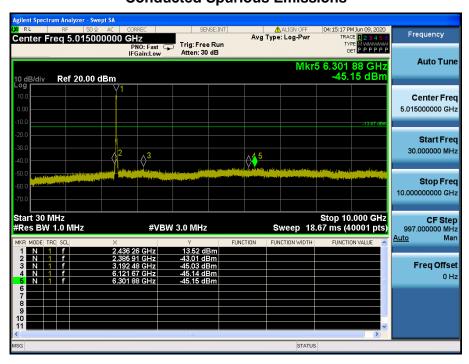

TM 2 & 2437

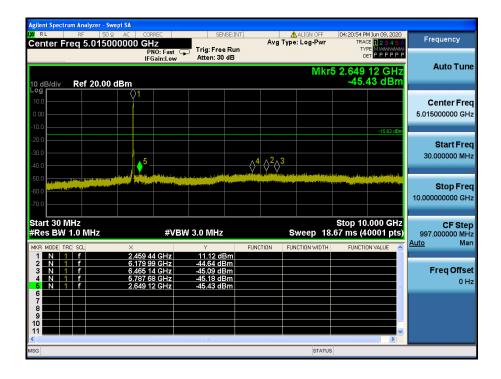

Reference

Conducted Spurious Emissions

Conducted Spurious Emissions

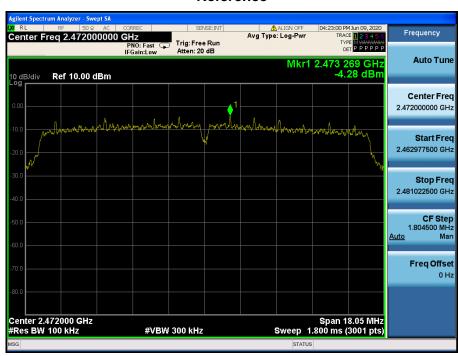
TM 2 & 2462

Reference

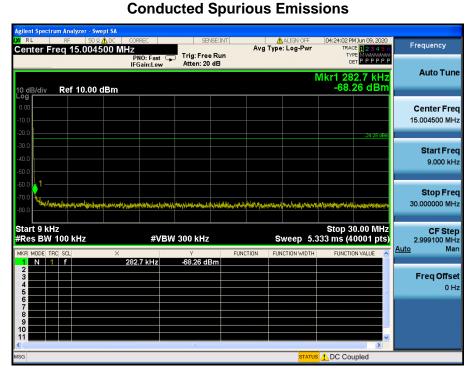


High Band-edge

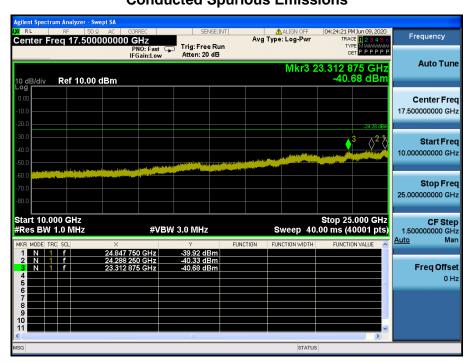
Conducted Spurious Emissions


Conducted Spurious Emissions

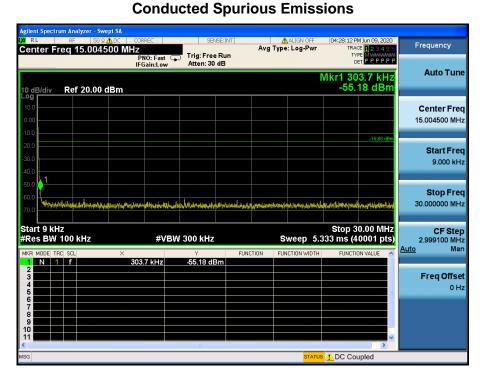


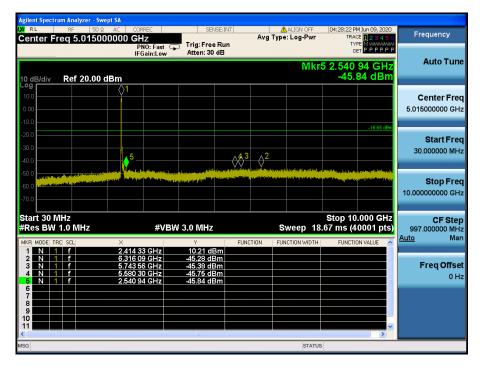

TM 2 & 2472

Reference

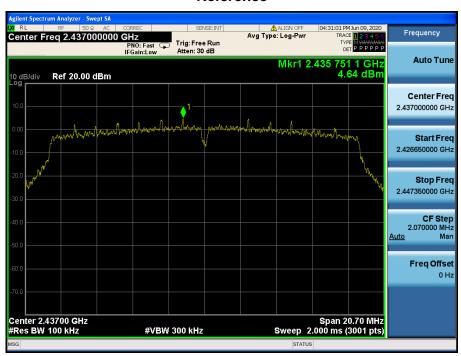

High Band-edge

Conducted Spurious Emissions

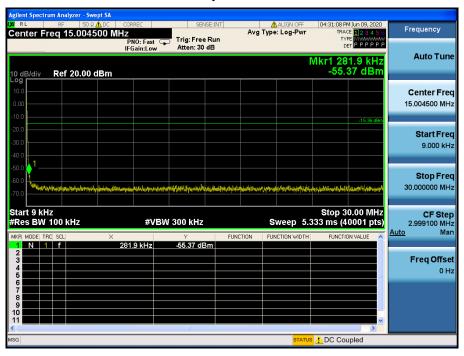

TM 3 & 2412


Reference

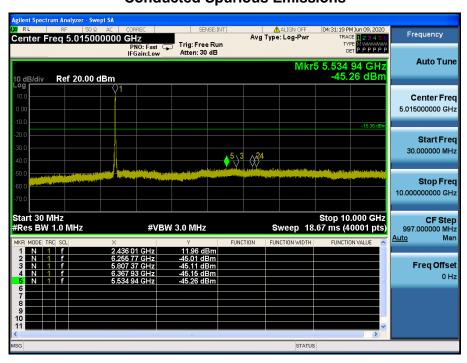
Low Band-edge



Conducted Spurious Emissions



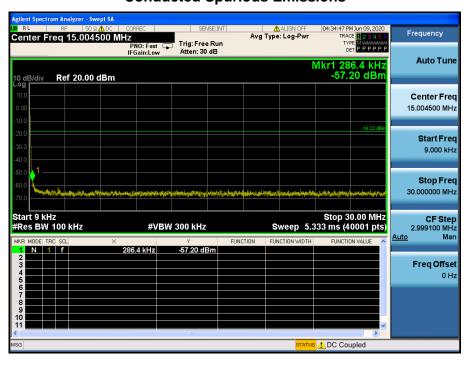
TM 3 & 2437

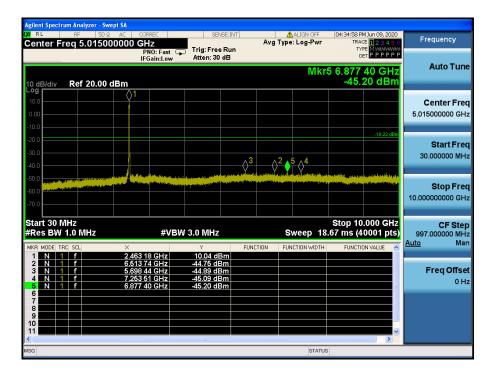

Reference

Conducted Spurious Emissions

Conducted Spurious Emissions

TM 3 & 2462


Reference

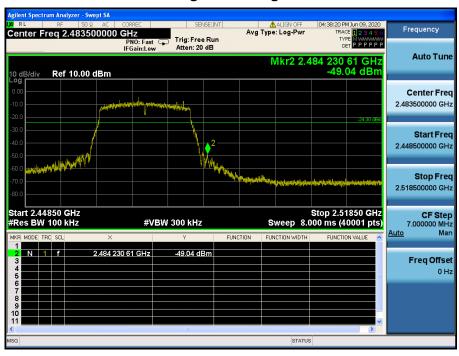


High Band-edge

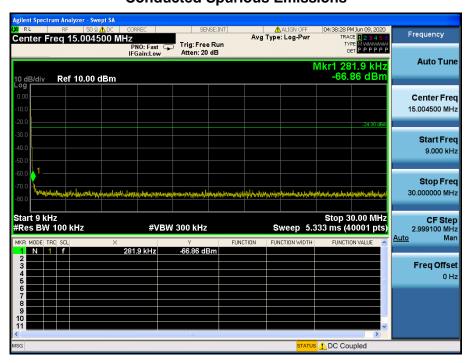


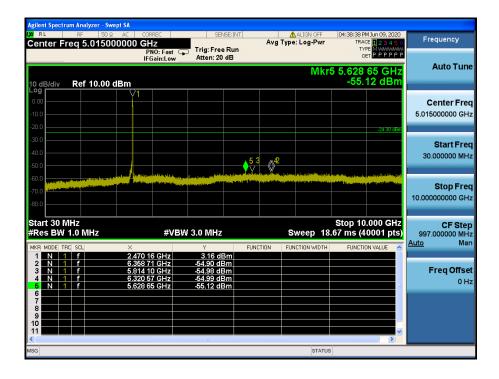
Conducted Spurious Emissions

Conducted Spurious Emissions



TM 3 & 2472


Reference



High Band-edge

Conducted Spurious Emissions

Conducted Spurious Emissions

8.5 Radiated spurious emissions

■ Test Requirements and limit, §15.247(d), §15.205, §15.209

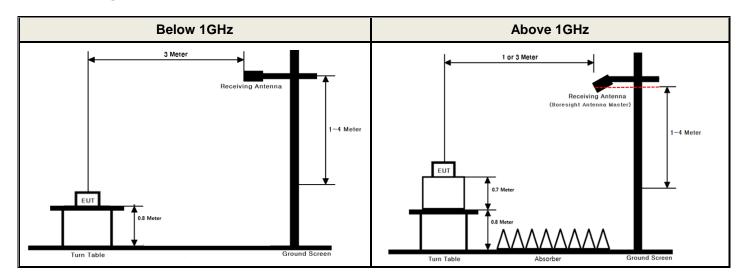
In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

Report No.: DRTFCC2006-0181

• FCC Part 15.209(a) and (b)

1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		
Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F (kHz)	300
0.490 – 1.705	24000/F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 MHz - 72 MHz, 76 MHz - 88 MHz, 174 MHz - 216 MHz or 470 MHz - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.


• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector.

Above 1 000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

■ Test Configuration

■ Test Procedure

- 1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

■ Measurement Instrument Setting for Radiated Emission Measurements.

The radiated emission was tested according to the section 6.3, 6.4, 6.5 and 6.6 of the ANSI C63.10-2013 with following settings.

Report No.: DRTFCC2006-0181

Peak Measurement

RBW = As specified in below table, VBW ≥ 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Average Measurement:

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power. (i.e., RMS)
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1 / D), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Duty Cycle Correction factor

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	D = Ton / (Ton+off)	DCCF = 10 log(1 / D) (dB)
TM 1	1 Mbps	12.190	12.310	0.990 3	N/A
TM 2	6 Mbps	2.755	2.846	0.968 0	0.14
TM 3	MCS 0	2.561	2.650	0.966 4	0.15

Note1: Where, T= Transmission duration / D= Duty cycle

Note2: Please refer to the appendix I for duty cycle plots.

■ Test Results: Comply

Please refer to next page for data table and the appendix II for worst data plots.

Test Notes.

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

Report No.: DRTFCC2006-0181

2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3 m to 1 m. In this case, the distance factor(-9.54 dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

■ Test Results: Comply

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : TM 1

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 384.53	Н	Х	PK	49.60	4.78	N/A	N/A	54.38	74.00	19.62
2 412	2 385.55	Н	Х	AV	39.20	4.79	N/A	N/A	43.99	54.00	10.01
2412	4 823.84	Н	Z	PK	50.49	0.93	N/A	N/A	51.42	74.00	22.58
	4 823.91	Н	Z	AV	41.01	0.93	N/A	N/A	41.94	54.00	12.06
2.427	4 874.18	Н	Z	PK	50.35	1.18	N/A	N/A	51.53	74.00	22.47
2 437	4 873.99	Н	Z	AV	40.12	1.17	N/A	N/A	41.29	54.00	12.71
	2 484.26	Н	Х	PK	50.86	5.26	N/A	N/A	56.12	74.00	17.88
0.400	2 484.41	Н	Х	AV	41.19	5.26	N/A	N/A	46.45	54.00	7.55
2 462	4 923.78	Н	Z	PK	50.93	1.44	N/A	N/A	52.37	74.00	21.63
	4 923.97	Н	Z	AV	40.04	1.45	N/A	N/A	41.49	54.00	12.51
	2 483.80	Н	Х	PK	49.91	5.26	N/A	N/A	55.17	74.00	18.83
0.470	2 483.91	Н	Х	AV	39.81	5.26	N/A	N/A	45.07	54.00	8.93
2 472	4 944.23	Н	Z	PK	50.48	1.54	N/A	N/A	52.02	74.00	21.98
	4 943.73	Н	Z	AV	40.12	1.54	N/A	N/A	41.66	54.00	12.34

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 389.59	Н	Х	PK	56.74	4.80	N/A	N/A	61.54	74.00	12.46
2.412	2 389.86	Н	Х	AV	43.60	4.80	0.14	N/A	48.54	54.00	5.46
2 412	4 823.81	Н	Z	PK	50.18	0.93	N/A	N/A	51.11	74.00	22.89
	4 823.91	Н	Z	AV	39.38	0.93	0.14	N/A	40.45	54.00	13.55
2.427	4 873.66	Н	Z	PK	49.87	1.17	N/A	N/A	51.04	74.00	22.96
2 437	4 873.67	Н	Z	AV	39.44	1.17	0.14	N/A	40.75	54.00	13.25
	2 484.28	Н	Х	PK	57.45	5.26	N/A	N/A	62.71	74.00	11.29
0.460	2 483.74	Н	Х	AV	43.55	5.25	0.14	N/A	48.94	54.00	5.06
2 462	4 924.40	Н	Z	PK	50.28	1.45	N/A	N/A	51.73	74.00	22.27
	4 923.64	Н	Z	AV	39.73	1.44	0.14	N/A	41.31	54.00	12.69
	2 484.53	Н	Х	PK	49.75	5.27	N/A	N/A	55.02	74.00	18.98
0.470	2 484.30	Н	Х	AV	40.21	5.26	0.14	N/A	45.61	54.00	8.39
2 472	4 944.25	Н	Z	PK	50.82	1.54	N/A	N/A	52.36	74.00	21.64
	4 944.37	Н	Z	AV	39.71	1.54	0.14	N/A	41.39	54.00	12.61

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>TM 3</u>

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>TM 2</u>

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 389.45	Н	Х	PK	59.42	4.80	N/A	N/A	64.22	74.00	9.78
2 412	2 389.75	Н	Х	AV	43.28	4.80	0.15	N/A	48.23	54.00	5.77
2412	4 824.43	Н	Z	PK	50.29	0.94	N/A	N/A	51.23	74.00	22.77
	4 824.18	Н	Z	AV	39.42	0.93	0.15	N/A	40.50	54.00	13.50
0.407	4 874.19	Н	Z	PK	50.27	1.18	N/A	N/A	51.45	74.00	22.55
2 437	4 874.38	Н	Z	AV	39.32	1.18	0.15	N/A	40.65	54.00	13.35
	2 484.69	Н	Х	PK	56.06	5.27	N/A	N/A	61.33	74.00	12.67
2 462	2 484.20	Н	Х	AV	43.30	5.26	0.15	N/A	48.71	54.00	5.29
2 402	4 923.98	Н	Z	PK	50.76	1.45	N/A	N/A	52.21	74.00	21.79
	4 923.70	Н	Z	AV	39.54	1.44	0.15	N/A	41.13	54.00	12.87
	2 484.73	Н	Х	PK	53.15	5.27	N/A	N/A	58.42	74.00	15.58
0.470	2 484.01	Н	Х	AV	42.09	5.26	0.15	N/A	47.50	54.00	6.50
2 472	4 943.54	Н	Z	PK	50.48	1.53	N/A	N/A	52.01	74.00	21.99
	4 943.60	Н	Z	AV	39.65	1.54	0.15	N/A	41.34	54.00	12.66

8.6 Power-line conducted emissions

■ Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Report No.: DRTFCC2006-0181

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

■ Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

■ Test Results: Comply(Refer to next page.)

The worst data was reported

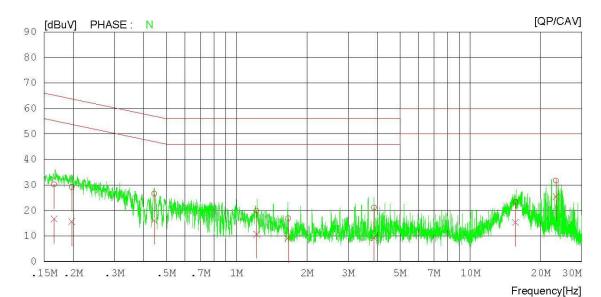
■ RESULT PLOTS

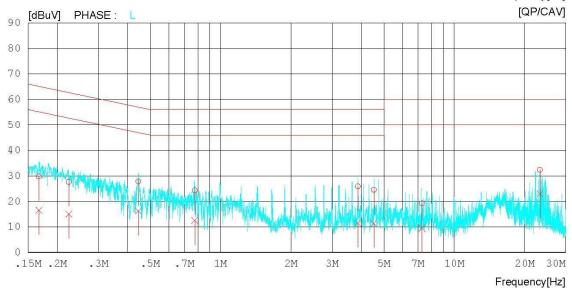
AC Line Conducted Emissions (Graph)

Test Mode: TM 2 & 2437 MHz

Results of Conducted Emission

DTNC Date 2020-06-05


Order No. Model No. Serial No. Test Condition


LM-Q730BAW 2.4G WLAN Referrence No. Power Supply Temp/Humi. Operator

120 V, 60 Hz 23 'C / 35 % J.W. Kim

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

AC Line Conducted Emissions (List)

Test Mode: TM 2 & 2437 MHz

Results of Conducted Emission

DTNC Date 2020-06-05

Order No. Model No. Serial No. Test Condition

LM-Q730BAW

2.4G WLAN

Referrence No. Power Supply Temp/Humi. Operator

120 V, 60 Hz 23 'C / 35 % J.W. Kim

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	REAI QP	OING CAV	C.FACTOR	RESULT QP CAV	L: QP	IMIT CAV	MARGIN QP CAV	PHASE
	[MHz]	[dBuV]] [dBuV]	[dB]	[dBuV][dBuV] [dBu\	/][dBuV	[dBuV][dBuV	"]
1	0.16551	20.33	6.68	9.95	30.2816.63	65.18	55.18	34.90 38.55	N
2	0.19704	19.24	5.68	9.94	29.18 15.62	63.73	53.73	34.55 38.11	N
3	0.44407	16.64	6.15	9.98	26.6216.13	56.99	46.99	30.3730.86	N
4	1.21851	9.88	0.77	9.99	19.8710.76	56.00	46.00	36.13 35.24	N
5	1.66081	6.93	-0.92	10.01	16.94 9.09	56.00	46.00	39.0636.91	N
6	3.87232	11.00	-0.75	10.12	21.12 9.37	56.00	46.00	34.88 36.63	N
7	15.63705	12.79	4.89	10.47	23.2615.36	60.00	50.00	36.74 34.64	N
8	23.28101	21.15	14.89	10.57	31.7225.46	60.00	50.00	28.28 24.54	N
9	0.16686	19.83	6.54	9.94	29.77 16.48	65.12	55.12	35.35 38.64	L
10	0.22392	17.67	5.08	9.94	27.61 15.02	62.67	52.67	35.0637.65	L
11	0.44440	17.86	6.32	9.96	27.8216.28	56.98	46.98	29.1630.70	L
12	0.77443	14.30	2.56	9.97	24.27 12.53	56.00	46.00	31.73 33.47	L
13	3.86719	15.70	1.37	10.11	25.8111.48	56.00	46.00	30.1934.52	L
14	4.52576	14.35	1.28	10.14	24.4911.42	56.00	46.00	31.51 34.58	L
15	7.28415	8.96	-0.75	10.20	19.16 9.45	60.00	50.00	40.84 40.55	L
16	23.28678	21.87	12.40	10.53	32.40 22.93	60.00	50.00	27.60 27.07	L

9. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	20/02/26	21/02/26	MY46471251
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48010133
DC Power Supply	Agilent Technologies	66332A	19/12/16	20/12/16	US37476998
Multimeter	FLUKE	17B	19/12/16	20/12/16	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-1
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-2
Thermohygrometer	BODYCOM	BJ5478	19/06/25	20/06/25	N/A
HYGROMETER	TESTO	608-H1	20/01/21	21/01/21	34862883
Loop Antenna	Schwarzbeck	FMZB1513	20/02/19	22/02/19	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
Horn Antenna	ETS-Lindgren	3115	20/01/30	22/01/30	6419
Horn Antenna	A.H.Systems Inc.	SAS-574	19/07/03	21/07/03	155
PreAmplifier	tsj	MLA-0118-B01-40	19/12/16	20/12/16	1852267
PreAmplifier	tsj	MLA-1840-J02-45	19/06/27	20/06/27	16966-10728
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935- 1000-15000-40SS	19/06/26	20/06/26	8
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	19/06/26	20/06/26	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5- 6SS	19/06/27	20/06/27	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	19/06/27	20/06/27	16012202
Attenuator	SRTechnology	F01-B0606-01	19/06/27	20/06/27	13092403
Attenuator	Aeroflex/Weinschel	20515	19/06/27	20/06/27	Y2370
Attenuator	SMAJK	SMAJK-2-3	19/06/27	20/06/27	2
Attenuator	SMAJK	SMAJK-50-10	19/06/25	20/06/25	15081903
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	19/06/24	20/06/24	1306007 1249001
EMI Receiver	ROHDE&SCHWARZ	ESW44	19/07/30	20/07/30	101645
EMI Test Receiver	Rohde Schwarz	ESU	20/01/20	21/01/20	100538
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	19/09/17	20/09/17	101333
LISN	SCHWARZBECK	NSLK 8128 RC	19/11/04	20/11/04	8128 RC-387
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-04
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-07
Cable	DT&C	Cable	20/01/13	21/01/13	G-13
Cable	DT&C	Cable	20/01/13	21/01/13	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	20/01/13	21/01/13	G-15
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	M-01
Cable	Junkosha	MWX315	20/01/16	21/01/16	M-05
Cable	Junkosha	MWX221	20/01/16	21/01/16	M-06
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	RF-92
Cable	DT&C	Cable	20/01/16	21/01/16	RF-82
	55	24010	20,01,10	2.751710	11. JL

Report No.: DRTFCC2006-0181

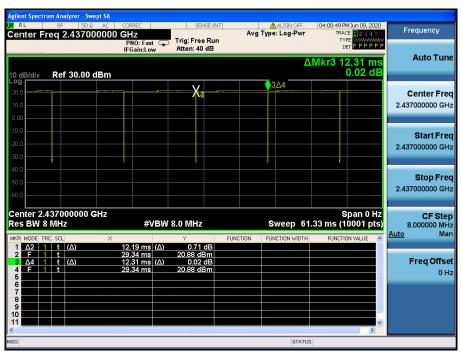
Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017

Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

APPENDIX I

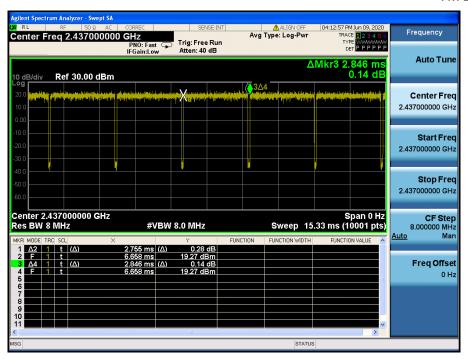
Duty cycle plots

Test Procedure

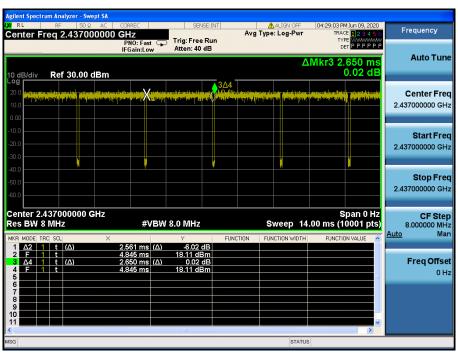

Duty Cycle was measured using section 6.0 b) of KDB558074 D01v05r02:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

Report No.: DRTFCC2006-0181

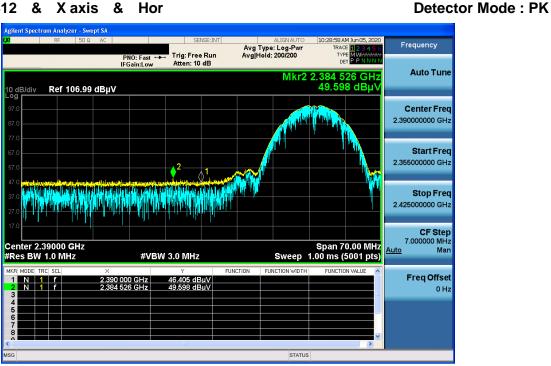

The zero-span measurement method shall not be used unless both RBW and VBW are > 50 / T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle TM 1 & 2 437



Duty Cycle TM 2 & 2 437

Report No.: DRTFCC2006-0181

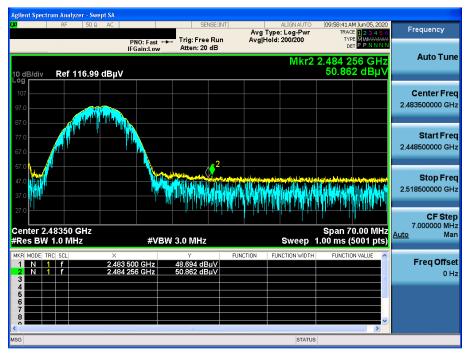

Duty Cycle TM 3 & 2 437

APPENDIX II

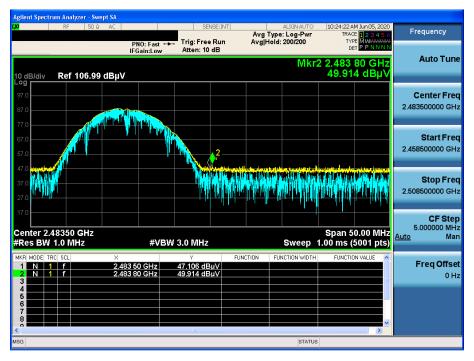
Unwanted Emissions (Radiated) Test Plot

TM 1 & 2412 & Xaxis & Hor

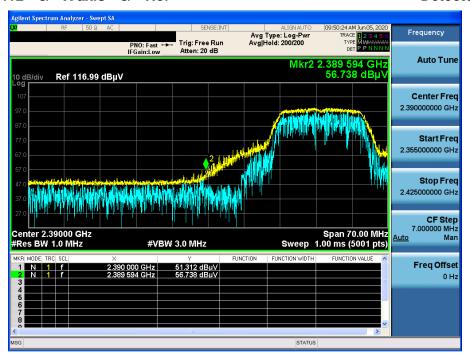
Report No.: DRTFCC2006-0181


TM 1 & 2412 & Xaxis & Hor

TM 1 & 2462 & Xaxis & Hor

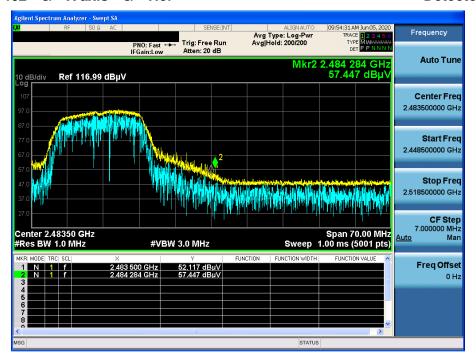

TM 1 & 2462 & Xaxis & Hor

TM 1 & 2472 & Xaxis & Hor


TM 1 & 2472 & Xaxis & Hor

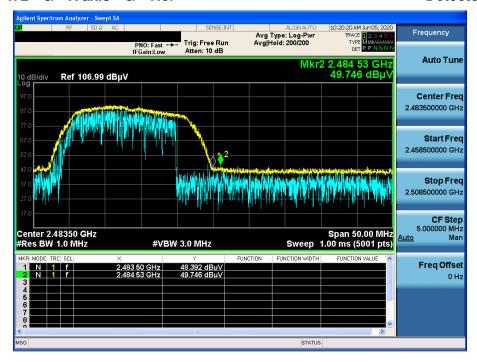
TM 2 & 2412 & X axis & Hor

Detector Mode: PK


TM 2 & 2412 & Xaxis & Hor

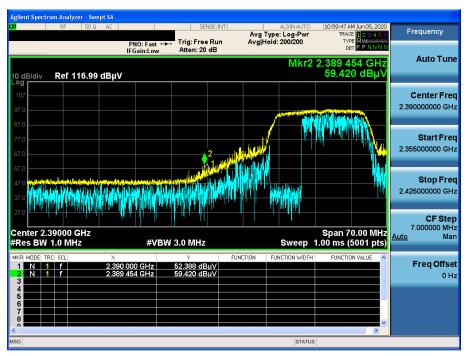
TM 2 & 2462 & X axis & Hor

Detector Mode: PK


TM 2 & 2462 & Xaxis & Hor

TM 2 & 2472 & X axis & Hor

Detector Mode: PK

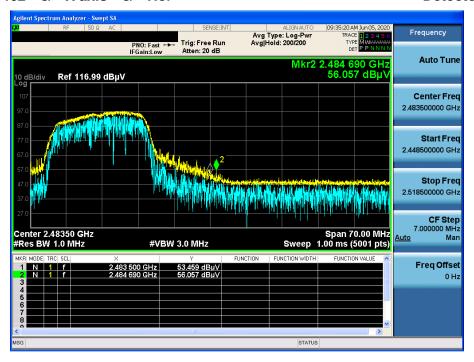


TM 2 & 2472 & Xaxis & Hor

TM 3 & 2412 & Xaxis & Hor

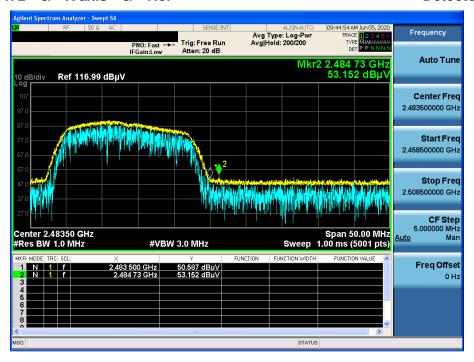
Detector Mode: PK

TM 3 & 2412 & Xaxis & Hor



TM 3 & 2462 & X axis & Hor

Detector Mode: PK

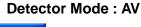

TM 3 & 2462 & Xaxis & Hor

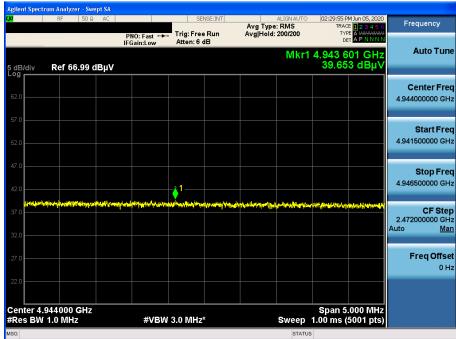
TM 3 & 2472 & Xaxis & Hor

Detector Mode: PK

TM 3 & 2472 & Xaxis & Hor

TM 1 & 2412 & Zaxis & Hor




TM 2 & 2472 & Zaxis & Hor

TM 3 & 2472 & Zaxis & Hor

