SWT 227.5 μs 000 145 dBm M3 M3 M3 M3 M3 M3 Comparison of the second seco	IVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 kHz 100 kHz VBW 300 kHz 100 kHz	2480MHz Ant1 H Mode Auto FFT M1[1] M2[1] M2[1]	2 2 2 2 2 2 2 2 2 2	-0.18 dBm +7805000 GHz -52.60 dBm #8350000 GHz
Bz           Ref Level 20.00 d           Att 35           SGL Count 1200/12           IPk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm           Marker           Type           M1           M2           11           M2	Bm Offset 2.42 dB dB SWT 227.5 μs 000 145 dBm M3 μαι μαι μαι μαι μαι μαι μαι μαι μαι μαι	IVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz VBW 300 kHz 100	2480MHz Ant1 H Mode Auto FFT M1[1] M2[1] M2[1]	2 2 2 2 2 2 2 2 2 2	-0.18 dBm +7805000 GHz -52.60 dBm #8350000 GHz






## 8.9 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-52.86	-20	Pass
NVNT	1-DH5	2441	Ant1	-52.1	-20	Pass
NVNT	1-DH5	2480	Ant1	-54	-20	Pass
NVNT	2-DH5	2402	Ant1	-50.93	-20	Pass
NVNT	2-DH5	2441	Ant1	-51.38	-20	Pass
NVNT	2-DH5	2480	Ant1	-51.07	-20	Pass
NVNT	3-DH5	2402	Ant1	-50.05	-20	Pass
NVNT	3-DH5	2441	Ant1	-50.49	-20	Pass
NVNT	3-DH5	2480	Ant1	-48.56	-20	Pass











Ref Level 2 Att		B <b>SWT</b> 18.9	9 µs 🖮 VBW 300	kHz kHz Mode	Auto FFT		
SGL Count 10	0/100						
●1Pk Max			1	M	1[1]		1.76 dBm
10.10					17 31	2.441	325990 GHz
10 dBm				M1		4	
0 dBm		-					-
-10 dBm				_		~	
-20 dBm						-	
20 0011							
30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
		I I					
CF 2.441 GH: Spectrum Ref Level 2	(	n Offset 2.39	ious NVNT 1-E	kHz			Dan 1.5 MHz Wa
Spectrum Ref Level 2 Att SGL Count 10	(	n Offset 2.39	ious NVNT 1-E	0H5 2441MH			WI
Spectrum Ref Level 2	(	n Offset 2.39	ious NVNT 1-E	DH5 2441MH kHz kHz Mode		on	∭ ( ▼ 1.66 dBm
Spectrum Ref Level 2 Att SGL Count 10	(	n Offset 2.39	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	on	.440900 GH2
Spectrum Ref Level 2 Att SGL Count 10 PIPk Max	(	n Offset 2.39	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	on 2	∭ ( ▼ 1.66 dBm
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	(	n Offset 2.39	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	on 2	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 IPk Max 10 dBm -10 dBm -10 dBm	.0.00 dBn 30 di //10	n Offset 2.39 8 SWT 265	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	on 2	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 PIPk Max 10 dBm -10 dBm -20 dBm 0 1	.0.00 dBn 30 di //10	n Offset 2.39 8 SWT 265	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	on 2	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	.0.00 dBn 30 di //10	n Offset 2.39 8 SWT 265	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	on 2	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 PIPk Max 10 dBm -10 dBm -20 dBm 0 1	.0.00 dBn 30 di //10	n Offset 2.39 8 SWT 265	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	22	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	.0.00 dBn 30 di //10	n Offset 2.39 8 SWT 265	ious NVNT 1-E	0H5 2441MH kHz kHz Mode M	Auto Sweep	on 2	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	.0.00 dBn 30 di //10	n Offset 2.39 8 SWT 265	ious NVNT 1-E	DH5 2441MH	Auto Sweep	22 22 22 22	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	.0.00 dBn 30 di //10	n Offset 2.39 8 SWT 265	ious NVNT 1-E	DH5 2441MH	Auto Sweep 1[1] 2[1]	22 22 22 22	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	(	n Offset 2.39 8 SWT 265	ious NVNT 1-E	DH5 2441MH	Auto Sweep 1[1] 2[1]	22 22 22 22	.440900 GH2 -50.34 dBm
Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm		n Offset 2.39 3 SWT 265	ious NVNT 1-E	DH5 2441MH	Auto Sweep	0n 22 22 22 22 22 22 22 22 22 22 22 22 22	1.66 dBm .440900 GH2 -50.34 dBm .744789 GH2 
Spectrum Ref Level 2 Att SGL Count 10 9 IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm -70 dBm Start 30.0 MI Marker Type Ref M1		n Offset 2.39 3 SWT 265 3 GBm 4 GBm 4 GBm 4 GBm 5 GB	ious NVNT 1-E	PH5 2441MH	Auto Sweep	22 22 22 22	1.66 dBm .440900 GH2 -50.34 dBm .744789 GH2 
Spectrum Ref Level 2 Att SGL Count 10 PIPK Max 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 MI Marker Type Ref M1 M2		n Offset 2.39 3 SWT 265 dBm dBm 2.4409 22.744789	ious NVNT 1-E a dB      RBW 100 ms      VBW 300 VBW 300	PH5 2441MH	Auto Sweep	0n 22 22 22 22 22 22 22 22 22 22 22 22 22	1.66 dBm .440900 GH2 -50.34 dBm .744789 GH2 
Spectrum Ref Level 2 Att SGL Count 10 PR Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 30.0 MI Marker Type Ref M1		n Offset 2.39 3 SWT 265 3 GBm 4 GBm 4 GBm 4 GBm 5 GB	ious NVNT 1-E 2 dB • RBW 100 ms • VBW 300 M5 M5 M5 M5 M5	PH5 2441MH	Auto Sweep	0n 22 22 22 22 22 22 22 22 22 22 22 22 22	1.66 dBm .440900 GH2 -50.34 dBm .744789 GH2 





Spectrum Ref Level 20.00 dBm	Offset 2.42 dB 🖷	RBW 100 kHz			
👄 Att 🛛 30 dB	SWT 18.9 µs		Mode Auto FFT		
SGL Count 100/100					
TEK Max			M1[1]		2.41 dB
10.15			127		2.4801446450 GH
10 dBm			ML		.52
0 dBm				-	
-10 dBm		-			
-20 dBm					
-30 dBm					1
0.0000000000000000000000000000000000000					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.48 GHz		30001 p NVNT 1-DH5 24	480MHz Ant1 E	mission	Span 1.5 MH
Spectrum Ref Level 20.00 dBm Att 30 dB		NVNT 1-DH5 2-	480MHz Ant1 E		449
Spectrum Ref Level 20.00 dBm	Offset 2.42 dB 🖷	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee		<b>449</b>
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max	Offset 2.42 dB 🖷	NVNT 1-DH5 2-	480MHz Ant1 E		2.27 dB
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 10 dBm	Offset 2.42 dB 🖷	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee		2.27 dB 2.479720 G -51.60 dB
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 10 tR Max	Offset 2.42 dB 🖷	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee M1[1]		2.27 dB 2.479720 Gł
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm 10 -10 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee M1[1]		2.27 dB 2.479720 G -51.60 dB
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm M1 0 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee M1[1]		2.27 dB 2.479720 G -51.60 dB
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee M1[1]		2.27 dB 2.479720 G -51.60 dB
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee M1[1]		2.27 dB 2.479720 G -51.60 dB
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2-	480MHz Ant1 E Mode Auto Swee M1[1]	эр	2.27 dB 2.479720 G -51.60 dB
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	3p	2.27 dB 2.479720 GP -51.60 dB 19.406922 GP
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2	480MHz Ant1 E Mode Auto Swee M1[1] 	3p	2.27 dB 2.479720 G -51.60 dB
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	3p	2.27 dB 2.479720 GP -51.60 dB 19.406922 GP
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -70 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 24	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	3p	2.27 dB 2.479720 Gł -51.60 dB 19.406922 Gł
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm	Offset 2.42 dB SWT 265 ms	NVNT 1-DH5 2	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	3p	2.27 dB 2.479720 GP -51.60 dB 19.406922 GP
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -30 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           Start 30.0 MHz           Marker           Type         Ref	Offset 2.42 dB SWT 265 ms dBm dBm X-value	NVNT 1-DH5 2	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	2p 	2.27 dB 2.479720 Gł -51.60 dB 19.406922 Gł
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0 MHz           Marker	Offset 2.42 dB SWT 265 ms dBm	NVNT 1-DH5 2- RBW 100 kHz VBW 300 kHz 	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	2p 	2.27 dB 2.479720 Gł -51.60 dB 19.406922 Gł
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -20 dBm           -20 dBm           -20 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0 MHz           Marker           Type           Ref         Trc           M1         1           M2         1	Offset 2.42 dB SWT 265 ms dBm dBm 2.47972 GHz 2.47972 GHz 19.406922 GHz 5.018713 GHz	NVNT 1-DH5 2 RBW 100 kHz VBW 300 kHz 300 kHz 300 kHz 300 kHz 45 300 t pt 2.27 dBm -51.60 dBm -55.23 dBm	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	2p 	2.27 dB 2.479720 Gł -51.60 dB 19.406922 Gł
Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 30.0 MHz           Marker           Type         Ref           M1         1           M2         1	Offset 2.42 dB SWT 265 ms dBm dBm X-value 2.47972 GHz 19.406922 GHz	NVNT 1-DH5 2- RBW 100 kHz VBW 300 kHz 	480MHz Ant1 E Mode Auto Swee M1[1] M2[1]	2p 	2.27 dB 2.479720 Gł -51.60 dB 19.406922 Gł





Spectrum	L		Jo.						
Ref Level		dB SWT 18.9		RBW 100 kHz VBW 300 kHz	Mode A	to FFT			
SGL Count 1		00 0111 2013	P		MOGE A	acorri			
⊜1Pk Max									); (
					M1	[1]		Provide State	-0.26 dBm
10 dBm					E		31	2.40201	131000 GHz
TO UBIII-		0 P			1			5	
O dDas				111					
0 dBm			/		~				
-10 dBm								-	
-10 0811									
-20 dBm									
-20 dbin									
-30 dBm									
30 UBIT									
-40 dBm							-		
io abiii									
-50 dBm									
SO GDIT									
-60 dBm							_		
-70 dBm									
				1 1					
OF 0 400 01				00001					
CF 2.402 GF	π	Tx. Spuri	ous N	30001 p VNT 2-DH5 24	]	Ant1 Er	mission	Spa	
Spectrum Ref Level	20.00 d	Bm Offset 2.38	dB 👳	VNT 2-DH5 2-	402MHz				
Spectrum Ref Level	20.00 d 30	·	dB 👳	VNT 2-DH5 2-	402MHz				9
Spectrum Ref Level	20.00 d 30	Bm Offset 2.38	dB 👳	VNT 2-DH5 2-	402MHz				9
Spectrum Ref Level Att SGL Count 1	20.00 d 30	Bm Offset 2.38	dB 👳	VNT 2-DH5 2-	402MHz	uto Sweej			.0.12 dBm
Spectrum Ref Level Att SGL Count 1	20.00 d 30	Bm Offset 2.38	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 602070 GHz
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm	20.00 d 30	Bm Offset 2.38	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm
Spectrum Ref Level Att SGL Count 1 9 1Pk Max 10 dBm M1 0 dBm	20.00 d 30	Bm Offset 2.38	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 602070 GHz
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm	20.00 d 30	Bm Offset 2.38	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm	20.00 d 30	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm 10 dBm -10 dBm -20 dBm	20.00 d 30	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm	20.00 d 30	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm 10 dBm -10 dBm -20 dBm	20.00 d 30 .0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 d 30 .0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A	uto Sweej [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -10 dBm -30 dBm	20.00 d 30 .0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A M1 M2	[1] [1] [1] <u>M2</u>		2.4	-0.12 dBm Ю2070 GHz -51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 d 30 .0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A	[1] [1] [1] <u>M2</u>		2.4	-0.12 dBm 402070 GHz 51.19 dBm 29041 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 d 30 .0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A M1 M2	[1] [1] [1] <u>M2</u>		2.4	-0.12 dBm Ю2070 GHz -51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm -10 dBm -10 dBm -30 dBm -40 dBm -50 dBm	20.00 d 30 .0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A M1 M2	[1] [1] [1] <u>M2</u>		2.4	-0.12 dBm Ю2070 GHz -51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm -10 dBm -10 dBm -30 dBm -40 dBm -50 dBm	20.00 d 30 0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A M1 M2	[1] [1] [1]		2.4	-0.12 dBm Ю2070 GHz -51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -70 dBm	20.00 d 30 0/10	Bm Offset 2.38 dB SWT 265	dB 👳	VNT 2-DH5 2-	402MHz Mode A M1 M2	[1] [1] [1]		2.4	-0.12 dBm 02070 GHz -51.19 dBm 29041 GHz
Spectrum Ref Level Att SGL Count 1 PIPK Max 10 dBm -10 dBm -10 dBm -20 dBm -40 dBm -30 dBm -40 dBm -70	20.00 d 30 .0/10 1 -20.2	Bm Offset 2.38 dB SWT 265	dB  ms	VNT 2-DH5 2/ RBW 100 kHz VBW 300 kHz 	402MHz Mode A M1 M2	(1) [1] [1] M2		2.4	-0.12 dBm #02070 GHz 51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 IVK Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70	20.00 d 30 0/10 1 -20.2 1Hz 1Hz	Bm Offset 2.38 dB SWT 265 59 dBm 59 dBm 43 44 44 43 44 59 dBm 59 dBm 50	dB  ms	VNT 2-DH5 24 RBW 100 kHz VBW 300 kHz	402MHz Mode A M1 M2	(1) [1] [1] M2		2.4 16.7	-0.12 dBm #02070 GHz 51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 PIPK Max 10 dBm -10 dBm -10 dBm -20 dBm -40 dBm -30 dBm -40 dBm -70	20.00 d 30 .0/10 1 -20.2	Bm Offset 2.38 dB SWT 265	dB  ms	VNT 2-DH5 2/ RBW 100 kHz VBW 300 kHz 	402MHz Mode A M1 M2	(1) [1] [1] M2		2.4 16.7	-0.12 dBm #02070 GHz 51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -30 dBm -40 dBm -70 dBm -	20.00 d 30 .0/10 1 -20.2	Bm Offset 2.38 dB SWT 265 59 dBm 59 dBm 43 H41 44 44 44 44 44 44 44 59 dBm 43 H41 44 44 44 59 dBm 45 44 59 dBm 45 44 59 dBm 59 dBm 50 d	HS MS HZ HZ HZ HZ	VNT 2-DH5 2 RBW 100 kHz VBW 300 kHz	402MHz Mode A M1 M2	(1) [1] [1] M2		2.4 16.7	-0.12 dBm #02070 GHz 51.19 dBm /29041 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm -7	20.00 d 30 .0/10 1 -20.2 1Hz IHz ITrc 1 1 1	Bm Offset 2.38 dB SWT 265 59 dBm 59 dBm 41 41 41 41 41 41 41 41 41 41 41 41 41	HS MS HZ HZ HZ HZ	VNT 2-DH5 2- RBW 100 kHz YBW 300 kHz 	402MHz Mode A M1 M2	(1) [1] [1] M2	Fun	2.4 16.7	-0.12 dBm +02070 GHz 51.19 dBm /29041 GHz





Spectrum	ſ								
		offset 2.	39 dB 📻	RBW 100 kHz					L.
Att				VBW 300 kHz		to FFT			
SGL Count	100/100								
●1Pk Max				- T - T		11			0.00 10
					M1[	1]		2 4409	0.09 dBm 705510 GHz
10 dBm		+ +		+ +	22	3	-		
				MI					
0 dBm									
	-		-					-	
-10 dBm								~	-
									1
-20 dBm									
-30 dBm		-		+ +					
-40 dBm				+ +					
FO dE									
-50 dBm									
60 dBm									
-60 dBm									
-70 dBm									
-70 0011									
CF 2.441 G	J	·		30001	2441MHz	Ant1 Em	nission	Spa	in 1.5 MHz
Spectrum Ref Level	20.00 dž	om Offset 2.	39 dB 👳		] 2441MHz				9
Spectrum Ref Level Att SGL Count	20.00 dž	om Offset 2.	39 dB 👳	NVNT 2-DH5	] 2441MHz				9
Spectrum Ref Level Att SGL Count	20.00 dž	om Offset 2.	39 dB 👳	NVNT 2-DH5	] 2441MHz	to Sweep			9
Spectrum Ref Level Att SGL Count	20.00 dž	om Offset 2.	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au	to Sweep 1]		2.	-2.86 dBm ⊭40900 GHz
Spectrum Ref Level Att SGL Count IPk Max	20.00 dž	om Offset 2.	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au	to Sweep 1]		2	-2.86 dBm ⊭40900 GHz -51.30 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dž	om Offset 2.	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au	to Sweep 1]		2	-2.86 dBm ⊭40900 GHz
Spectrum Ref Level Att SGL Count IPk Max	20.00 dž	om Offset 2.	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au	to Sweep 1]		2	-2.86 dBm ⊭40900 GHz -51.30 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au	to Sweep 1]		2	-2.86 dBm ⊭40900 GHz -51.30 dBm
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au	to Sweep 1]		2	-2.86 dBm ⊭40900 GHz -51.30 dBm
Spectrum Ref Level Att SGL Count ID dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au	to Sweep 1]		2	-2.86 dBm ⊭40900 GHz -51.30 dBm
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au M1[	to Sweep 1] 1]		2	-2.86 dBm ⊭40900 GHz -51.30 dBm
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au M1[	to Sweep 1]		2	-2.86 dBm ⊭40900 GHz -51.30 dBm
Spectrum Ref Level Att SGL Count ID dBm 0 dBm 10 dBm -10 dBm -20 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au M1[	1] 1] M2		2.4	-2.86 dBm H40900 GHz 51.30 dBm 49334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au M1[	1] 1] M2		2	-2.86 dBm H40900 GHz 51.30 dBm 49334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	)[ 20.00 dt 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au M1[	1] 1] M2		2.4	-2.86 dBm H40900 GHz 51.30 dBm 49334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm	) [ 20.00 df 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	IVNT 2-DH5	2441MHz Mode Au M1[	1] 1] M2		2	-2.86 dBm 440900 GHz -51.30 dBm 49334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm	) [ 20.00 df 30 10/10	Bm Offset 2. dB SWT 2	39 dB 👳	NVNT 2-DH5	2441MHz Mode Au M1[	1] 1] M2		2	-2.86 dBm H40900 GHz 51.30 dBm 49334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm Marker	20.00 df 30 10/10	Bm Offset 2. dB SWT 2 18 dBm	39 dB 👳	IVNT 2-DH5	2441MHz Mode Au M1[ 	1] 1] M2		2 16 Sto	-2.86 dBm 440900 GHz 51.30 dBm 749334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -30 dBm -70 dBm -70 dBm Ref Start 30.0 f Marker Type Ref	) [ 20.00 df 30 10/10 01 -19.91	Am Offset 2. dB SWT 2 B dBm dB dBm dB dBm dB dBm dB dBm dB dBm dB dBm	39 dB 65 ms	IVNT 2-DH5 : RBW 100 kHz yBW 300 kHz 	2441MHz Mode Au M1[ M2] pts	1] 1] M2		2	-2.86 dBm 440900 GHz 51.30 dBm 749334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 30.0 f Marker Type Ref M1 M2	20.00 df 30 10/10	Am Offset 2. dB SWT 2	39 dB 65 ms 65 ms 9 GHz 4 GHz	IVNT 2-DH5 : RBW 100 kHz VBW 300 kHz 	2441MHz Mode Au M1[ M2[ M2[ M2[ M2[ M2[ M2[ M2[ M2	1] 1] M2		2 16 Sto	-2.86 dBm 440900 GHz 51.30 dBm 749334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm <b>Start 30.0 f</b> Marker Type Ref M1 M2 M3	20.00 df 30 10/10 01 -19.9 WHz Trc 1 1 1	Am Offset 2. dB SWT 2	39 dB 65 ms 4 GHz 4 GHz 6 GHz	IVNT 2-DH5 : RBW 100 kHz VBW 300 kHz 	2441MHz Mode Au M1[ 	1] 1] M2		2 16 Sto	-2.86 dBm 440900 GHz 51.30 dBm 749334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm	20.00 df 30 10/10 01 -19.93 MHz	Am Offset 2. dB SWT 2 B dBm dB dB dBm dB dB dBm dB dB dBm dB dB dBm dB dB dBm dB dB dB dB dBm dB dB d	39 dB 65 ms 65 ms 9 GHz 4 GHz 8 GHz 8 GHz 8 GHz 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IVNT 2-DH5 : RBW 100 kHz yBW 300 kHz 	2441MHz Mode Au M1[ M2[ M2] M2[ M2] M2[ M2] M2[ M2] M2] M3 M2] M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	1] 1] M2		2 16 Sto	-2.86 dBm 440900 GHz 51.30 dBm 749334 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 df 30 10/10 01 -19.9 WHz Trc 1 1 1	Am Offset 2. dB SWT 2	39 dB 65 ms 65 ms 9 GHz 4 GHz 8 GHz 8 GHz 8 GHz 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IVNT 2-DH5 : RBW 100 kHz VBW 300 kHz 	2441MHz Mode Au M1[ M2[ M2] M2[ M2] M2[ M2] M2[ M2] M2] M3 M2] M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	1] 1] M2		2 16 Stor	-2.86 dBm 440900 GHz 51.30 dBm 749334 GHz





Spectrum Ref Level 20.0			Jada Auto FFT		
Att SGL Count 100/1	30 dB SWT 18.9 μs 👄 .00	VBW 300 KHZ N	Mode Auto FFT		
91Pk Max	12.01				
			M1[1]		0.49 dBm
10 dBm			12 31	2.4799	591010 GHz
10 ubii		MI		1	
0 dBm		I.			
-10 dBm					~
-					-
-20 dBm					-
-30 dBm		+ +			
-40 dBm					
-50 dBm					
JUDIN					
-60 dBm					
-70 dBm					
CF 2.48 GHz					
		30001 pts	50 K	Spa	an 1.5 MHz
Spectrum	Tx. Spurious N	30001 pts	BOMHz Ant1 Emiss		an 1.5 MHz
Spectrum Ref Level 20.0	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	B0MHz Ant1 Emiss		6
Spectrum Ref Level 20.0	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	B0MHz Ant1 Emiss		6
Spectrum Ref Level 20.0 Att SGL Count 10/10	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	B0MHz Ant1 Emiss		6
Spectrum Ref Level 20.0 Att SGL Count 10/10	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2	-1.13 dBm ₽79720 GHz
Spectrum Ref Level 20.0 Att SGL Count 10/10 1Pk Max 10 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2	-1.13 dBm ≠79720 GHz -50.59 dBm
Spectrum Ref Level 20.0 Att SGL Count 10/10 IPk Max 10 dBm 0 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2	-1.13 dBm ₽79720 GHz
Spectrum Ref Level 20.0 Att SGL Count 10/10 1Pk Max 10 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2.	-1.13 dBm ≠79720 GHz -50.59 dBm
Spectrum Ref Level 20.0 Att SGL Count 10/10 1Pk Max 10 dBm -10 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2.	-1.13 dBm ≠79720 GHz -50.59 dBm
Spectrum Ref Level 20.0 Att SGL Count 10/10 1Pk Max 10 dBm -10 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2.	-1.13 dBm ≠79720 GHz -50.59 dBm
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2.	-1.13 dBm ≠79720 GHz -50.59 dBm
Spectrum Ref Level 20.0 Att SGL Count 10/10 PIPK Max 10 dBm -10 dBm -20 dBm D1 -1	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2.	-1.13 dBm ≠79720 GHz -50.59 dBm
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	BOMHz Ant1 Emiss	sion 2.	-1.13 dBm ≠79720 GHz -50.59 dBm
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           IPk Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -40 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	Mode Auto Sweep M1[1] M2[1] M2	2 16.3	-1.13 dBm 479720 GHz 50.59 dBm 393754 GHz
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           IPk Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -40 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	Mode Auto Sweep M1[1] M2[1] M2	2. 16.3	-1.13 dBm 479720 GHz 50.59 dBm 393754 GHz
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           IPk Max           10 dBm           -10 dBm           -10 dBm           -30 dBm           -50 dBm           -70 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	Mode Auto Sweep  M1[1]  M2[1]  M2	2 16.:	-1.13 dBm 79720 GHz -50.59 dBm 393754 GHz
Spectrum Ref Level 20.0 Att SGL Count 10/10 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -40 dBm -50 dBm -50 dBm	0 dBm Offset 2.42 dB 30 dB SWT 265 ms	IVNT 2-DH5 248	Mode Auto Sweep  M1[1]  M2[1]  M2	2 16.:	-1.13 dBm 479720 GHz 50.59 dBm 393754 GHz
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           IPK Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0 MHz           Marker           Type         Ref	0 dBm Offset 2.42 dB 30 dB SWT 265 ms 9.508 dBm MS MH M5 10 MS MH M5 MH M5 10 MS MH M5 10 MS MH M5 MH M5 MH M5 10 MS MH M5 MH M5 MH M5 MH M5 MH M5 10 MS MH M5 M	IVNT 2-DH5 248 RBW 100 kHz VBW 300 kHz N	Mode Auto Sweep  M1[1]  M2[1]  M2	2 16.:	-1.13 dBm 479720 GHz -50.59 dBm 393754 GHz
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0 MHz           Marker           Type         Ref	0 dBm Offset 2.42 dB 30 dB SWT 265 ms 9.508 dBm M3 M4 M5 M3 M4 M5 1 2.47972 GHz	IVNT 2-DH5 248  RBW 100 kHz VBW 300 kHz N  3000 kHz N	BOMHz Ant1 Emiss	2. 16.3	-1.13 dBm 479720 GHz -50.59 dBm 393754 GHz
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           IPk Max           10 dBm           0 dBm           -10 dBm           -10 dBm           -30 dBm           -50 dBm           -50 dBm           -50 dBm           Start 30.0 MHz           Marker           Type           M1           M2	0 dBm Offset 2.42 dB 30 dB SWT 265 ms 9.508 dBm MS MH M5 10 MS MH M5 MH M5 10 MS MH M5 10 MS MH M5 MH M5 MH M5 10 MS MH M5 MH M5 MH M5 MH M5 MH M5 10 MS MH M5 M	IVNT 2-DH5 248 RBW 100 kHz VBW 300 kHz N	BOMHz Ant1 Emiss	2. 16.3	-1.13 dBm 479720 GHz -50.59 dBm 393754 GHz
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           1Pk Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -10 dBm           -20 dBm           -10 dBm           -70 dBm           Start 30.0 MHz           Marker           Type           M1           M2           M3           M4	9.508 dBm M3 M3 M3 M3 M3 M4 M3 M4 M5 M4 M5 M4 M5 M5 M4 M5 M5 M5 M5 M5 M5 M5 M5 M5 M5	IVNT 2-DH5 248 RBW 100 kHz VBW 300 kHz M 	BOMHz Ant1 Emiss	2. 16.3	-1.13 dBm 479720 GHz -50.59 dBm 393754 GHz
Spectrum           Ref Level 20.0           Att           SGL Count 10/10           • IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -10 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0 MHz           Marker           Type         Ref           M1           M2           M3           M4	O dBm         Offset 2.42 dB           30 dB         SWT         265 ms           9.508 dBm	IVNT 2-DH5 248 RBW 100 kHz VBW 300 kHz N 	BOMHz Ant1 Emiss	2. 16.3	-1.13 dBm +79720 GHz -50.59 dBm 393754 GHz 





Spectru	m	ſ								Ē
Ref Lev			Offset	2.38 dB 🗰	RBW 100 kHz					
Att					VBW 300 kHz	Mode A	uto FFT			
SGL Cour		100								
⊖1Pk Max	-			-	- T - T		(F.1			o ri do
						MI	L[1]		2 4021	-0.51 dBn 414450 GH
10 dBm-	-						2) 30	-	+	-
						MI				
0 dBm	-					INI		-		-
						1	1			
-10 dBm					-				-	
-										-
-20 dBm-	+				-					
-30 dBm-	-			-					-	-
-40 dBm—	-		-	-	+ +				-	-
-50 dBm-	+			-	+ +					(
1657253										
-60 dBm—	-				+ +					-
0.024.0455										
-70 dBm—	1				+ +					
					1 1					
CF 2.402	GHz		No. 11		30001			10	Sn	an 1.5 MHz
Spectru		1	Tx. S	purious N	VVNT 3-DH5		z Ant1 Er	nission	ар (	
Ref Lev Att	im el 20.1	30 dB	Offset	2.38 dB 👳		2402MHz			ар 111110 4	84
Ref Lev Att SGL Cour	el 20,1	30 dB	Offset	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz			ар Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Сананана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Санана Сананана Сананана Сананана Сананана Санананан	84
Ref Lev Att	el 20,1	30 dB	Offset	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	iuto Sweej		ар (	84
Ref Lev Att SGL Cour 9 1Pk Max	el 20,1	30 dB	Offset	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	uto Sweej I[1]		2.	-3.21 dBn 402070 GH
Ref Lev Att SGL Cour 1Pk Max	el 20,1	30 dB	Offset	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	iuto Sweej		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 9 1Pk Max	el 20,1	30 dB	Offset	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	uto Sweej I[1]		2.	-3.21 dBn 402070 GH
Ref Lev Att SGL Cour 1Pk Max	el 20,1	30 dB	Offset	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	uto Sweej I[1]		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm-	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	uto Sweej I[1]		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm-	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	uto Sweej I[1]		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm-	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	uto Sweej I[1]		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm-	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A	uto Sweej I[1]		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz	2402MHz Mode A M1	M2		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 1Pk Max 10 dBm	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz YBW 300 kHz	2402MHz Mode A M1	M2		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz YBW 300 kHz	2402MHz Mode A M1	M2		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour ● 1Pk Max 10 dBm	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz YBW 300 kHz	2402MHz Mode A M1	M2		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev Att SGL Cour 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	el 20.1	30 dB	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz YBW 300 kHz	2402MHz Mode A M1	M2		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev           Att           SG. Cour           ID dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm	m el 20,1 nt 10/1	30 de 0 20.515	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz VBW 300 kHz	2402MHz Mode A M1	M2		2.	-3.21 dBn -3.21 dBn -50.56 dBn 761687 GH
Ref Lev Att SGL Cour ● 1Pk Max 10 dBm	m el 20,1 nt 10/1	30 de 0 20.515	Offset SWT	2.38 dB 👳	NVNT 3-DH5 RBW 100 kHz YBW 300 kHz	2402MHz Mode A M1	M2		2.	-3.21 dBn 402070 GH -50.56 dBn
Ref Lev           Att           SGL Cour           ● IPK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.           Marker           Type   R	m el 20.1 ht 10/1	30 de 0 20.515 <u>M3</u>	Offset SWT dBm- M4	2.38 dB  265 ms	NVNT 3-DH5 RBW 100 kHz VBW 300 kHz 	2402MHz Mode A M1 M2 pts Funct	M2		2.	-3.21 dBn 402070 GH -50.56 dBn 761687 GH
Ref Lev           Att           SGL Cour           9 IPK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           50 dBm           Marker           Type           Marker	m el 20.1 ht 10/1	30 d2 0 20.515 M3 c 1	Offset SWT dBm M4 X-valu 2.402	2.38 dB 265 ms 2	NVNT 3-DH5 RBW 100 kHz VBW 300 kHz 	2402MHz Mode A MI M2 pts Funct	M2		2. 16.	-3.21 dBn 402070 GH -50.56 dBn 761687 GH
Ref Lev           Att           SG. Cour           IPk Max           ID dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.           Marker           Type R           M1	m el 20.1 ht 10/1	30 dB 0 20.515 M3 (d) off	Offset SWT dBm 	2.38 dB 265 ms	NVNT 3-DH5 RBW 100 kHz VBW 300 kHz 	2402MHz Mode A M1 M2 pts Funct	M2		2. 16.	-3.21 dBn 402070 GH -50.56 dBn 761687 GH
Ref Lev           Att           SGL Cour           9 IPK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           50 dBm           Marker           Type           Marker	m el 20.1 ht 10/1	30 d2 0 20.515 M3 c 1	Offset SWT dBm 	2.38 dB 265 ms 2	NVNT 3-DH5 RBW 100 kHz VBW 300 kHz 	2402MHz Mode A Mi Mi Mi Mi Mi Mi Mi	M2		2. 16.	-3.21 dBn 402070 GH -50.56 dBn 761687 GH
Ref Lev           Att           SG. Cour           10 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.           Marker           Type         R           M1           M2	m el 20.1 ht 10/1	30 dB 0 20.515 M2 (Math	Offset SWT dBm 	2.38 dB 265 ms 2	NVNT 3-DH5 RBW 100 kHz VBW 300 kHz 	2402MHz Mode A Mile Mile Mile Mile Mile Mile Mile Mile	M2		2. 16.	-3.21 dBn 402070 GH -50.56 dBn 761687 GH
Ref Lev           Att           SGL Cour           10 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           Start 30.           Marker           Type R           M1           M2           M4	m el 20.1 ht 10/1	30 dB 0 20.515 M2 Litte alt 1 1 1 1	Offset SWT dBm 	2.38 dB 265 ms 2	NVNT 3-DH5 RBW 100 kHz VBW 300 kHz 	2402MHz Mode A Mile Mile Mile Mile Mile Mile Mile Mile	M2		2. 16. Storesu	-3.21 dBn 402070 GH -50.56 dBn 761687 GH





Spectru	m ]							
				RBW 100 kHz				
Att			18.9 µs 🖷	<b>VBW</b> 300 kHz	Mode Auto F	FT		
SGL Coun	t 100/10	J						
TEV Max	-		1		M1[1]			-0.84 dBm
					MILTI		2,4409	914010 GHz
10 dBm	-	_	_				1	
0 dBm			-	M1				-
1000000000000	-				~			
-10 dBm	-			1				
1								
-20 dBm-		-		_				
-30 dBm	-		-					-
-40 dBm								
TO ODIT								
-50 dBm								
- JU UBIT								
-60 dBm								
-bo ubin-								
70 40-								
-70 dBm								
CF 2.441	GHz			30001			Sna	an 1.5 MHz
Spectru		Tx. S	purious I	NVNT 3-DH5 2		1 Emission		
Spectru Ref Leve	m 1 20.00 3	dBm Offset	2.39 dB 🖷		2441MHz Ant			10
Spectrui Ref Leve Att SGL Coun	m 1 20.00 3	dBm Offset	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant			10
Spectru Ref Leve	m 1 20.00 3	dBm Offset	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S			<b>₩</b>
Spectrui Ref Leve Att SGL Coun PIPk Max	m 1 20.00 3	dBm Offset	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant			₩ 
Spectrui Ref Leve Att SGL Coun 1Pk Max 10 dBm-	m al 20.00 3 t 10/10	dBm Offset	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S		2.	<b>₩</b>
Spectrui Ref Leve Att SGL Coun PIPk Max	m al 20.00 3 t 10/10	dBm Offset	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]		2.	-3.48 dBm 440900 GHz
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm	m al 20.00 3 t 10/10	dBm Offset	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]		2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm- -10 dBm-	m 1 20.00 3 t 10/10	dBm Offset 0 dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]		2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm	m 1 20.00 3 t 10/10	dBm Offset 0 dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]		2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun PIPK Max 10 dBm- 0 dBm- -10 dBm- 20 dBm-	m 1 20.00 3 t 10/10	dBm Offset 0 dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]		2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm- -10 dBm-	m 1 20.00 3 t 10/10	dBm Offset 0 dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]		2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun PIPK Max 10 dBm- 0 dBm- -10 dBm- 20 dBm-	m 1 20.00 3 t 10/10	dBm Offset 0 dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]	Sweep	2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	m 1 20.00 3 t 10/10	dBm Offset 0 dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz	2441MHz Ant Mode Auto S M1[1]		2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	m 1 20.00 3 t 10/10	dBm Offset 0 dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2441MHz Ant Mode Auto S M1[1] M2[1]	Sweep	2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	m 1 20.00 3 t 10/10	dBm Offset D dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2441MHz Ant Mode Auto S M1[1] M2[1]	Sweep	2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	m 1 20.00 3 t 10/10	dBm Offset D dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2441MHz Ant Mode Auto S M1[1] M2[1]	Sweep	2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	m 1 20.00 3 t 10/10	dBm Offset D dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2441MHz Ant Mode Auto S M1[1] M2[1]	Sweep	2.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -70 dBm-	m al 20.00 3 t 10/10 D1 -20.	dBm Offset D dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2441MHz Ant Mode Auto S M1[1] M2[1]	Sweep	220.	-3.48 dBm 440900 GHz -51.33 dBm 199259 GHz
Spectrum Ref Leve Att SGL Coun IPk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -70 dBm- Start 30.0	m al 20.00 3 t 10/10 D1 -20.	dBm Offset D dB SWT	2.39 dB 🖷	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2441MHz Ant Mode Auto S M1[1] M2[1]	Sweep	220.	-3.48 dBm 440900 GHz -51.33 dBm
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -70 dBm-	m 1 20.00 3 t 10/10	dBm Offset D dB SWT	2.39 dB 265 ms	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz	2441MHz Ant Mode Auto S M1[1] M2[1]	Sweep	220.	-3.48 dBm 440900 GHz -51.33 dBm 139259 GHz
Spectrum Ref Leve Att SGL Coun 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 30.0 Marker Type R: M1	D1 -20.	dBm Offset o dB SwT 835 dBm MS M4 X-valu 2.4	2.39 dB 265 ms 2	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz 	2441MHz Ant Mode Auto S M1[1] M2[1] M2[1] M2[1] M2[1] M2[1]	Sweep	2. 20.	-3.48 dBm 440900 GHz -51.33 dBm 139259 GHz
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	m la 20.00 3 t 10/10 = D1 -20.	dBm Offset 0 dB SWT 835 dBm M3 M4 X-valu 2.4 20.139	2.39 dB 265 ms 2	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz 	2441MHz Ant Mode Auto S M1[1] M2[1] M2[1] M2[1] M2[1]	Sweep	2. 20.	-3.48 dBm 440900 GHz -51.33 dBm 139259 GHz
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -30 dBm- -50 dBm- -70 dBm- Start 30.0 Marker Type Ra M1 M2 M3	D1 -20.	dBm Offset 0 dB SWT 835 dBm 835 dBm X-valu 2.44 20.139 5.049	2.39 dB 265 ms 265 ms 409 GHz 299 GHz 299 GHz 299 GHz	NVNT 3-DH5 2 RBW 100 kHz YBW 300 kHz 3000 kHz 	2441MHz Ant Mode Auto S M1[1] M2[1] M2[1] M2[1]	Sweep	2. 20.	-3.48 dBm 440900 GHz -51.33 dBm 139259 GHz
Spectrum Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	m la 20.00 3 t 10/10 = D1 -20.	dBm Offset 0 dB SwT 835 dBm 835 dBm MS M4 2.4 20.139 5.049 7.264	2.39 dB 265 ms 2	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz 	2441MHz Ant Mode Auto S M1[1] M2[1] M2[1] M2[1] M2[1] M2[1]	Sweep	2. 20.	-3.48 dBm 440900 GHz -51.33 dBm 139259 GHz
Spectrum Ref Leve Att SGL Coun 9 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -70	m 120.00 3 t 10/10 = D1 -20.	dBm Offset 0 dB SwT 835 dBm 835 dBm MS M4 2.4 20.139 5.049 7.264	2.39 dB 265 ms 265 ms 409 GHz 259 GHz 259 GHz 251 GHz	NVNT 3-DH5 2 RBW 100 kHz VBW 300 kHz 	2441MHz Ant Mode Auto S M1[1] M2[1] M2[1] M2[1] M2[1] M2[1]	Sweep	2. 20.	-3.48 dBm 440900 GHz -51.33 dBm 139259 GHz 4 4.04 Hill 4 139259 GHz 139259 GHz 139259 GHz 139259 GHz 139259 GHz 139259 GHz 139259 GHz 139259 GHz 139259 GHz





NII[1]         -2.27 dBm           0 dBm         2.4800666480 GHz           0 dBm         NII           -0 dBm         NII           -0 dBm         NII           -0 dBm         -0 dBm           -70 dBm         -0 dBm           -10 dBm         -0 dBm           -2.266 dBm         -0 dBm           -2.266 dBm         -0 dBm           -2.266 dBm         -0 dBm           -2.266 dBm         -0 dBm           -0 dBm         -0 dBm           -0 dBm         -0 dBm           -0 dBm         -0 dBm      <	1Pk Max	100/100								
10 dBm       M1         0 dBm       M1         10 dBm       M1         10 dBm       M1         20 dBm       Gamma         30 dBm       Gamma         40 dBm       Gamma         40 dBm       Gamma         50 dBm       Gamma         50 dBm       Gamma         50 dBm       Gamma         70 dBm       Gamma         10 dBm       Gamma         10 dBm       M1[1]         2.42 dB       RBW 100 HHz         30 dB       M1[1]         2.42 dB       RBW 100 HHz         M0 dBm       M1[1]         2.42 dBm       M2[1]         2.43 B0000 Hz <th>TER MON</th> <th></th> <th></th> <th></th> <th></th> <th>M1[</th> <th>1]</th> <th></th> <th></th> <th></th>	TER MON					M1[	1]			
0 dBn 10 dBn 20 dEn 20 dEn 40 dBn 50 dBn 50 dBn 50 dBn 50 dBn 50 dBn 70 dBn 70 dBn 70 dBn 70 dBn 70 dBn 70 dBn 10 dBn	10 dBm					12			2.48006	566480 GHz
Color         Color           10 dBp         20 dBm           20 dBm         20 dBm           30 dBm         30 dBm           40 dBm         40 dBm           50 dBm         50 dBm           50 dBm         0 dBm           50 dBm         0 dBm           50 dBm         0 dBm           50 dBm         10 dBm           10 dBm         10 dBm           20 dBm         10 dBm           20 dBm         10 dBm           50 dBm         10 dBm           10 dBm						- 2021				
20 dBm         20 dBm         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <th1< th="">         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</th1<></th1<>	0 dBm					MI			00000	
30 dBm       40 dBm       10 dBm       10 dBm       40 dBm	-10 dBm	$\sim$	~			2		~ ~	~	
30 dBm       40 dBm       10 dBm       10 dBm       40 dBm										
40 dBm       41 dBm       40 dBm       41 dBm       40 dBm	-20 dBm									
-50 dBm       -60 dBm       -60 dBm       -60 dBm       -60 dBm         -70 dBm       -70 dBm       -70 dBm       -70 dBm       -70 dBm         Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission         Spectrum         Ref Level 20.00 dBm       Offset 2.42 dB • RBW 100 kHz         Ant       30 dB       SWT 2.65 ms • VBW 300 kHz         M1[1]       -4.26 dBm         0 dBm       -4.20 dB       M2[1]       -4.26 dBm         0 dBm       -4.20 dBm       M2[1]       -2.2753613 GHz         10 dBm       M2[1]       -2.2753613 GHz         0 dBm       M2[1]       2.2753613 GHz         -0 dBm       M2[1]       2.2753613 GHz         -0 dBm       M2[1]       2.2753613 GHz         -0 dBm       M2[2]       Stor 20.0 Hz         -0 dBm       M2[2]       Stor 20.0 Hz         -0 dBm       M2[2]       Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Co	-30 dBm	5			-					
-50 dBm       -60 dBm       -60 dBm       -60 dBm       -60 dBm         -70 dBm       -70 dBm       -70 dBm       -70 dBm       -70 dBm         Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission         Spectrum         Ref Level 20.00 dBm       Offset 2.42 dB • RBW 100 kHz         Ant       30 dB       SWT 2.65 ms • VBW 300 kHz         M1[1]       -4.26 dBm         0 dBm       -4.20 dB       M2[1]       -4.26 dBm         0 dBm       -4.20 dBm       M2[1]       -2.2753613 GHz         10 dBm       M2[1]       -2.2753613 GHz         0 dBm       M2[1]       2.2753613 GHz         -0 dBm       M2[1]       2.2753613 GHz         -0 dBm       M2[1]       2.2753613 GHz         -0 dBm       M2[2]       Stor 20.0 Hz         -0 dBm       M2[2]       Stor 20.0 Hz         -0 dBm       M2[2]       Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Co	-40 dBm									-
-60 dBm       -70 dBm       -70 dBm       -70 dBm       -70 dBm         -70 dBm       -70 dBm       -70 dBm       -70 dBm       -70 dBm         CF 2.48 GHz       30001 pts       Spen 1.5 MHz         CF 2.48 GHz       30 dB       WT 2.5 ms       VBW 300 kHz         Att       30 dB       SWT 265 ms       VBW 300 kHz       Mode Auto Sweep         SGL Count 10/10       PF Max       M1[1]       -4.26 dBm       -4.26 dBm         10 dBm       -10 dBm       -10 dBm       -2.753613 GHz       -2.753613 GHz         -30 dBm       -10 dBm       -10 dBm       -10 dBm       -10 dBm       -10 dBm         -30 dBm       -10 dBm	no donn									
To dBm         Spen 1.5 MHz           CF 2.48 GHz         30001 pts         Spen 1.5 MHz           CF 2.48 GHz         Spen 1.5 MHz         Performance           Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission         Image: Spectrum	-50 dBm					-				<
CF 2.48 GHz         30001 pts         Span 1.5 MHz           Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission           Spectrum           Ref Level 20.00 dbm         Offset 2.42 db @ RBW 100 kHz           Att 30 db SWT 265 ms VBW 300 kHz           SG Count 10/10           10 dbm         M1[1]         -4.26 dBm           10 dbm         M2[1]         -50.84 dBm           -20 dBm         D1 -22.266 dBm         M12           -30 dBm         M1         M12           -10 dBm         M1         M12           -20 dBm         M1         M12           -30 dBm         M1         M1           -30 dBm         M2         M12           -30 dBm         M2         M14           -30 dBm         M2	-60 dBm									
CF 2.48 GHz         30001 pts         Span 1.5 MHz           Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission           Spectrum           Ref Level 20.00 dbm         Offset 2.42 db @ RBW 100 kHz           Att 30 db SWT 265 ms VBW 300 kHz           SG Count 10/10           10 dbm         M1[1]         -4.26 dBm           10 dbm         M2[1]         -50.84 dBm           -20 dBm         D1 -22.266 dBm         M12           -30 dBm         M1         M12           -10 dBm         M1         M12           -20 dBm         M1         M12           -30 dBm         M1         M1           -30 dBm         M2         M12           -30 dBm         M2         M14           -30 dBm         M2	an a									
Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission           Spectrum           Ref Level 20.00 dBm         Offset 2.42 dB @ RBW 100 kHz           Att 30 dB SWT 265 ms @ VBW 300 kHz         Mode Auto Sweep           SGL Count 10/10           IPK Max           M1[1]         -4.26 dBm           0 dBm         M2[1]         -4.26 dBm           20.753613 GHz           -10 dBm         M2         M2           -20 dBm         01 -22.266 dBm         M2         M2           -30.04 Mm         M2         30001 pts         Stop 26.5 GHz           -70 dBm         -70 dBm         M1         Function Result           M1         1         28.750:36:3 GHz           -70 dBm         Stop 26.5 GHz           M1         1         2.4806 GHz         -4.26 dBm         Function Result         M2         -2.4806 GHz         -4.26 dBm         -2.2.55. GHz         -2.4806 GH	-70 dBm									
Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission           Spectrum           Ref Level 20.00 dBm         Offset 2.42 dB @ RBW 100 kHz           Att 30 dB SWT 265 ms @ VBW 300 kHz         Mode Auto Sweep           SGL Count 10/10           IPK Max           M1[1]         -4.26 dBm           0 dBm         M2[1]         -4.26 dBm           20.753613 GHz           -10 dBm         M2         M2           -20 dBm         01 -22.266 dBm         M2         M2           -30.04 Mm         M2         30001 pts         Stop 26.5 GHz           -70 dBm         -70 dBm         M1         Function Result           M1         1         28.750:36:3 GHz           -70 dBm         Stop 26.5 GHz           M1         1         2.4806 GHz         -4.26 dBm         Function Result         M2         -2.4806 GHz         -4.26 dBm         -2.2.55. GHz         -2.4806 GH	CE 2 48 GH	7	10 10		30001	Ints	100		Snz	n 1.5 MHz
Spectrum         Image: Construction of the sector of		Υ					a se este	1111		0
0 dbm     M2[1]     -50.84 dbm       20 dbm     01 -22.266 dbm     22.753613 GHz       -20 dbm     01 -22.266 dbm	Ref Level Att SGL Count	20.00 dBm 30 dB	Offset 2	2.42 dB 💼 1	RBW 100 kH;	z		ission		₽
10 dBm     01 -22.266 dBm     01 -22.266 dBm       -30 dBm     01 -22.266 dBm     0       -30 dBm     01 -22.266 dBm     0       -30 dBm     0     0       -40 dBm     0     0       -50 dBm     0     0       -50 dBm     0     0       -50 dBm     0     0       -70 dBm     0     0       -70 dBm     0     0       -70 dBm     0     0       51 dr ker     30001 pts     Stop 26.5 GHz       40 ker     1     2.4806 GHz     -4.26 dBm       M1     1     2.4806 GHz     -50.84 dBm	Ref Level Att SGL Count 1Pk Max	20.00 dBm 30 dB	Offset 2	2.42 dB 💼 1	RBW 100 kH;	z Z Mode Au M1[	to Sweep	ssion		-4.26 dBm 480600 GHz
-20 dBm D1 -22.266 dBm A1 -30 dBm A1 -40 dBm A1 -50	Ref Level Att SGL Count	20.00 dBm 30 dB	Offset 2	2.42 dB 💼 1	RBW 100 kH;	z Z Mode Au M1[	to Sweep	ssion		-4.26 dBm 480600 GHz -50.84 dBm
-30 dBm -40 dBm -50	Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB	Offset 2	2.42 dB 💼 1	RBW 100 kH;	z Z Mode Au M1[	to Sweep	ssion		-4.26 dBm 480600 GHz -50.84 dBm
-50 dBm	Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kH;	z Z Mode Au M1[	to Sweep	ission		-4.26 dBm 480600 GHz -50.84 dBm
-50 dBm	Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kH;	z Z Mode Au M1[	to Sweep	ssion		-4.26 dBm 480600 GHz -50.84 dBm
And Control of the second se	Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kH;	z Z Mode Au M1[	to Sweep	ssion		-4.26 dBm 480600 GHz -50.84 dBm
Start 30.0 MHz         30001 pts         Stop 26.5 GHz           Aarker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.4806 GHz         -4.26 dBm              M2         1         22.753613 GHz         -50.84 dBm	Ref Level           Att           SGL Count           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm	20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kH;	z Z Mode Au M1[	to Sweep 1] 1]			-4.26 dBm 480600 GHz -50.84 dBm
Marker           Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.4806 GHz         -4.26 dBm              M2         1         22.753613 GHz         -50.84 dBm	Ref Level           Att           SGL Count           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kH;	z 2 Mode Au M1[ 	1] 1]			-4.26 dBm 480600 GHz -50.84 dBm
Marker           Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.4806 GHz         -4.26 dBm              M2         1         22.753613 GHz         -50.84 dBm	Ref Level           Att           SGL Count           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	20.00 dBm 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kH;	z 2 Mode Au M1[ 	1] 1]			-4.26 dBm 480600 GHz -50.84 dBm
M1         1         2.4806 GHz         ~4.26 dBm           M2         1         22.753613 GHz         ~50.84 dBm	Ref Level           Att           SGL Count           ID dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm	20.00 dBr 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kHz YBW 300 kHz	Z Mode Au M1[ 	1] 1]		22.1 M2	-4.26 dBm 180600 GHz -50.84 dBm 753613 GHz
M2 1 22.753613 GHz -50.84 dBm	Ref Level           Att           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -70 dBm	20.00 dBr 30 dE 10/10	Offset 2 SWT 2	2.42 dB 💼 1	RBW 100 kHz YBW 300 kHz	Z Mode Au M1[ 	1] 1]		22.1 M2	-4.26 dBm 180600 GHz -50.84 dBm 753613 GHz
M3 1 4,995772 GH2 -55.05 0Dm	Ref Level           Att           SGL Count           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           Start 30.0           Marker           Type	20.00 dBr 30 dE 10/10 D1 -22.266 MHz	Offset 2 SWT 2 dBm dBm	2.42 dB 265 ms 165 m	RBW 100 kH; YBW 300 kH;	Z Mode Au M1[ M2]	1] 1]	Breklalar	M2 Sto	-4.26 dBm #80600 GHz -50.84 dBm 753613 GHz
M4 1 7.611008 GHz -54.59 dBm	Ref Level           Att           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -70 dBm           Start 30.0           Marker           Type         Ret           Marker           Marker	20.00 dBr 30 dE 10/10 D1 -22.266 MHz MHz Trc 1	Offset 2 SWT 2 dBm- M4 	2,42 dB 265 ms 265 ms	RBW 100 kH; VBW 300 kH; VBW 3	2 Mode Au M1[ M2[ M2[ Lpts Function m	1] 1]	Breklalar	M2 Sto	-4.26 dBm #80600 GHz -50.84 dBm 753613 GHz
	Ref Level           Att           SGL Count           ID dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0           Marker           Type         Ref           M1           M2           M3           M4	20.00 dBr 30 dE 10/10 D1 -22.266	Offset 2 SWT 2 dBm dBm x-value 2.48( 22.7536) 4.9957 7.61100	2.42 dB  265 ms  265 m	RBW 100 kH; VBW 300 kH; VBW 3	z Mode Au M1[ 	1] 1]	Breklalar	M2 Sto	-4.26 dBm #80600 GHz -50.84 dBm 753613 GHz
	Ref Level           Att           SGL Count           110 dBm           0 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 30.0           Marker           Type         Ref           M1           M2           M3	20.00 dBr 30 dE 10/10 D1 -22.266 MHz MHz Trc 1 1 1 1	Offset 2 SWT 2 dBm dBm x-value 2.48( 22.7536) 4.9957 7.61100	2.42 dB  265 ms  265 m	RBW 100 kH; VBW 300 kH; VBW 3	z Mode Au M1[ 	1] 1]	Funct	M2 M2 Sto	-4.26 dBm #80600 GHz -50.84 dBm 753613 GHz