

Report No.: SZEM150200073403

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 34

FCC REPORT

Application No: SZEM1512007842CR

Applicant: Creative Labs Inc

Manufacturer: Creative Technology Ltd.

Product Name: CREATIVE SOUND BLASTER ROAR 2

Model No.(EUT): MF8190

Trade Mark: Creative

FCC ID: IBAMF8190

Standards: 47 CFR Part 15, Subpart C (2015)

(Only for Conducted Emission, Maximum Peak Output Power, Radiated

Transmit Spurious Emissions)

Date of Receipt: 2015-12-23

Date of Test: 2016-01-06 to 2016-01-07

Date of Issue: 2016-01-22

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*}In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Report No.: SZEM150200073403

Page: 2 of 34

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2016-01-22		Original		

Authorized for issue by:		
Tested By	Benson Wang	22016-01-07
	(Benson Wang) /Project Engineer	Date
Prepared By	Joyce Shi	2016-01-22
	(Joyce Shi) /Clerk	Date
Checked By	Eric Fu	2016-01-22
	(Eric Fu) /Reviewer	Date

Report No.: SZEM150200073403

Page: 3 of 34

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

Remark:

Model No.: MF8190

This test report (Ref. No.: SZEM150200073403) is only valid with the original test report (Ref. No.: SZEM150200073401).

Review this report and original report, this report just add alternate power adapter.

Considering to the difference, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report Conducted Emission, Maximum Peak Output Power, Radiated Transmit Spurious Emissions were fully retested on Model MF8190 and shown the data in this report, other tests please refer to original report SZEM150200073401.

Report No.: SZEM150200073403

Page: 4 of 34

4 Contents

			Page
1	COVER PAGE		1
2	VERSION		2
3		/	
4			
5	GENERAL INFO	RMATION	5
5		MATION	
		CRIPTION OF EUT	
_		MENT	
		OF SUPPORT UNITS	
		N	
		OM STANDARDS	
		ES FROM STANDARD CONDITIONS.	
		AATION REQUESTED BY THE CUSTOMER	
5		ST	
6	TEST RESULTS	AND MEASUREMENT DATA	12
ŧ	5.1 ANTENNA REC	UIREMENT	12
		MISSIONS	
6	6.3 CONDUCTED P	EAK OUTPUT POWER	17
		EMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
6		RIOUS EMISSION	
		d Emission below 1GHz	
		tter Emission above 1GHz	
7	PHOTOGRAPHS	6 - EUT TEST SETUP	33
7	7.1 CONDUCTED E	MISSION	33
7		ISSION	
7	7.3 RADIATED SPU	rious Emission	34
R	PHOTOGRAPHS	S - FUT CONSTRUCTIONAL DETAILS	34

Report No.: SZEM150200073403

Page: 5 of 34

5 General Information

5.1 Client Information

Applicant:	Creative Labs Inc		
Address of Applicant:	1901 McCarthy Blvd, Milpitas, California, United States		
Manufacturer:	Creative Technology Ltd.		
Address of Manufacturer:	31, International Business Park, #03-01 Creative Resource, Singapore 609921		

5.2 General Description of EUT

Product Name:	CREATIVE SOUND BLASTER ROAR 2					
Model No.(EUT):	MF8190					
Trade Mark:	Creative					
Operation Frequency:	2402MHz~2480MHz					
Bluetooth Version:	V3.0(with EDR)					
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)					
Modulation Type:	GFSK, π/4DQPSK, 8DPSK					
Number of Channel:	79					
Hopping Channel Type	: Adaptive Frequency Hopping systems					
Sample Type:	Portable production					
Test Power Grade:	255,46 (manufacturer declare)					
Test Software of EUT:	Bluetest3(manufacturer declare)					
Antenna Type and Gair						
	Gain :5.22dBi					
Cable length/material:	Usb cable: 77cm shielded					
	Dc cable: 175cm unshielded					
Battery	Lithium-ion battery:7.56V/2950mAh(charge by adapter)					
Adapter	Adapter in original report (SZEM150200073401):					
	Model: GPE024W-150160-Z					
	Input: 100-240V~50/60Hz 0.75A					
	Output: 15V == 1600mA 24W					
	Adapter in this report (SZEM150200073403):					
	Model: FJ-SW1501600N					
	Input: 100-240V, 50/60Hz 0.6A Max					
	output: DC 15V,1600mA					

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM150200073403

Page: 6 of 34

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel	2402MHz		
The Middle channel	2441MHz		
The Highest channel	2480MHz		

Report No.: SZEM150200073403

Page: 7 of 34

5.3 Test Environment

Operating Environment	Operating Environment:				
Temperature:	25.0 °C				
Humidity:	55 % RH				
Atmospheric Pressure:	1020 mbar				

5.4 Description of Support Units

The EUT has been tested with associated equipment below:

Description	Manufacturer	Model No.	
Laptop(provided by SGS)	Lenovo	T430u	

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150200073403

Page: 8 of 34

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

• Industry Canada (IC)

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150200073403

Page: 9 of 34

5.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-05-13	2016-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-09	2016-10-09	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-13	2016-05-13	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T8-02	SEL0162	2015-08-30	2016-08-30	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T4-02	SEL0163	2015-08-30	2016-08-30	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T2-02	SEL0164	2015-08-30	2016-08-30	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-13	2016-05-13	
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-13	2016-05-13	
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09	
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24	
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13	

Report No.: SZEM150200073403

Page: 10 of 34

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-05-13	2016-05-13	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	2016-09-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-11-15	2017-11-15	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-17	2016-10-17	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-11-24	2017-11-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-13	2016-05-13	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-17	2016-10-17	
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-13	2016-05-13	
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-13	2016-05-13	
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-13	2016-05-13	
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13	
13	Band filter	Amindeon	82346	SEL0094	2015-05-13	2016-05-13	
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-13	2016-05-13	
18	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-05-13	2016-05-13	

Report No.: SZEM150200073403

Page: 11 of 34

	RF connected test											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)						
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09						
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24	2016-10-24						
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-17	2016-10-17						
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13						
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-13	2016-05-13						
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-13	2016-05-13						
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-04-25	2016-04-25						
8	POWER METER	R & S	NRVS	SEL0144	2015-10-09	2016-10-09						
9	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-04-25	2016-04-25						

Report No.: SZEM150200073403

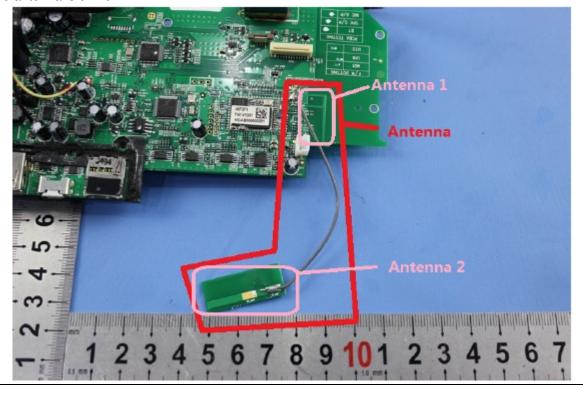
Page: 12 of 34

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

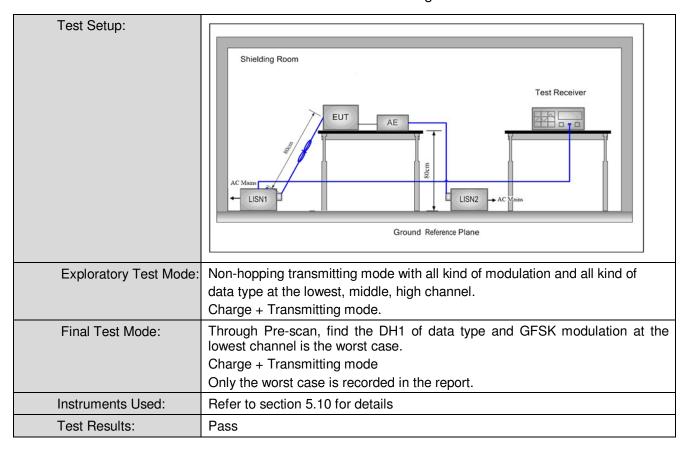
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 5.22dBi.

Report No.: SZEM150200073403

Page: 13 of 34

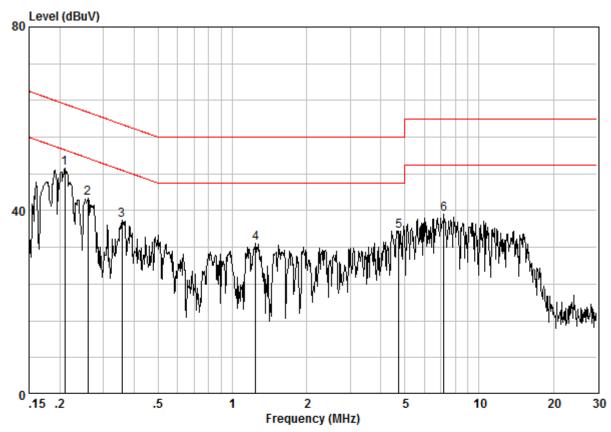

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Limit:	Francisco (MIII-)	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.		4			
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shielder room. 						
	 The EUT was connected to Impedance Stabilization N impedance. The power cal connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single L exceeded. The tabletop EUT was place ground reference plane. A placed on the horizontal ground reference plane. A vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated experience plane and all of the in ANSI C63.10: 2013 on corr 	etwork) which provides oles of all other units of SN 2, which was bonded he way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metallic and for floor-standing arround reference plane, the a vertical ground reference plane was bonded to the 1 was placed 0.8 m from the vertical ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 am emission, the relative terface cables must be	is a 50Ω/50μH + 5Ω lift the EUT were do to the ground or the unit being do to connect multiple of the LISN was not contained the transperse of the LISN was not do table 0.8m above the transperse of the EUT deference plane. The red reference plane. The end reference plane of the boundary of the plane for LISNs has distance was EUT. All other units 0.8 m from the LISN the positions of	the was ear he of 2.			

Report No.: SZEM150200073403

Page: 14 of 34

Report No.: SZEM150200073403


Page: 15 of 34

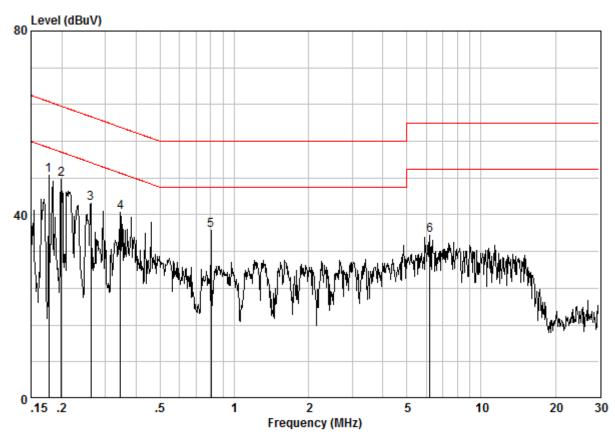
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room Condition : CE LINE Job No. : 7842CR Test Mode : TX+charge


		Freq		LISN Factor					Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	@	0.20944	0.02	9.60	39.64	49.26	53.23	-3.97	Peak
2	@	0.26025	0.02	9.60	33.13	42.74	51.42	-8.68	Peak
3	@	0.35765	0.01	9.59	28.25	37.85	48.78	-10.93	Peak
4	@	1.242	0.02	9.61	23.39	33.02	46.00	-12.98	Peak
5	@	4.721	0.01	9.64	25.87	35.53	46.00	-10.47	Peak
6	@	7.213	0.01	9.68	29.51	39.20	50.00	-10.80	Peak

Report No.: SZEM150200073403

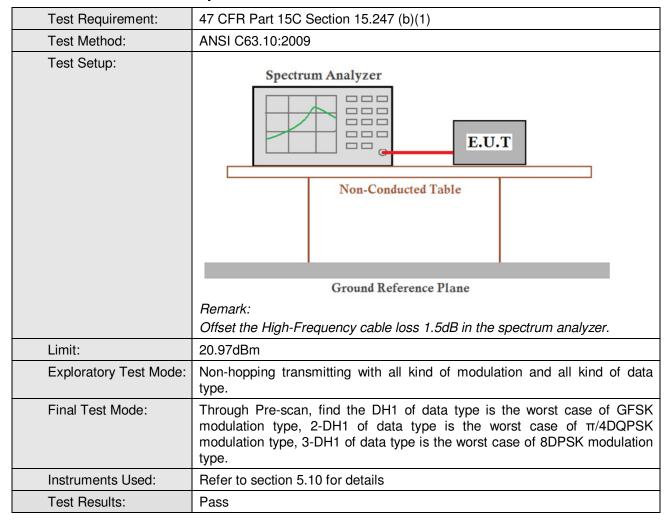
Page: 16 of 34

Neutral line:

Site : Shielding Room Condition : CE NEUTRAL Job No. : 7842CR Test Mode : TX+charge

		Freq		LISN Factor					Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	——dB	
1	@	0.17678	0.02	9.61	38.92	48.54	54.64	-6.09	Peak
2	@	0.19863	0.02	9.62	38.16	47.80	53.67	-5.87	Peak
3	@	0.26164	0.02	9.61	32.92	42.55	51.38	-8.83	Peak
4	@	0.34463	0.01	9.62	30.92	40.55	49.09	-8.54	Peak
5	@	0.80448	0.02	9.64	27.06	36.72	46.00	-9.28	Peak
6	@	6.186	0.01	9.73	25.69	35.43	50.00	-14.57	Peak

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM150200073403

Page: 17 of 34

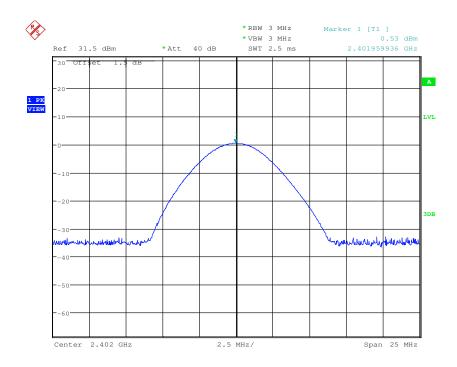
6.3 Conducted Peak Output Power

Report No.: SZEM150200073403

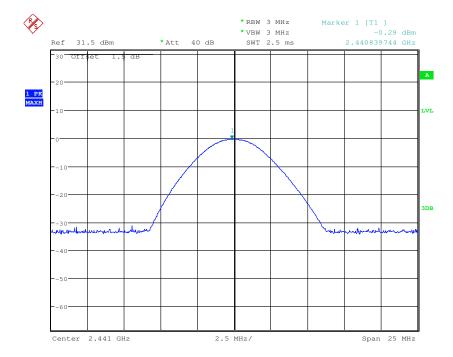
Page: 18 of 34

Measurement Data

incasurement bata										
GFSK mode										
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	0.53	20.97	Pass							
Middle	-0.29	20.97	Pass							
Highest	-1.20	20.97	Pass							
	π/4DQPSK mode									
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	0.35	20.97	Pass							
Middle	-0.49	20.97	Pass							
Highest	-0.98	20.97	Pass							
	8DPSK mod	de								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	0.40	20.97	Pass							
Middle	-0.41	20.97	Pass							
Highest	-1.18	20.97	Pass							

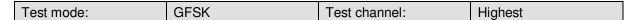


Report No.: SZEM150200073403

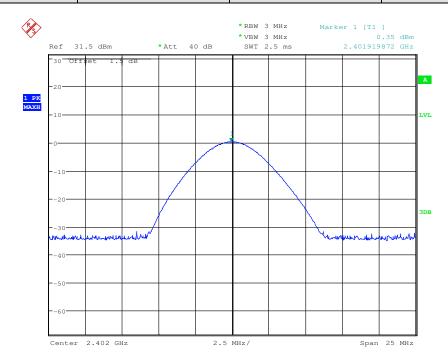

Page: 19 of 34

Test plot as follows:

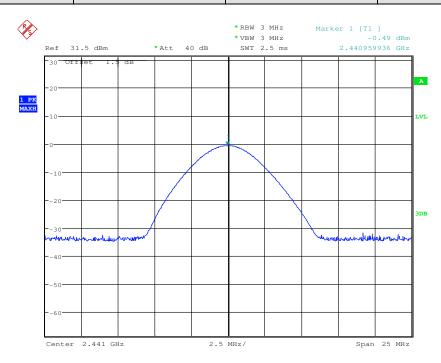
Test mode: GFSK Test channel: Lowest

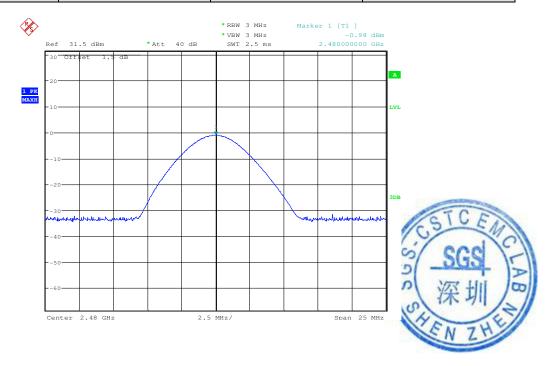





Report No.: SZEM150200073403

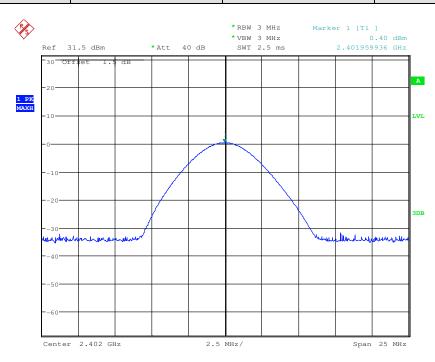
Page: 20 of 34

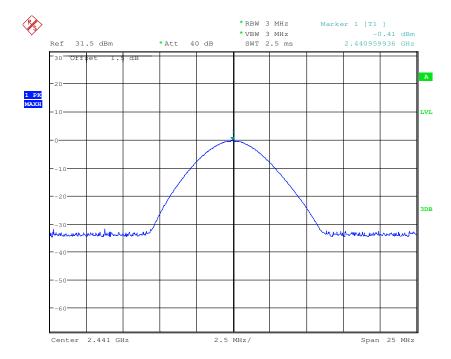



Report No.: SZEM150200073403

Page: 21 of 34

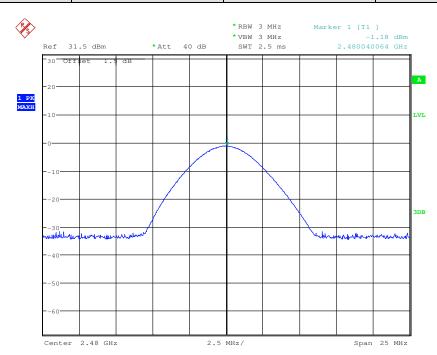
Test mode: π/4DQPSK Test channel: Middle




Report No.: SZEM150200073403

Page: 22 of 34

Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM150200073403

Page: 23 of 34

Report No.: SZEM150200073403

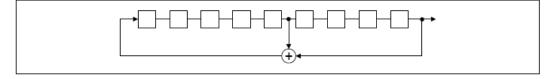
Page: 24 of 34

6.4 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM150200073403

Page: 25 of 34

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

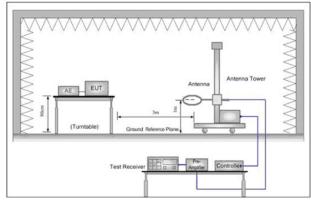
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Report No.: SZEM150200073403

Page: 26 of 34

6.5 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	.205					
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber) Below 30MHz Measurement Distance: 10m (Semi-Anechoic Chamber) 30MHz-1G Measurement Distance: 3m (Semi-Anechoic Chamber) Above 1G								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz		Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MHz Aver		Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	Z	Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MH	0.110MHz-0.490MHz Average				Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	z 30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kH	lz 300kHz	Quasi-peak				
	Above 1GHz		Peak	1MHz	z 3MHz	Peak			
	Above Tariz		Peak	1MHz	10Hz	Average			
Limit:	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		31.6	30.0	Quasi-peak	10			
	88MHz-216MHz		47.3	33.5	Quasi-peak	10			
	216MHz-960MHz		63.1	36.0	Quasi-peak	10			
	960MHz-1GHz		158	44.0	Quasi-peak	10			
	Above 1GHz 500		500	54.0	Average	3			
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequemissions is 20dB above the maximum permitted average emission applicable to the equipment under test. This peak limit applies to the peak emission level radiated by the device.									


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM150200073403

Page: 27 of 34

Test Setup:

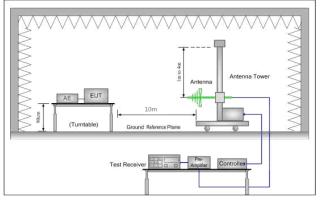


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

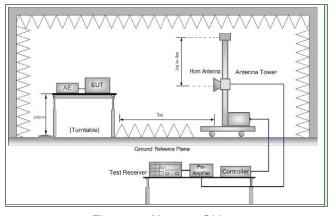


Figure 3. Above 1 GHz

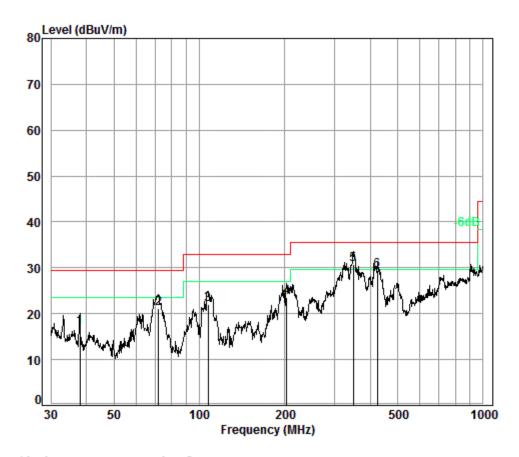
Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified

Report No.: SZEM150200073403

Page: 28 of 34

	 Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM150200073403

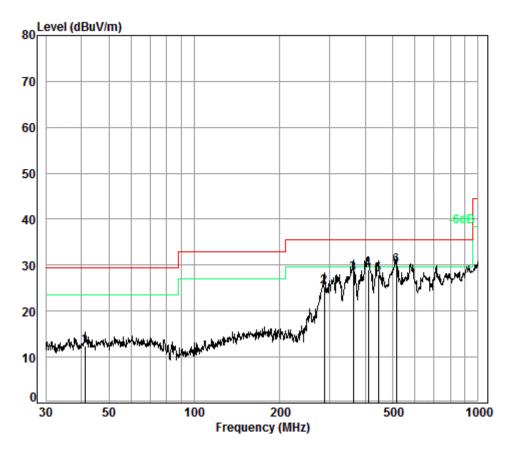
Page: 29 of 34

6.5.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m Vertical

Job No. : 7842CR Test Mode: TX+charge


	_			Preamp				
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	37.94	6.76	11.82	32.65	31.08	17.01	29.50	-12.49
2	71.83	6.94	9.84	32.64	37.04	21.18	29.50	-8.32
3	107.51	7.24	10.14	32.64	37.19	21.93	33.00	-11.07
4	203.52	7.62	9.89	32.59	38.61	23.53	33.00	-9.47
5 pp	349.25	8.25	14.24	32.54	40.70	30.65	35.60	-4.95
6	423.54	8.36	15.97	32.55	37.64	29.42	35.60	-6.18

Report No.: SZEM150200073403

Page: 30 of 34

Condition: 10m Horizontal

Job No. : 7842CR Test Mode: TX+charge

		anange .						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	41.28	6.80	11.99	32.64	26.28	12.43	29.50	-17.07
2	286.98	8.02	12.79	32.55	37.04	25.30	35.60	-10.30
3	362.98	8.30	14.51	32.54	37.87	28.14	35.60	-7.46
4	410.38	8.33	15.67	32.54	37.43	28.89	35.60	-6.71
5	444.85	8.41	16.49	32.56	35.58	27.92	35.60	-7.68
6 pp	515.44	8.68	17.58	32.60	36.30	29.96	35.60	-5.64

Report No.: SZEM150200073403

Page: 31 of 34

6.5.2 Transmitter Emission above 1GHz

Test mo	de:	GFSK(DH	5) Tes	t channel:	Lowest		Remark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Lin (dBuV/m	- I I imit	Polarization
3770.567	32.78	7.73	38.47	44.83	46.87	74	-27.13	Vertical
4804.000	34.10	8.87	38.75	45.06	49.28	74	-24.72	Vertical
6016.949	34.71	10.54	38.94	46.26	52.57	74	-21.43	Vertical
7206.000	35.60	10.68	37.64	39.41	48.05	74	-25.95	Vertical
9608.000	37.10	12.50	36.35	34.92	48.17	74	-25.83	Vertical
12566.850	37.87	14.34	37.72	37.20	51.69	74	-22.31	Vertical
3716.403	32.57	7.71	38.45	44.83	46.66	74	-27.34	Horizontal
4804.000	34.10	8.87	38.75	45.45	49.67	74	-24.33	Horizontal
5982.226	34.66	10.51	38.96	46.88	53.09	74	-20.91	Horizontal
7206.000	35.60	10.68	37.64	40.56	49.20	74	-24.80	Horizontal
9608.000	37.10	12.50	36.35	35.49	48.74	74	-25.26	Horizontal
12566.850	37.87	14.34	37.72	36.79	51.28	74	-22.72	Horizontal

Test mo	de:	GFSK(DH	5) Te	st channel:	Middle)	Remark:		Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limi (dBµV		Over limit (dB)	Polarization
3770.567	32.78	7.73	38.47	44.74	46.78	74		-27.22	Vertical
4882.000	34.18	8.98	38.77	45.27	49.66	74		-24.34	Vertical
5999.562	34.70	10.56	38.96	45.99	52.29	74		-21.71	Vertical
7323.000	35.54	10.72	37.59	41.48	50.15	74		-23.85	Vertical
9764.000	37.10	12.58	36.14	37.63	51.17	74		-22.83	Vertical
12603.270	37.90	14.44	37.75	38.42	53.01	74		-20.99	Vertical
3759.672	32.74	7.73	38.47	44.83	46.83	74		-27.17	Horizontal
4882.000	34.18	8.98	38.77	46.65	51.04	74		-22.96	Horizontal
5982.226	34.66	10.51	38.96	45.41	51.62	74		-22.38	Horizontal
7323.000	35.54	10.72	37.59	41.20	49.87	74		-24.13	Horizontal
9764.000	37.10	12.58	36.14	37.25	50.79	74		-23.21	Horizontal
12603.270	37.90	14.44	37.75	38.17	52.76	74		-21.24	Horizontal

Report No.: SZEM150200073403

Page: 32 of 34

Test mode:		GFSK(DH	5) Tes	t channel:	Highes	t I	Remark:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m	Over limit (dB)	Polarization
3792.453	32.87	7.74	38.48	44.38	46.51	74	-27.49	Vertical
4960.000	34.26	9.09	38.78	45.72	50.29	74	-23.71	Vertical
5999.562	34.70	10.56	38.96	46.10	52.40	74	-21.60	Vertical
7440.000	35.60	10.77	37.54	39.44	48.27	74	-25.73	Vertical
9920.000	37.22	12.67	35.93	37.87	51.83	74	-22.17	Vertical
12639.790	37.92	14.55	37.79	36.14	50.82	74	-23.18	Vertical
3836.607	32.94	7.75	38.50	44.57	46.76	74	-27.24	Horizontal
4960.000	34.26	9.09	38.78	45.19	49.76	74	-24.24	Horizontal
6034.386	34.72	10.52	38.91	45.96	52.29	74	-21.71	Horizontal
7440.000	35.60	10.77	37.54	39.63	48.46	74	-25.54	Horizontal
9920.000	37.22	12.67	35.93	38.39	52.35	74	-21.65	Horizontal
12603.270	37.90	14.44	37.75	37.13	51.72	74	-22.28	Horizontal

Remark:

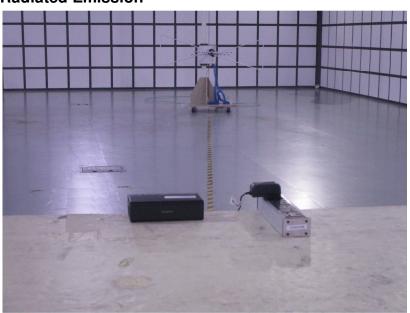
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM150200073403

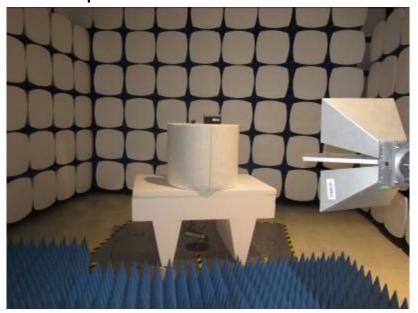
Page: 33 of 34


7 Photographs - EUT Test Setup

Test model No.: MF8190

7.1 Conducted Emission

7.2 Radiated Emission



Report No.: SZEM150200073403

Page: 34 of 34

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1512007842CR