

Testing

23, Headington Drive, Cambridge. CB1 9HE Tel: 01954 251974 (test site) or: 01223 241140 (accounts) Fax: 01954 251907 web: www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> **Twenty Pence Road,** Cottenham, Cambridge U.K. **CB24 8PS**

> > on

Raspberry Pi (Trading) Ltd

Raspberry Pi

dated

9th December 2013

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	09/12/13		Initial release		

Based on report template: v090319

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
(dB)	Test No:	T5145	Test Report	Page:	2 of 37

Equipment Under T	Test (EUT):	Raspberry Pi	
Test Commissioned	d by:	Raspberry Pi (Trac Mount Pleasant Ho Mount Pleasant Cambridge Cambridgeshire CB3 ORN	_
Representative:		Gordon Hollingwor	rth
Test Started:		7th December 20	13
Test Completed:		8th December 20	13
Test Engineer:		Dave Smith	
Date of Report:		9th December 20	13
Written by:	Dave Smith	Checked by:	Derek Barlow
Signature:	D. A. Snitt	Signature:).Barbo
Date:	9th December 2013	Date:	9th December 2013

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

CFR 47 Class B	Code of Federal Regulations: Pt 15 Subpart B- Radio Frequency Devices - Unintentional Radiators	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	3 of 37

Emissions Test Results Summary

CFR 47 PASS

Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	FCC_B	PASS	
Radiated Emissions		ANSI C63.4:2003	FCC_B	PASS	

specs_fccv100412

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	4 of 37

Contents

1 E	EUT Details	. 5
	General	
1.2	Modifications to EUT and Peripherals	. 6
	EUT Operating Modes	
	Figure 1 Arrangement of EUT and Peripherals - HDMI Mode	
	Details of Interconnecting Cables - HDMI Mode	
	Figure 2 Arrangement of EUT and Peripherals - Composite Mode	
	Details of Interconnecting Cables - Composite Mode	
	Photograph 1 Conducted Emissions - Front, HDMI	
	Photograph 2 Conducted Emissions - Back, HDMI	
	Photograph 3 Conducted Emissions - Front , Composite Video	
	Photograph 4 Conducted Emissions - Back, Composite Video	
	Photograph 5 Radiated Emissions - HDMI	
	Photograph 6 Radiated Emissions - HDMI	
	Photograph 7 Radiated Emissions - Composite Video	12
	Photograph 8 Radiated Emissions - Composite Video	
	Photograph 9 Radiated Emissions - HDMI	13
	Photograph 10 Radiated Emissions - Composite Video	13
	est Equipment	
3	Test Methods	15
3.1	Conducted Emissions - ac power	15
3.2	Radiated Emissions	15
	Test Results	
	Conducted Emissions (Power) - HDMI Results	
	Conducted Emissions (Power) - Composite Video Results	
4.3	Radiated Emissions Results - HDMI mode; <1GHz - Vertical	18
	Radiated Emissions Results - HDMI mode; <1GHz - Horizontal	
	Radiated Emissions Results - Composite Video mode; <1GHz - Vertical	
	Radiated Emissions Results - Composite Video mode; <1GHz - Horizontal	
	Radiated Emissions Results - HDMI mode; >1GHz - Vertical	
	Radiated Emissions Results - HDMI mode; >1GHz - Horizontal	
	Radiated Emissions Results - Composite Video mode; >1GHz - Vertical	
	Radiated Emissions Results - Composite Video mode; >1GHz - Horizontal	
	PLOT 1 Conducted Emissions - HDMI - Live	
	PLOT 2 Conducted Emissions - HDMI - Neutral	27
	PLOT 3 Conducted Emissions - Composite - Live	28
	PLOT 4 Conducted Emissions - Composite - Neutral	29
	PLOT 5 Radiated Emissions - 25MHz to 275MHz - HDMI	30
	PLOT 6 Radiated Emissions - 250MHz to 1GHz - HDMI	31
	PLOT 7 Radiated Emissions - 1GHz to 3GHz - HDMI	32
	PLOT 8 Radiated Emissions - 3GHz to 5GHz - HDMI	33
	PLOT 9 Radiated Emissions - 25MHz to 275MHz - Composite Video	34
	PLOT 10 Radiated Emissions - 250MHz to 1GHz - Composite Video	35
	PLOT 11 Radiated Emissions - 1GHz to 3GHz - Composite Video	36
	PLOT 12 Radiated Emissions - 3GHz to 5GHz - Composite Video	37

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	5 of 37

1 EUT Details

1.1 General

The EUT was a Raspberry Pi single board computer. It was uncased and powered from a mini USB style plugtop power supply.

It had two USB ports, an EtherNet port, an HDMI port, a stereo audio output socket and an RCA composite video output socket. The EUT also has a socket for an SD card which contains the operating system. The system was tested in two modes - one with EtherNet and HDMI and both USB interfaces connected and one with the audio and composite video connected instead of the HDMI.

It is designed to be used primarily by hobbyists or in places of education. The circuitry operates with a maximum clock frequency of 700MHz.

Details of the EUT and associated peripherals used during the tests are listed below. Figure 1 shows the interconnections between the EUT and peripherals.

Item	Manufacturer	Model	Description	Serial No:	FCC Status
1	Raspberry Pi	Raspberry Pi	SBC with element14 4GB SD Card	PCB Rev 2.4	EUT
2 3 4 5 6 7 8	Stontronics Microsoft Microsoft D Link D-Link Hyundai HP	DSA-12CA-05 Keyboard 600 Model 1480 DES-1008D 071-AD Q321 Pavilion 22xi	5V 2A PSU Keyboard Express Mouse EtherNet Switch 7.5V 1A PSU Monitor with Composite Input Monitor with HDMI input	none 0065806454108 none B2A714C003282 none Q321SABT65E06220 3CM33709CB	DoC
9	Liteon	PA-1041-91	19V 2.1A PSU	L21335001302	#1

PSU so FCC ID or DoC not required

#1

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
(dB)	Test No:	T5145	Test Report	Page:	6 of 37

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
1	As supplied 26th November 2013, with Ethernet mag jack shell bonded to GND plane. PCB changed to Rev 2.4.	Radiated emissions

1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	HDMI mode, running program to read / write memory whilst scrolling H's on the screen.
2	Composite mode, running program as above.

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	7 of 37

Figure 1 Arrangement of EUT and Peripherals - HDMI Mode

1.4 Details of Interconnecting Cables - HDMI Mode

The following table lists details of the cables connected to the EUT.

From	То	Cable Type	Length	Notes
Mains adapter EUT USB EUT USB	EUT micro USB Keyboard Mouse	DC twin unscreened Integrated keyboard cable Integrated mouse cable	1.5m 1.5m 0.9m	
EUT Ethernet Ethernet Switch EUT HDMI HDMI Monitor	Ethernet Switch PSU HDMI Monitor Monitor PSU	Ethernet SSTP DC twin unscreened Lindy Gold DC Co-ax	1m 1.8m 1m 1m	
Monitor PSU	Mains	AC three core	1.8m	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	8 of 37

Figure 2 Arrangement of EUT and Peripherals - Composite Mode

1.5 Details of Interconnecting Cables - Composite Mode

The following table lists details of the cables connected to the EUT.

From	То	Cable Type	Length	Notes
		0.0.0 . , , , ,	_og	. 10100
Mains adapter	EUT micro USB	DC twin unscreened	1.5m	
EUT USB	Keyboard	Integrated keyboard cable	1.5m	
EUT USB	Mouse	Integrated mouse cable	0.9m	
EUT Ethernet	Ethernet Switch	Ethernet SSTP	1m	
Ethernet Switch	PSU	DC twin unscreened	1.8m	
EUT Composite	Monitor Composite	Video co-ax	1.4m	
EUT Audio L+R	Monitor Audio	Audio twin co-ax	1.4m	
Monitor	Mains	AC three core	1.8m	
	•		•	•

/ †\	Report No: Issue No:	R3296 1
dB	Test No:	T5145

Test Report

Page:

9 of 37

Photograph 1 Conducted Emissions - Front, HDMI

Photograph 2 Conducted Emissions - Back, HDMI

A	Report No: Issue No:	R3296 1
dB	Test No:	T5145

Test Report Page: 10 of 37

Photograph 3 Conducted Emissions - Front , Composite Video

Photograph 4 Conducted Emissions - Back, Composite Video

A	Report No: Issue No:	R3296 1
(dB)	Test No:	T5145

Test Report Page: 11 of 37

Photograph 5 Radiated Emissions - HDMI

Photograph 6 Radiated Emissions - HDMI

A	Report No: Issue No:	R3296 1
dB	Test No:	T5145

Test Report Page: 12 of 37

Photograph 7 Radiated Emissions - Composite Video

Photograph 8 Radiated Emissions - Composite Video

4	Report No: Issue No:	R3296 1
iB)	Test No:	T5145

Test Report Page: 13 of 37

Photograph 9 Radiated Emissions - HDMI

Photograph 10 Radiated Emissions - Composite Video

<u> </u>	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	14 of 37

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Serial Number	Cal Date	Cal Interva
A12	Chase Bilog CBL6111A	1012	30/01/2013	1 year
A24	Chase X-wing Bilog CBL6144 26MHz-3GHz	27590	28/10/2013	1 year
A8	EMCO 3115 DR Guide	6070	30/01/2013	1 year
L1	EMCO 3119 DN Guide	1358	12/03/2013	1 year
L2	R&S ESH3-Z5 LISN	843862/009	12/03/2013	1 year
PRE10	LUCIX 100M-20G pre-amp	10	20/08/2013	1 year
R10	Narda PMM 9010 Receiver (10Hz-30MHz)	595WX11003	30/01/2013	1 year
R4	R&S ESVS10	843744/002	17/12/2012	1 year 1 year
R9	Agilent E7405A Spectrum Analyser	MY45110758	19/11/2013	1 year 1 year
no	Agricit E7400A Opcotrum Analyson	WIT 43110730	10/11/2010	i yeui
			1	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	15 of 37

3 Test Methods

3.1 Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section.

Final Level = Receiver Reading + Combined Cable & Attenuator Correction Factor (dBuV) (dBuV) (dB)

Example: if, @ 191kHz, receiver reading was 35.8dBuV

Final Level = $45.8 + 10.0 = 55.8 \, dBuV$

3.2 Radiated Emissions

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m)

CF is the correction factor for the antenna and cable.

For example: if, at 114MHz, receiver reading was 17.9 dBuV, combined correction factor = 13.1 (dB/m).

Total field strength = 17.9 + 13.1 = 31.0 dBuV/m.

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	16 of 37

Conducted Emissions (Power) - HDMI Results 4.1

L1_13A AB002_CBL005_CBL039_12A --Factor Set 1:

Factor Set 2: Factor Set 3:

Test Equipment: R10 L1 CSET001 L2

Com Date			berry F 2/2013	Pi (Tr	ading) L	_td		Produc Test E	Πa	spberry ve Smith	Pi	
Ports	s <i>:</i>	ac pov	ver									
Test		ANSI	C63.4:	2003	using l	imits	of	FCC	В			
Port: Test						::	_ (
resi	•				using I	imits	DΤ					
lot	Ор	Mod	Line	Fact	Freq.	Det	Rec.	Corr'n	Total	Limit	Margin	Notes
	Mode		(L/N)	Set	MHz	qp/	Level	Factor	Level	FCC B	FCC B	
						av	dBuV	dB	dBuV	dBuV	dB	
1	1	1	L	1	0.160	qp	28.8	10.0	38.8	65.5	26.7	
1	1	1 1	L	1 1	0.160	av	22.3	10.0	32.3	55.5	23.2	
1	1	1 1	L	1	0.315	qp	30.4	10.0	40.4	59.8	19.5	
1	1	1	L	1	0.315	av	27.7	10.0	37.6	49.8	12.2	
1	1	1	L	1	0.355	qp	27.8	9.9	37.7	58.8	21.1	
1	1	1	L	1	0.355	av	25.8	9.9	35.7	48.8	13.1	
1	1	1	L	1	4.000	qp	28.0	10.0	38.1	56.0	17.9	
1	1	1	L	1	4.000	av	19.7	10.0	29.7	46.0	16.3	
1	1	1	L	1	4.225	qp	27.9	10.0	38.0	56.0	18.0	
1	1	1	L	1	4.225	av	21.6	10.0	31.6	46.0	14.4	
1	1	1	L	1	6.545	qp	32.8	10.1	42.9	60.0	17.1	
1	1 1	1 1	L	1	6.545	av	26.4	10.1	36.5 42.7	50.0 65.7	13.5	
2	' 1		N N	1 1	0.155 0.155	qp av	32.8 27.6	10.0	37.5	55.7 55.7	23.0 18.2	
2	1 1		N	1 1	0.353	qp	33.6	9.9	43.6	58.9	15.3	
2	1	1	N	1	0.353	av	33.6	9.9	43.6	48.9	5.3	
2	1	1	N	1	0.420	qp	27.0	10.0	36.9	57.4	20.5	
2	1	1	N	1	0.420	av	23.6	10.0	33.6	47.4	13.9	
2	1	1	N	1	4.000	qp	28.7	10.0	38.7	56.0	17.3	
2	1	1	N	1	4.000	av	22.6	10.0	32.6	46.0	13.4	
2	1	1	N	1	4.230	qp	30.8	10.0	40.9	56.0	15.1	
2	1	1	N	1	4.230	av	24.6	10.0	34.7	46.0	11.3	
2	1	1	N	1	6.765	qp	32.9	10.1	43.0	60.0	17.0	
2	1	1	N	1	6.765	av	27.1	10.1	37.2	50.0	12.8	
	Resul	ts					Minimu PASS/F		jin	5.3 PASS	dB	
No	tes						Comme	nts and	Observ	vations		
		1			ins are sh node. Me				ndwidtł	n QP and li	inear avera	ge detectors.

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	17 of 37

Conducted Emissions (Power) - Composite Video Results 4.2

L1_13A AB002_CBL005_CBL039_12A --Factor Set 1:

Factor Set 2: Factor Set 3:

Test Equipment: R10 L1 CSET001 L2

			<i>ns (Powe</i> berry F		ading) L	_td		Produc	ct: Ra	spberry	Pi				
Date			2/2013		· ·			Test Eng: Dave Smith							
Ports		ac pov													
Test	:	ANSI	C63.4:	2003	using I	imits	of	FCC	В						
Ports	s:														
Test	:				using l	imits	of								
lot	Ор	Mod	Line	Fact	Freq.	Det	Rec.	Corr'n	Total	Limit	Margin	Notes			
101	Mode		(L/N)	Set	MHz	qp/	Level	Factor	Level	FCC B	FCC B	110100			
			(=, ,			av	dBuV	dB	dBuV	dBuV	dB				
3	2	1	L	1	0.151	qp	28.5	10.0	38.4	66.0	27.5				
3	2	1	L	1	0.151	av	18.7	10.0	28.6	56.0	27.4				
3	2 2	1	L	1 1	0.175 0.175	qp	32.6 27.9	10.0	42.5 37.8	64.7 54.7	22.2 16.9				
3	2 2	1	L	1 1	0.175	av	30.4	10.0 9.9	40.4	54.7 59.7	19.3				
3	2	1 1	L L	1 1	0.320	qp av	28.7	9.9	38.7	59.7 49.7	11.0				
3	2		L		0.350	qp	25.7	9.9	35.6	59.0	23.3				
3	2	1 1	L	1 1	0.350	av	25.7	9.9	35.7	49.0	13.3				
3	2	1 1	L	1 1	4.335	qp	28.4	10.0	38.4	56.0	17.6				
3	2	1 1	L	1 1	4.335	av	23.1	10.0	33.2	46.0	12.8				
3	2	1	L	1	7.420	qp	35.1	10.1	45.2	60.0	14.8				
3	2	1	L	1	7.420	av	27.5	10.1	37.6	50.0	12.4				
4	2	1	N	1	0.161	qp	30.9	10.0	40.9	65.4	24.5				
4	2	1	N	1	0.161	av	30.9	10.0	40.9	55.4	14.5				
4	2	1	N	1	0.175	qp	31.7	10.0	41.7	64.7	23.1				
4	2	1	N	1	0.175	av	28.0	10.0	38.0	54.7	16.7				
4	2	1	N	1	0.350	qp	34.3	9.9	44.3	59.0	14.7				
4	2	1	N	1	0.350	av	33.8	9.9	43.7	49.0	5.2				
4	2	1	N	1	0.425	qp	26.8	10.0	36.8	57.3	20.6				
4	2	1	N	1	0.425	av	25.1	10.0	35.1	47.3	12.3				
4	2	1	N	1	4.300	qp	30.8	10.0	40.8	56.0	15.2				
4	2	1	N	1	4.300	av	25.4	10.0	35.4	46.0	10.6				
4	2	1	N	1	7.135	qp	36.2	10.1	46.3	60.0	13.7				
4	2	1	N	1	7.135	av	29.5	10.1	39.6	50.0	10.4				
	Resul	ts					Minimu PASS/F	_	jin	5.2 PASS	dB				
No	tes						Comme	nts and	Observ	ations					
					ins are sh deo mode				z band	width QP	and linear a	verage detecto			

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
1 /	Test No:	T5145	Test Report	Page:	18 of 37

Radiated Emissions Results - HDMI mode; <1GHz - Vertical 4.3

A12_FS_13B - - CBL015_11A Factor Set 1: 1 m cable

Factor Set 2: Factor Set 3:

Com	pany:	Rasn	berr	v Pi ((Trading)	l td		Prod	<i>uct:</i> R	aspberry	/ Pi		
Date		07/12			(11441119)			Test		erek Barlo			
Ports		07712	.,						<u> </u>	Orok Bark			
Test		ANSI	C63.	4:200	03 using	limits	s of	FCC	; B				
Ports _													
Test	:				using	limits	of						
Plot	Op	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
	Mode		m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC B	FCC B	
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
5	2	1	3	1	69.410	V	13.6	6.0		19.6	40.0	20.4	
5	2	1	3	1	72.451	V	16.9	6.4		23.3	40.0	16.7	
5	2 2	1 1	3	1	84.449 122.500	V	16.1	8.0		24.1	40.0	15.9	
5 5	2	1	3 3	1 1	140.076	V V	14.4 18.9	13.1 12.9		27.5 31.8	43.5 43.5	16.0 11.7	
5	2		3	1 1	148.518	V	26.0	12.6		38.6	43.5	4.9	
5	2		3	1 1	178.520	V	16.1	11.6		27.7	43.5	15.8	
5	2	1 1	3	1	183.025	V	10.4	11.5		21.9	43.5	21.6	
5	2	1	3	1	192.178	V	14.2	11.3		25.5	43.5	18.0	
6	2	1	3	1	275.507	V	18.3	15.4		33.7	46.0	12.3	
6	2	1	3	1	280.247	V	19.2	15.5		34.7	46.0	11.3	
6	2	1	3	1	378.392	V	12.2	18.8		31.0	46.0	15.0	
6	2	1	3	1	385.431	V	10.1	19.0		29.1	46.0	16.9	
6	2	1	3	1	413.138	V	15.0	20.1		35.1	46.0	10.9	
6	2	1	3	1	420.331	V	15.6	20.3		35.9	46.0	10.1	
6	2	1	3	1	445.527	V	11.0	20.4		31.4	46.0	14.6	
6	2	1	3	1	480.042	V	16.9	21.1		38.0	46.0	8.0	
	Resul	ts		l l	·	ı	Minimu	m Marc	ıin		4.9	d B	
	110001						PASS/F		,		PASS		
No	tes					Comr	ments a	nd Obse	ervation	าร			·
			Resul	ts of	scans shov	vn in p	olots 5 a	and 6.					
				ا برندا	HP monito	or.							
					readings u		20kHz	QP det	ector.				

/ ♣\	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	19 of 37

Radiated Emissions Results - HDMI mode; <1GHz - Horizontal

A12_FS_13B - - CBL015_11A Factor Set 1: 1 m cable

Factor Set 2: Factor Set 3:

Radia	ted Em	nissions	S										
Com	pany:	Rasp	berr	y Pi ((Trading)	Ltd		Proa	<i>uct:</i> F	Raspberry	y Pi		
Date		07/12						Test	Eng:	erek Barl	ow		
Port													
Test		ANSI	C63.	4:200	03 using	limits	s of	FCC	<u> B</u>				
Port: Test					usina	limita	o of						
7631	•				usiriy	limits	5 01						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
	Mode	State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC_B	FCC_B	
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
5	2	1	3	1	69.410	н	16.7	6.0		22.7	40.0	17.3	
5	2	1	3	1	72.451	Н	23.5	6.4		29.9	40.0	10.1	
5	2	1	3	1	84.449	Н	18.1	8.0		26.1	40.0	13.9	
5	2	1	3	1	122.500	Н	11.1	13.1		24.2	43.5	19.3	
5	2	1	3	1	140.076	H	22.0	12.9		34.9	43.5	8.6	
5	2	1 1	3	1	148.518	H	23.0	12.6		35.6	43.5	7.9	
5	2 2	1 1	3	1	178.520	H	17.2	11.6		28.8	43.5	14.7	
5 5	2 2	1 1	3 3	1 1	183.025 192.178	H	17.1 14.4	11.5		28.6 25.7	43.5 43.5	14.9 17.8	
6	2		3	1	275.507	П Н	17.6	15.4		33.0	43.5 46.0	13.0	
6	2		3	1	280.247	'' H	21.4	15.5		36.9	46.0	9.1	
6	2	1 1	3	1	378.392	 H	8.9	18.8		27.7	46.0	18.3	
6	2	1	3	1	385.431	Н	13.0	19.0		32.0	46.0	14.0	
6	2	1	3	1	413.138	Н	16.0	20.1		36.1	46.0	9.9	
6	2	1	3	1	420.331	Н	14.0	20.3		34.3	46.0	11.7	
6	2	1	3	1	445.527	Н	20.2	20.4		40.6	46.0	5.4	
6	2	1	3	1	480.042	Н	17.1	21.1		38.2	46.0	7.8	
								m Març	jin		5.4 PASS	dB	
No	tes					Comr	nents a	nd Obse	ervation	าร			
			Resul	ts of	scans shov	vn in p	olots 5 a	and 6.					
				المناجة	LID manita								
		I			HP monito readings u		I 20kH>	OP dot	ector				
			iviaxi	ıııscu	reaulilys U	ısırıy	1 ZUKI IZ	Qi uet	CCLUI.				
		1											

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	20 of 37

Radiated Emissions Results - Composite Video mode; <1GHz - Vertical

A12_FS_13B - - CBL015_11A Factor Set 1: 1 m cable

Factor Set 2: Factor Set 3:

		nissions Rasp		v Pi ((Trading)	Ltd		Prod	<i>uct:</i> R	Raspberry	 ∕ Pi		
Date		08/12			, , , , , , , , , , , , , , , , , , , ,			Test		ave Smith			
Ports													
Test		ANSI	C63.	4:200	03 using	limits	of	FCC	: B				
Ports _													
Test	:				using	limits	of						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
100		State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC B	FCC B	Notes
	, vious	Otato	•••		1411.12		dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
9	2	1 1	3	1	69.410	V	16.7	6.0		22.7	40.0	17.3	
9	2	1	3	1	80.310	V	26.3	7.5		33.8	40.0	6.2	
9	2	1	3	1	84.664	V	19.5	8.0		27.5	40.0	12.5	
9	2	1	3	1	174.000	V	14.5	11.6		26.1	43.5	17.4	
9	2	1	3	1	183.000	V	10.5	11.5		22.0	43.5	21.5	
9	2	1	3	1	199.364	V	8.5	11.4		19.9	43.5	23.6	
10	2	1	3	1	268.000	V	8.4	15.6		24.0	46.0	22.0	
10	2	1	3	1	358.585	V	15.0	17.9		32.9	46.0	13.1	
10	2	1	3	1	362.886	V	18.3	18.1		36.4	46.0	9.6	
10	2	1	3	1	480.028	V	15.9	21.1		37.0	46.0	9.0	
10	2	1	3	1	555.100	V	16.1	25.0		41.1	46.0	4.9	
10	2	1	3	1	565.197	V	18.6	24.4		43.0	46.0	3.0	
10	2	1	3	1	607.500	V	13.5	24.0		37.5	46.0	8.5	
10	2	1	3	1	660.454	V	11.0	25.0		36.0	46.0	10.0	
10	2	1 1	3	1 1	694.326	V	11.8	26.3		38.1	46.0	7.9	
10 10	2 2	1 1	3 3	1 1	729.012 972.010	V	12.0 6.3	27.0		39.0 37.4	46.0 54.0	7.0 16.6	
10		'	5	'	372.010	V	0.5	31.1		37.4	34.0	10.0	
Results							Minimu		jin		3.0	dB	
							PASS/F				PASS		
No	tes					Comr	ments a	nd Obse	ervation	าร			
			Resul	ts of	scans shov	vn in p	olots 9 a	and 10.					
			Comp	osite	video mod	e.							
					readings u	·	100111	05.1.					

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	21 of 37

Radiated Emissions Results - Composite Video mode; <1GHz - Horizontal

A12_FS_13B - - CBL015_11A Factor Set 1: 1 m cable

Factor Set 2: Factor Set 3:

ted En	nissions	S										
npany:	Rasp	berr	y Pi ((Trading)	Ltd		Prod	<i>uct:</i> F	Raspberry	y Pi		
	08/12	2/201	3				Test	Eng:	ave Smith	1		
	ANSI	C63.	.4:200	03 using	limits	s of	FCC	В				
s:												
<u>:</u>				using	limits	s of						
Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1	69.410 80.310 84.664 174.000 183.000 199.364 268.000 358.585 362.886 480.028 555.100 565.197 607.500 660.454 694.326 729.012 972.010		19.1 23.8 12.9 16.6 17.3 11.3 14.2 24.0 25.6 18.2 17.3 18.5 20.2 9.2 15.2 16.1 12.2	6.0 7.5 8.0 11.6 11.5 11.4 15.6 17.9 18.1 21.1 25.0 24.4 24.0 25.0 26.3 27.0 31.1		25.1 31.3 20.9 28.2 28.8 22.7 29.8 41.9 43.7 39.3 42.3 42.9 44.2 34.2 41.5 43.1 43.3	40.0 40.0 40.0 43.5 43.5 43.5 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	14.9 8.7 19.1 15.3 14.7 20.8 16.2 4.1 2.3 6.7 3.7 3.1 1.8 11.8 4.5 2.9 10.7	#1
Resul	ts							jin		1.8 PASS	dB	
tes						-		ervation	าร			Ţ
' 1	Results of scans shown in plots 9 and 10. Composite video mode. Maximised readings using 120kHz QP detector. Generated by the monitor. Level unchanged when EUT and other peripherals turned off.											
	opany: S: S	Rasp O8/12 SE O8/12 SE O8/12 SE SE SE SE OP Mod Mode State OP OP OP OP OP OP OP O	### O8/12/201 ### STEELES Op	Results of Composite Results of Composite Maximised Results Result	Raspberry Pi (Trading) O8/12/2013 Size ANSI C63.4:2003 Using Size Using State m Set Freq. MHz	Raspberry Pi (Trading) Ltd O8/12/2013 Size	Results Resu	Raspberry Pi (Trading) Ltd Prod	Pany: Raspberry Pi (Trading) Ltd Product: Fact Fact Fact Fact MHz Pol Level Factor GB/m GB/m	Raspberry Pi (Trading) Ltd Product: Raspberry Pi (Dave Smitt)	Raspberry Pi Raspberry Pi Test Eng: Dave Smith	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
/ \	Test No:	T5145	Test Report	Page:	22 of 37

Radiated Emissions Results - HDMI mode; >1GHz - Vertical 4.7

A8_3m_12B CBL050_11A PRE10_12A -Factor Set 1:

Factor Set 2: Factor Set 3: Test Equipment: R9 A8 PRE10

	Radiated Emissions Company: Raspberry Pi (Trading) Ltd Product: Raspberry Pi												
Com	ipany:	Rasp	berr	y Pi	(Trading)	Ltd		Prod	^{uct:} F	Raspberr	y Pi		
Date		04/12						Test	Eng: D	ave Smitl	n		
Port:													
Test		ANSI	C63	.4:20	03 using	limits	of	FCC	: B				
Ports						1::4	_ .						
Test					using	limits	5 ОТ						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
1100		State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC B	FCC B	140103
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
7	1 1	1	3	1	1100.950	V	65.5	-10.9		54.6	74.0	19.4	Pk
7	1		3	1	1100.950	V	44.9	-10.9		34.0	54.0	20.0	avg
7	1	'	3	1	1169.800	v	61.5	-10.4		51.1	74.0	22.9	Pk
7	1	1	3	1	1169.800	V	41.0	-10.4		30.5	54.0	23.5	avg
7	1	1	3	1	1192.550	V	65.9	-10.2		55.7	74.0	18.3	Pk
7	1	1	3	1	1192.550	V	44.2	-10.2		34.0	54.0	20.0	avg
7	1	1	3	1	1238.750	V	64.8	-9.9		54.9	74.0	19.1	Pk
7	1	1	3	1	1238.750	V	43.3	-9.9		33.4	54.0	20.6	avg
7	1	1	3	1	1332.825	V	60.8	-9.5		51.3	74.0	22.7	Pk
7	1	1	3	1	1332.825	V	35.4	-9.5		25.9	54.0	28.1	avg
7	1	1 1	3	1	1445.150	V	55.8	-9.5		46.3	74.0	27.7	Pk
7 7	1 1	1 1	3	1 1	1445.150 1613.450	V V	35.4 55.2	-9.5 -10.0		25.8 45.3	54.0 74.0	28.2 28.7	avg Pk
7	1	1 1	3	1	1613.450	V	35.2	-10.0		45.3 25.0	74.0 54.0	29.0	avg
7	'	'	3	'	1931.000	v	59.2	-8.9		50.3	74.0	23.7	Pk
7	1	1	3	1	1931.000	v	51.8	-8.9		42.9	54.0	11.1	avg
7	1	1	3	1	1964.000	V	59.2	-8.9		50.3	74.0	23.7	Pk
7	1	1	3	1	1964.000	V	51.8	-8.9		42.9	54.0	11.1	avg
7	1	1	3	1	2079.275	V	59.5	-8.6		50.9	74.0	23.1	Pk
7	1	1	3	1	2079.275	V	48.1	-8.6		39.5	54.0	14.5	avg
7	1	1	3	1	2227.660	V	60.9	-8.3		52.5	74.0	21.5	Pk
7	1	1 1	3	1	2227.660	V	49.4	-8.3		41.1	54.0	12.9	avg
8	1	1 1	3	1	3712.650	V	53.4	-4.0		49.4	74.0	24.6	Pk
8	1	'	3	'	3712.650	V	41.6	-4.0		37.6	54.0	16.4	avg
	Resul	lts					Minimu	m Marc	iin		11.1	dB	
	Hood						PASS/F	_	,		PASS	u.b	
No	tes					Comr	ments aı	nd Obse	ervation	าร			
			Resul	ts of	scans show	n in p	olots 7 a	ınd 8.					
			Meas	surem	ents made	with	1MHz R	BW pea	ak dete	ctor and I	inear averaç	ge detector.	
1													

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
/	Test No:	T5145	Test Report	Page:	23 of 37

Radiated Emissions Results - HDMI mode; >1GHz - Horizontal 4.8

A8_3m_12B CBL050_11A PRE10_12A -Factor Set 1:

Factor Set 2: Factor Set 3: Test Equipment: R9 A8 PRE10

	Radiated Emissions Company: Raspberry Pi (Trading) Ltd Product: Raspberry Pi												
Com	pany:	Rasp	berr	y Pi	(Trading)	Ltd		Prod	<i>uct:</i> F	Raspberr	y Pi		
Date		04/12						Test	Eng:	ave Smitl	h		
Port	s:												
Test		ANSI	C63	.4:20	03 using	limits	of	FCC	: B				
Ports						12 24							
Test	;				using	limits	3 01						
Plot	Ор	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
1100		State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC B	FCC B	Notes
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
_	1	1		1	1100 050	١	60.0	10.0		F2.0	74.0	22.0	Pk
7 7	1 1	1 1	3	1 1	1100.950 1100.950	H H	62.9 39.8	-10.9 -10.9		52.0 28.9	74.0 54.0	22.0 25.1	avg
7	1		3	1	1169.800	П Н	66.2	-10.9		55.8	74.0	18.2	Pk
7	1		3	1	1169.800	П Н	43.4	-10.4		33.0	54.0	21.0	avg
7	'		3	'	1192.550	'' H	65.9	-10.4		55.7	74.0	18.3	Pk
7	'	'	3	'	1192.550	'' H	44.2	-10.2		34.0	54.0	20.0	avg
7	'	'	3	'	1238.750	'' H	64.8	-9.9		54.9	74.0	19.1	Pk
7	'	'	3	'	1238.750	 н	43.2	-9.9		33.3	54.0	20.7	avg
7	'	'	3	'	1332.825	'' H	59.4	-9.5		49.9	74.0	24.1	Pk
7	'	'	3	'	1332.825	'' H	37.7	-9.5		28.2	54.0	25.8	avg
7	'	'	3	'	1445.150	 н	60.5	-9.5		51.0	74.0	23.0	Pk
7	'	'	3	'	1445.150	 н	39.4	-9.5		29.9	54.0	24.1	avg
7	1	1 1	3	1	1613.450	 H	58.9	-10.0		48.9	74.0	25.1	Pk
7	1	1 1	3	1	1613.450	H	37.4	-10.0		27.4	54.0	26.6	avg
7	1	1	3	1	1931.000	Н	58.3	-8.9		49.4	74.0	24.6	Pk
7	1	1 1	3	1	1931.000	Н	43.3	-8.9		34.4	54.0	19.6	avg
7	1	1	3	1	1964.000	Н	60.2	-8.9		51.4	74.0	22.6	Pk
7	1	1	3	1	1964.000	Н	39.6	-8.9		30.7	54.0	23.3	avg
7	1	1	3	1	2079.275	Н	57.4	-8.6		48.8	74.0	25.2	Pk
7	1	1	3	1	2079.275	Н	44.5	-8.6		35.9	54.0	18.1	avg
7	1	1	3	1	2227.660	Н	59.7	-8.3		51.3	74.0	22.7	Pk
7	1	1	3	1	2227.660	н	47.8	-8.3		39.5	54.0	14.5	avg
8	1	1	3	1	3712.650	Н	51.2	-4.0		47.2	74.0	26.8	Pk
8	1	1	3	1	3712.650	Н	39.4	-4.0		35.4	54.0	18.6	avg
	Resul	ts					Minimu	m Marc	ıin		14.5	dB	
	i iooui						PASS/F	_	, .		PASS	ub	
No	tes					Comr	ments aı	nd Obse	ervation	าร			
					scans show								
			Meas	surem	ents made	with	1MHz R	BW pea	ak dete	ctor and I	inear avera	ge detector.	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
/	Test No:	T5145	Test Report	Page:	24 of 37

Radiated Emissions Results - Composite Video mode; >1GHz - Vertical 4.9

A8_3m_12B CBL050_11A PRE10_12A -Factor Set 1:

Factor Set 2: Factor Set 3: Test Equipment: R9 A8 PRE10

Date) <i>:</i>	Rasp 04/12			(Trading)	Ltd		Prod Test	Г	Raspberry Pave Smith			
Ports Test		ANSI	C63	.4:200	03 using	limits	of	FCC	В				
Ports Test					using	limits	of						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
111 111 111 111 111 111 111 111 111	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1	1309.128 1309.128 1426.550 1426.550 1453.750 1458.000 1458.000 1600.113 1600.113 1664.700 1981.650 1981.650	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	60.4 42.7 58.0 36.8 57.4 36.2 54.0 48.2 61.6 42.2 61.0 38.6 55.1 33.2	-9.6 -9.6 -9.5 -9.5 -9.5 -9.6 -10.0 -10.0 -9.7 -9.7 -8.8 -8.8		50.9 33.2 48.5 27.3 47.9 26.7 44.4 38.6 51.6 32.1 51.3 28.9 46.3 24.3	74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	23.1 20.8 25.5 26.7 26.1 27.3 29.6 15.4 22.4 21.9 22.7 25.1 27.7 29.7	Pk avg Pk avg Pk avg Pk avg Pk avg Pk avg
	Resul	ts					Minimu PASS/F	-	jin		15.4 PASS	dB	
No	tes					Comr	ments aı	nd Obse	ervation	าร			
					scans show ents made	-				ctor and I	inear averag	e detector.	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
/	Test No:	T5145	Test Report	Page:	25 of 37

4.10 Radiated Emissions Results - Composite Video mode; >1GHz - Horizontal

Factor Set 1: A8_3m_12B CBL050_11A PRE10_12A -

Factor Set 2: -- -Factor Set 3: -- -Test Equipment: R9 A8 PRE10

		nissions											
Com	pany:	Rasp	berr	y Pi	(Trading)	Ltd		Prod	^{uct:} F	Raspberry	y Pi		
Date		04/12	2/201	3				Test	Eng:	ave Smitl	า		
Port: Test		A NICI	000	4.00	20	11	r	F00					
Ports		ANSI	C63	.4:200	03 using	limits	S OT	FCC	, В				
Test					using	limits	s of						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level	Corr'n Factor	Corr'n Factor	Total Level	Limit FCC B	Margin FCC B	Notes
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
11	2	1	3	1	1309.128	Н	62.0	-9.6		52.4	74.0	21.6	Pk
11	2	1	3	1	1309.128	Н	45.0	-9.6		35.4	54.0	18.6	avg
11	2	1	3	1	1426.550	Н	64.5	-9.5		55.0	74.0	19.0	Pk
11 11	2 2	1 1	3 3	1 1	1426.550	H H	41.9 64.1	-9.5 -9.5		32.4 54.5	54.0 74.0	21.6 19.5	avg Pk
11	2	1 1	3	1	1453.750 1453.750	Н	40.4	-9.5		30.9	74.0 54.0	23.1	avg
11	2	1	3	1	1458.000	H	57.9	-9.6		48.3	74.0	25.7	Pk
11	2	1	3	1	1458.000	Н	55.0	-9.6		45.5	54.0	8.5	avg
11	2	1	3	1	1600.113	Н	60.1	-10.0		50.0	74.0	24.0	Pk
11	2	1	3	1	1600.113	Н	41.1	-10.0		31.1	54.0	22.9	avg
11 11	2 2	1 1	3 3	1 1	1664.700 1664.700	H H	66.7 43.7	-9.7 -9.7		56.9 34.0	74.0 54.0	17.1 20.0	Pk avg
11	2		3	1	1981.650	Н	60.8	-8.8		54.0 52.0	74.0	22.0	Pk
11	2	1	3	1	1981.650	Н	37.4	-8.8		28.5	54.0	25.5	avg
	Resul	lts		I			Minimu PASS/F		jin		8.5 PASS	dB	
No	tes					Com	ments a	nd Obse	ervation	าร			
		1			scans show ents made					ctor and l	inear averag	je detector.	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
I /\	Test No:	T5145	Test Report	Page:	26 of 37

PLOT 1 Conducted Emissions - HDMI - Live

Company:	Raspberry P	i	Product:	Raspberry Pi I	Rev 2.4	
Date:	08 Dec 13		Test Enginee	er: Dave Smith		
Test:	Ansi C63.4		Limit:	FCC (B) QP &	& Avg	
Notes:						
115V operation	n. Running test pr	og with H's plus re	ad/write access.			
HDMI with HI	P monitor					
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	1	
Detector:	QP & Avg			Mod. State:	1	
LISN:	EMCO	Filename:	C3C08617.png			

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	27 of 37

PLOT 2 Conducted Emissions - HDMI - Neutral

Company:	Raspberry F	Pi	Product:	Raspberry Pi	Rev 2.4	
Date:	08 Dec 13		Test Enginee	er: Dave Smith		
Test:	Ansi C63.4		Limit:	FCC (B) QP	& Avg	
Notes:						
115V operation	n. Running test pr	rog with H's plus re	ad/write access.			
HDMI with HI	P monitor					
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode:	HDMI	
Detector:	QP & Avg			Mod. State:	1	
LISN:	EMCO	Filename:	C3C0862E.png		1	

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	28 of 37

PLOT 3 Conducted Emissions - Composite - Live

Company:	Raspberry F	Pi	Product:	Raspberry Pi	Rev 2.4	
Date:	08 Dec 13		Test Engineer	r: Dave Smith		
Test:	Ansi C63.4		Limit:	FCC (B) QP &	& Avg	
Notes:						
115V operation	n. Running test pr	rog with H's plus re	ad/write access.			
Composite Vic	leo					
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	2	
Detector:	QP & Avg			Mod. State:	1	
LISN:	EMCO	Filename:	C3C0868D.png			

	Report No: Issue No:	R3296 1	FCC ID: 2ABCB-RPI21		
dB	Test No:	T5145	Test Report	Page:	29 of 37

PLOT 4 Conducted Emissions - Composite - Neutral

Company:	Raspberry F	Pi	Product:	Raspberry Pi	Rev 2.4	
Date:	08 Dec 13		Test Engineer	r: Dave Smith		
Test:	Ansi C63.4		Limit:	FCC (B) QP &	& Avg	
Notes:						
115V operation	n. Running test pr	rog with H's plus re	ad/write access.			
Composite Vic	leo					
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode:	2	
Detector:	QP & Avg			Mod. State:	1	
LISN:	EMCO	Filename:	C3C086AC.png			

PLOT 5 Radiated Emissions - 25MHz to 275MHz - HDMI

Company:	Raspberry	Pi	Product:	Raspberry Pi	
Date:	7th Deceml	per 2013	Test Eng:	Derek Barlow	
Method:	CISPR16		Method:		
Limit1:(RED)	FCC(B)@3	m	Limit2:		
Limit3:			Limit4:		
Running HDMI HP monitor Black trace = v		,	= horizontal polaris	ation	
Facility:	Anech_1	Height	1m,1.5m,2m	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	1
Angle	0-360	File:	H3B0838D	Analyser:	R9

PLOT 6 Radiated Emissions - 250MHz to 1GHz - HDMI

Company:	Raspberry Pi		Product:	Raspberry Pi	
Date:	7th December	2013	Test Eng:	Derek Barlow	
Method:	CISPR16		Method:		
Limit1:(RED)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Running HDMI v HP monitor Black trace = ve	-	l pattern n, Blue trace = hori:	zontal polarisatio	on	
Facility:	Anech_1	Height 1r	n,1.5m,2m	Mode:	1
Distance	3m	Polarisation V	+H	Modification State:	1
Angle	0-360	File: H	3B08457	Analyser:	R9

PLOT 7 Radiated Emissions - 1GHz to 3GHz - HDMI

Date: 08/12/2013 Test Eng: Dave Smith Method: ANSI C63.4 Method: Limit1:(RED) FCC(B)@3m Limit2: Limit3: Limit4: Black trace = Vertical Polarisation, Blue trace = Horizontal polarisation Running HDMI video, scrolling H pattern HP Monitor Facility: Anech_2 Height 1m,1.5m,2m Mode: 1 Distance 3m Polarisation V+H Modification State: 1 Angle 0-360 File: H38086F1 Analyser: R9	Company:	Raspberry Pi		Product:	Raspberry Pi F	Rev 2.4
Limit1:(RED) FCC(B)@3m Limit2: Limit3: Limit4: Black trace = Vertical Polarisation, Blue trace = Horizontal polarisation Running HDMI video, scrolling H pattern HP Monitor Facility: Anech_2 Height 1m,1.5m,2m Mode: 1 Distance 3m Polarisation V+H Modification State: 1	Date:	08/12/2013		Test Eng:	Dave Smith	
Limit3: Black trace = Vertical Polarisation, Blue trace = Horizontal polarisation Running HDMI video, scrolling H pattern HP Monitor Facility: Anech_2 Height 1m,1.5m,2m Mode: 1 Distance 3m Polarisation V+H Modification State: 1	Method:	ANSI C63.4		Method:		
Black trace = Vertical Polarisation, Blue trace = Horizontal polarisation Running HDMI video, scrolling H pattern HP Monitor Facility: Anech_2 Height 1m,1.5m,2m Mode: 1 Distance 3m Polarisation V+H Modification State: 1	Limit1:(RED)	FCC(B)@3m		Limit2:		
Running HDMI video, scrolling H pattern HP Monitor Facility: Anech_2 Height 1m,1.5m,2m Mode: 1 Distance 3m Polarisation V+H Modification State: 1	Limit3:			Limit4:		
Distance 3m Polarisation V+H Modification State: 1	Running HDMI v			Horizontal polarisa	ation	
	Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	1
Angle 0-360 File: H3B086F1 Analyser: R9	Distance	3m	Polarisation	V+H	Modification State:	1
	Angle	0-360	File:	H3B086F1	Analyser:	R9

PLOT 8 Radiated Emissions - 3GHz to 5GHz - HDMI

Company:	Raspberry Pi		Product:	Raspberry Pi F	Rev 2.4
Date:	08/12/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
HP Monitor	video, scrolling	i patterii			
Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	1
Facility: Distance	Anech_2 3m	Height Polarisation	1m,1.5m,2m V+H	Mode: Modification State:	1 1

PLOT 9 Radiated Emissions - 25MHz to 275MHz - Composite Video

Company:	Raspberry Pi		Product:	Raspberry Pi	
Date:	7th December	2013	Test Eng:	Derek Barlow	
Method:	CISPR16		Method:		
Limit1:(RED)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Running comp	osite video, scrolli	ng H pattern			
Black trace = v	ertical polarisation	n, Blue trace =	horizontal polaris	ation	
Facility:	Anech_1	Height	1m,1.5m,2m	Mode:	2
Facility: Distance	Anech_1 3m	Height Polarisation	1m,1.5m,2m V+H	Mode: Modification State:	2

PLOT 10 Radiated Emissions - 250MHz to 1GHz - Composite Video

Date: 7th December 2013 Test Eng: Derek Barlow Method: CISPR16 Method: Limit1:(RED) FCC(B)@3m Limit2: Limit3: Limit4: Running composite video, scrolling H pattern Black trace = vertical polarisation, Blue trace = horizontal polarisation Facility: Anech_1 Height multi Mode: 2 Distance 3m Polarisation V+H Modification State: 1 Angle 0-360 File: H3B084D8 Analyser: R9	Company:	Raspberry Pi		Product:	Raspberry Pi	
Limit1:(RED) FCC(B)@3m Limit2: Limit3: Limit4: Running composite video, scrolling H pattern Black trace = vertical polarisation, Blue trace = horizontal polarisation Facility: Anech_1 Height multi Mode: 2 Distance 3m Polarisation V+H Modification State: 1	Date:	7th December	2013	Test Eng:	Derek Barlow	
Limit3: Limit4: Running composite video, scrolling H pattern Black trace = vertical polarisation, Blue trace = horizontal polarisation Facility: Anech_1 Height multi Mode: 2 Distance 3m Polarisation V+H Modification State: 1	Method:	CISPR16		Method:		
Running composite video, scrolling H pattern Black trace = vertical polarisation, Blue trace = horizontal polarisation Facility: Anech_1 Height multi Mode: 2 Distance 3m Polarisation V+H Modification State: 1	Limit1:(RED)	FCC(B)@3m		Limit2:		
Black trace = vertical polarisation, Blue trace = horizontal polarisation Facility: Anech_1 Height multi Mode: 2 Distance 3m Polarisation V+H Modification State: 1	Limit3:			Limit4:		
Facility: Anech_1 Height multi Mode: 2 Distance 3m Polarisation V+H Modification State: 1	Running compos	site video, scroll	ing H pattern			
Distance 3m Polarisation V+H Modification State: 1		,				
	Facility:	Anech_1	Height m	nulti	Mode:	2
Angle 0-360 File: H3B084D8 Analyser: R9	Distance	3m	Polarisation V	′+H	Modification State:	1
	Angle	0-360	File: H	13B084D8	Analyser:	R9

PLOT 11 Radiated Emissions - 1GHz to 3GHz - Composite Video

Company:	Raspberry P	i	Product:	Raspberry Pi F	Rev 2.4
Date:	08/12/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC(B)@3m	n	Limit2:		
Limit3:			Limit4:		
Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	2
Facility: Distance	Anech_2 3m	Height Polarisation	1m,1.5m,2m V+H	Mode: Modification State:	2 1

PLOT 12 Radiated Emissions - 3GHz to 5GHz - Composite Video

Company:	Raspberry P	Pi	Product:	Raspberry Pi I	Rev 2.4
Date:	08/12/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC(B)@3n	n	Limit2:		
Limit3:			Limit4:		
Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	2
	3m	Polarisation	V+H	Modification State:	1
Distance	3111		• • • •		•