

Page 56 of 84

Dwell NVNT 2-DH5 2480MHz

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	3-DH1	2402	0.39	124.8	31600	400	Pass
NVNT	3-DH1	2441	0.369	118.08	31600	400	Pass
NVNT	3-DH1	2480	0.372	119.04	31600	400	Pass

Dwell NVNT 3-DH1 2402MHz

Keysight Spectrum Analyzer - Swept SA	SENSE:	INT	ALIGN AUTO	08:52:37 AM Feb 24, 2021
Center Freq 2.402000000 GHz	PNO East ↔ Tri	ig Delay-1.000 ms ig: Video itten: 24 dB	Avg Type: Log-Pwr	
Ref Offset 6.32 dB 10 dB/div Ref 20.00 dBm				ΔMkr1 390.0 μs 0.02 dB
	1Δ2			
-10.0				
-30.0				TRIG LVL
-60.0 data had block the law interface to a law	de 11 haarde de name tine (he alet 12 alet - De let 12 alet and 12 alet	ning teoremist and the state of the second state of	an ben der song der en film bis verdelige An het blik med in der schrifte med der eit der stade	den genten beginnen b Besetzen bestellte besetzen bestellte beginnen bestellte bestellte bestellte bestellte bestellte bestellte beste
-70.0 Center 2.4020000000 GHz			<u>, 1 - 1 httarite ~ 1,1,13</u>	Span 0 Hz
Res BW 1.0 MHz	#VBW 3.	0 MHz	Sw	eep 5.000 ms (10001 pts)
MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 390.0 μ			NCTION WIDTH	FUNCTION VALUE
2 F 1 t 1.001 m 3 4	s 1.52 dBm			
5				=
8				
10 11 •				
MSG			STATUS	

Page 57 of 84

Dwell NVNT 3-DH1 2441MHz

Keysight Spectrum Analyzer - Swep R RF 50 Ω						08:53:38 AM	
Center Freq 2.44100		Fast ++++ Trig: Vio	lay-1.000 ms deo	IGN AUTO Avg Type: L	.og-Pwr	TRAC TYP	E 1 2 3 4 2 E WWW E P N N N
Ref Offset 6.3 IO dB/div Ref 20.00 d	7 dB					ΔMkr1 3	69.0 µ 1.08 d
0.00	1Δ2 -						
20.0							
30.0							TRIG L
40.0							
60.0 60.0 70.0		alle het perfora di tala Bernata (¹⁹⁴⁷). <mark>Performanta di tala di</mark>		sentiales épices esté. Nombré Statementes		erster het der Bereiten die deiter Regeliefen die Vergeliefen die deiter	e politicitativite Internetite levelat
				tealue latudaba	ala na katala	· · · · · ·	
Center 2.441000000 G Res BW 1.0 MHz	Hz	#VBW 3.0 MH	Hz		Sweep	S 5.000 ms (1	pan 0 H 0001 pt
MKR MODE TRC SCL	× 369.0 μs (Δ)	-1.08 dB	UNCTION FUNCT	TION WIDTH	FL	JNCTION VALUE	
2 F 1 t 3 4	1.015 ms	-7.02 dBm					
5							
7 8 9							
10							
		m		STATUS			Þ
SG	Dv	well NVNT 3	-DH1 2480				
		well NVNT 3				08:53:50 AM	
SG Keysight Spectrum Analyzer - Swep R RF 50 Ω	ot SA AC 0000 GHz PNO:	SENSE:INT Trig Del Fast ↔ Trig: Vio	AL lay-1.000 ms deo)MHz	.og-Pwr	08:53:50 AM TRAC TYP	4 Feb 24, 20 E <mark>1 2 3 4</mark>
sg Keysight Spectrum Analyzer - Swep R RF 50 Q Center Freq 2.480000	AC AC 00000 GHz PNO: IFGain	SENSE:INT Trig Del Fast ↔ Trig: Vio	AL lay-1.000 ms deo)MHz Ign auto	.og-Pwr	08:53:50 AN TRAC TYP DE ΔMkr1 3	4 Feb 24, 20 E 1 2 3 4 E WWWW T P N N N 72.0 1
SG SG C R RF Spectrum Analyzer - Swep C R RF S0 Ω Center Freq 2.480000 Ref Offset 6.4	at SA AC D0000 GHz IFGain dB	SENSE:INT Trig Del Fast ↔ Trig: Vio	AL lay-1.000 ms deo)MHz Ign auto	.og-Pwr	08:53:50 AN TRAC TYP DE ΔMkr1 3	4 Feb 24, 20 E 1 2 3 4 E P NNN 72.0 μ
SG Keysight Spectrum Analyzer - Swep R RF 50 Ω Center Freq 2.480000 Ref Offset 6.4 0 dB/div Ref 20.00 d 9 10 0	AC PNO: DOUOD GHz PNO: IFGain dB Bm	SENSE:INT Trig Del Fast ↔ Trig: Vio	AL lay-1.000 ms deo)MHz Ign auto	.og-Pwr	08:53:50 AN TRAC TYP DE ΔMkr1 3	4 Feb 24, 20 E 1 2 3 4 E WWWW T P N N N 72.0 1
SG SG C R RF Spectrum Analyzer - Swep C R RF S0 Ω Center Freq 2.480000 Ref Offset 6.4	dB Bm 1A2 - PNO: IFGain 1A2 -	SENSE:INT Trig Del Fast ↔ Trig: Vio	AL lay-1.000 ms deo)MHz Ign auto	.og-Pwr	08:53:50 AN TRAC TYP DE ΔMkr1 3	4 Feb 24, 20 E 1 2 3 4 E P NNN 72.0 μ
SG SG R RF 50 Ω Center Freq 2.480000 Ref Offset 6.4 0 dB/div Ref 20.00 d 9 10 0 0 00 10 0 20 0	AC PNO: DOUOD GHz PNO: IFGain dB Bm	SENSE:INT Trig Del Fast ↔ Trig: Vio	AL lay-1.000 ms deo)MHz Ign auto	.og-Pwr	08:53:50 AN TRAC TYP DE ΔMkr1 3	итер 24,20 E 1 2 3 4 E WWWW T P NNN 72.0 L D.84 d
Keysight Spectrum Analyzer - Sweg R RF 50 Ω Center Freq 2.480001 R RF 50 Ω R Ref Offset 6.4 0 dB/div Ref 20.00 d 0 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0	dB Bm 1A2 - PNO: IFGain 1A2 -	SENSE:INT Trig Del Fast ↔ Trig: Vio	AL lay-1.000 ms deo)MHz Ign auto	.og-Pwr	08:53:50 AN TRAC TYP DE ΔMkr1 3	итер 24,20 E 1 2 3 4 E WWWW T P NNN 72.0 L D.84 d
Keysight Spectrum Analyzer - Swep R RF 50 Ω Center Freq 2.480001 Ref Offset 6.4 0 dB/div Ref 20.00 d 0.00	dB Bm 1A2 Intel	SENSE:INT Trig Del Fast →→ Trig:Vie :Low Atten: 2	AL lay-1.000 ms deo 24 dB	Avg Type: L		08:53:50 AP TRAC TYP DE AMkr1 3 -(17eb 24, 20 E 1 2 3 4 WMWW T P N N N 72.0 J 0.84 d
Keysight Spectrum Analyzer - Swep R RF 50 Ω center Freq 2.480000 Ref Offset 6.4 0 dB/div Ref Offset 6.4 0 dB/div Ref 20.00 d 0 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	dB Bm 1A2 Intel	SENSE:INT Trig Del Fast →→ Trig:Vie :Low Atten: 2	AL lay-1.000 ms deo 24 dB	Avg Type: L		08:53:50 AP TRAC TYP DE AMkr1 3 -(17 Feb 24, 20 E 1 2 3 4 WMMW T P N N N 72.0 J 0.84 d TRIOL
Keysight Spectrum Analyzer - Sweg R RF 50 Q Center Freq 2.480000 Set Offset 6.4 O dB/div Ref Offset 6.4 0 dB/div Ref 20.00 d 0 d0 Set 0 d	dB Bm 142 - PNO: IFGain 142 - 142 -	SENSE:INT Trig Del Fast \rightarrow Trig: Vic Atten: 2	Iay-1.000 ms deo 24 dB	Avg Type: L	n ber sterne di kiter free ber gesterne di kiter free ber gesterne di kiter free		AFeb 24, 20 E 2 3 4 E 2 3 4 F NNN T P NNN 72.0 J 0.84 d
Resignt Spectrum Analyzer - Swep R RF S0 Ω Center Freq 2.480000 Ref Offset 6.4 Odd Science 0 dB/div Ref Offset 6.4 Odd Science Ref Offset 6.4 0 dB/div Ref 20.00 d Odd Science Ref Offset 6.4 0 dB/div Ref 20.00 d Odd Science Ref Offset 6.4 0 dB/div Ref 20.00 d Odd Science Ref Offset 6.4 0 dB/div Ref 20.00 d Odd Science Ref Offset 6.4 0 dB/div Ref 20.00 d Odd Science Ref Offset 6.4 0 dB/div Ref 20.00 d Odd Science Ref Contect 6.4 0 d0 Ref 20.00 d Odd Science Science Ref Contect 7.4 0 d0 Ref 20.00 d 0 d0 Ref 20.00 d 0 d0 Ref 20.00 d	AC AC DOUDO GHZ PNO: IFGain dB Bm 1A2 - AC PNO: IFGain AC IFGain AC IFGain AC IFGain AC IFGain AC IFGain AC IFGain AC IFGain AC IFGain AC IFGAIN AC AC AC AC AC AC AC AC AC AC AC AC AC	SENSE:INT Trig Del Fast Trig: Vic Atten: 2	AL lay-1.000 ms deo 24 dB	DMHz IGN AUTO Avg Type: L	Sweep	08:53:50 AM TRAC TYP DE AMkr1 3 	AFeb 24, 20 E 2 3 4 E 2 3 4 F P NNN T P NNN 72.0 F 0.84 d
SG SG SG Center Freq 2.480000 Center 2.48000000 Center 2.480000000 Gi Center 2.4800000000 Gi Center 2.48000000000000000000000000000000000000	dB Bm 142 - PNO: IFGain 142 - 142 -	SENSE:INT Trig Del Fast Fast Atten: 2	Iay-1.000 ms deo 24 dB	Avg Type: L	Sweep		ТРЮ L ТРЮ L ТРО L ТРО L ТРО L ТРЮ L ТРЮ L ТРЮ L
Keysight Spectrum Analyzer - Sweg R RF S0 Ω Center Freq 2.480000 Ref Offset 6.4 Ref 2.000 d 0 0 0 0 0 0 0 0 0 0 0.00 0 0 0 0 0 0 0 0 0 0.00 0	AC AC PNO: AC PNO: IFGain dB Bm 1Δ2 - AC AC A	SENSE:INT Trig Del Fast → Trig: Vic Atten: 2 Atten: 2 With the trig With t	AL lay-1.000 ms deo 24 dB	DMHz IGN AUTO Avg Type: L	Sweep	08:53:50 AM TRAC TYP DE AMkr1 3 	ТРЮ L ТРЮ L ТРО L ТРО L ТРО L ТРЮ L ТРЮ L ТРЮ L
Keysight Spectrum Analyzer - Sweg G Ref SG Center Freq 2.480000 Ref Offset 6.4 O dE/div Ref 20.00 d Conter Freq 2.480000 Ref 20.00 d Ref 0 Ref 20.00 d O dE/div Ref 20.00 d O de /div Ref 20.00 d A 2 1 t Cal Center 2.480000000 d Cal A 2 1 t Cal Center 2.41 t Cal Cent	AC AC PNO: AC PNO: IFGain dB Bm 1Δ2 - AC AC A	SENSE:INT Trig Del Fast → Trig: Vic Atten: 2 Atten: 2 With the trig With t	AL lay-1.000 ms deo 24 dB	DMHz IGN AUTO Avg Type: L	Sweep	08:53:50 AM TRAC TYP DE AMkr1 3 	ТРЮ L ТРЮ L ТРО L ТРО L ТРО L ТРЮ L ТРЮ L ТРЮ L
Keysight Spectrum Analyzer - Sweg R R SG Center Freq 2.480000 Ref Offset 6.4 Ref 20.00 d <	AC AC PNO: AC PNO: IFGain dB Bm 1Δ2 - AC AC A	SENSE:INT Trig Del Fast → Trig: Vic Atten: 2 Atten: 2 With the trig With t	AL lay-1.000 ms deo 24 dB	DMHz IGN AUTO Avg Type: L	Sweep	08:53:50 AM TRAC TYP DE AMkr1 3 	ТРЮ L ТРЮ L ТРО L ТРО L ТРО L ТРЮ L ТРЮ L ТРЮ L
Keysight Spectrum Analyzer - Sweet R RF 50.0 Center Freq 2.480000 Ref Offset 6.4 0 dB/div Ref 20.00 d 0 dB/d	AC AC PNO: AC PNO: IFGain dB Bm 1Δ2 - AC AC A	SENSE:INT Trig Del Fast → Trig: Vic Atten: 2 Atten: 2 With the trig With t	AL lay-1.000 ms deo 24 dB	DMHz IGN AUTO Avg Type: L	Sweep	08:53:50 AM TRAC TYP DE AMkr1 3 	E 1 2 3 4 4 2 72.0 µ 0.84 d тпю L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	3-DH3	2402	1.642	262.72	31600	400	Pass
NVNT	3-DH3	2441	1.623	259.68	31600	400	Pass
NVNT	3-DH3	2480	1.624	259.84	31600	400	Pass

Dwell NVNT 3-DH3 2402MHz

J Keysight Spectrum Analyzer - Swept SA	SENSE:I	NT	ALIGN AUTO	08:54:09 AM Feb 24, 2021
Center Freq 2.402000000 GHz	PNO: Fast +++ Trig	g Delay-1.000 ms g: Video ten: 24 dB	Avg Type: Log-Pwr	08:34:09 AM FED 24, 2021 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET PNNNNN
Ref Offset 6.32 dB 10 dB/div Ref 20.00 dBm				ΔMkr1 1.642 ms -13.71 dB
10.0	a de la companya de La companya de la comp			
-10.0				
-30.0				TRIG LVL
-50.0 -60.0		· · · · ·	n die feldenie gestellte des andere andere die stellte die	The state of the second st
			adi kuluu kusilan adalah niladinda da	
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 3.0	MHz	Swe	Span 0 Hz ep 5.000 ms (10001 pts)
MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 1.642 m 2 F 1 t 1.001 m 3 4 4 4		FUNCTION FUN	NCTION WIDTH	FUNCTION VALUE
5 6 7 8				
9 10 11 11				• •
MSG			STATUS	

Dwell NVNT 3-DH3 2441MHz

💓 Keysight Spectrum Analyzer - Swept SA LXI R RF 50 Ω AC	SENSE:INT	ALIGN AUTO	08:54:23 AM Feb 24, 2021
Center Freq 2.441000000 GHz	NO: Fast Gain:Low Atten: 24 dB		TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N
Ref Offset 6.37 dB 10 dB/div Ref 20.00 dBm Log			ΔMkr1 1.623 ms 0.33 dB
10.0 0.00		ΙΔ2	
-10.0			
-30.0			TRIG LVL
-60.0 -60.0 -60.0		is e na problem and e the first the price of a state of the first the price of a state of the state of the stat	UCT Villenbergy for the device of the test of the second
-70.0 Center 2.441000000 GHz			Span 0 Hz
Res BW 1.0 MHz	#VBW 3.0 MHz	Swe	ep 5.000 ms (10001 pts
MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 1.623 ms 2 F 1 t 1.016 ms 3 3 3 1.016 ms	Y FUNCTION (Δ) 0.33 dB -8.85 dBm	FUNCTION WIDTH	FUNCTION VALUE
4 5 6 9			E
7 8 9 9 10			
11	m		
MSG		STATUS	

E-mail: NTC@NTC-CERT.COM

Page 59 of 84

Dwell NVNT 3-DH3 2480MHz

			Analyzer - Swept SA										
l XI R		RF				SENSE:IN			ALIGN AL				5 AM Feb 24, 2021
Cer	nter F	req	2.48000000					1.000 m	is Av	/g Type:	Log-Pwr		RACE 1 2 3 4 5 6
					NO: Fast 🕂		: Video en: 24 d						DET P N N N N
					Gain:Low	Aut	en. 24 0	D					
		Def	Offset 6.4 dB									ΔMkr1	1.624 ms
10 4	B/div		f 20.00 dBm										-4.06 dB
Log		Re	20.00 001										
10.0	ı —												
0.00								1Z	2				
-10.0					ndi di bila di bian		in dia mand Insid		<u> </u>				
			l í		d depiced pop	Mail No.	40 Y N	ten (
-20.0						- f - i - i	- 1						
-30.0	·												TRIG LVL
-40.0													
-50.0	ala 1	ll catar a	والمراجعة والمراجعة					1.1.B.	و الأيرانية من ال	Hila da a	الالوابية الابتر والوابية	and the second states of the s	وفروا أعرازه المرابع
-60.0	at he had	den di	at the second second second						building and the	an ann an an	a no na catal da cala a	a diada di dia dia d	and the second states of
	i Ali Mata Da	stilling all all a	linda, da p., hallen id					أماناه	<mark>distrikter</mark> die state		n in the state of th	, de Jankik de In distinus	الترام للالإيراز إلى المراق ا
-70.0	11+4	14 tro b											
											· · · ·		
			00000 GHz								_		Span 0 Hz
Res	BW	1.0 M	HZ		#VI	3W 3.0	₩HZ				Sweep	5.000 ms	(10001 pts)
MKR	MODE 1	FRC SCL	>>	x	Y		FUNC	TION	FUNCTION W	IDTH	F	JNCTION VALUE	
1			(Δ)	1.624 ms		.06 dB							
2	F	1 t		1.016 ms		9 dBm							
3													
45													
6													
													=
7													=
8													=
8 9													
8 9 10													
8 9													
8 9 10							III			TATUS			

Condition	Mode	Frequency	Pulse Time	Total Dwell Time	Period Time	Limit	Verdict
		(MHz)	(ms)	(ms)	(ms)	(ms)	
NVNT	3-DH5	2402	2.893	308.587	31600	400	Pass
NVNT	3-DH5	2441	2.893	308.587	31600	400	Pass
NVNT	3-DH5	2480	2.873	306.453	31600	400	Pass

Dwell NVNT 3-DH5 2402MHz

Keysight Spectrum / R RF Center Freq 2	50 Ω AC) GHz	SEI	ISE:INT Trig Delay-		LIGN AUTO Avg Type:	Log-Pwr	т	7 AM Feb 24, 202
		PN	NO:Fast ↔ →→ Gain:Low	Trig: Video Atten: 24 d	в				
10 dB/div Rei	Offset 6.32 dB f 20.00 dBm							ΔMkr1	2.893 ms -2.91 dE
10.0	V							Δ2	
-10.0	*	2			den ministerio (n. lin				
-20.0									TRIG LVI
-40.0									
-50.0	na la sulla contra p							u ti lu la philu	
70.0 11 14 14 14 14 14 14 14 14 14 14 14 14	an what wh						4 <mark>7</mark>		u han na an a
Center 2.4020 Res BW 1.0 M			#VBW	3.0 MHz			Sweep	5.000 ms	Span 0 H (10001 pt:
MKR MODE TRC SCL		2.893 ms (Υ Δ) -2.91	FUNC	TION FUNC	CTION WIDTH	F	UNCTION VALUE	
$\begin{array}{c c} \Delta z & t \\ \hline 2 & F & 1 & t \\ \hline 3 & \end{array}$		1.001 ms	1.73 dl						
4									
6									
8									
9									
11 <u> </u>									Þ
SG						STATUS			

Page 60 of 84

Dwell NVNT 3-DH5 2441MHz

b be b b b b c<
Pho: Fail Trig: Video Trig: Video Ref Offset 6 37 dB AMKr1 2,893 n Offset 6 37 dB - 7.63 c Offset 7 dB - 7.63 c Offset 8 37 dB - 7.63 c Offset 8 30 c - 7.63 c Offset 8 4 dB - 7.63 c Offset 8 4 dB - 7.63 c Offset 8 4 dB - 7.63 c Offse
Ref Offset 8.87 dB ΔMkr1 2.883 m 0 dB/dv Ref 20.00 dBm -7.83 c 0 dB/dv X2 model (model (mo
0 Bit I and the length of the second secon
100 100 100 100 100 100 100 100
000 X2 None of the state of the sta
100 1
000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000
100 1
and a server se
and a second se
Construction Server Source Span 0 Server Source Span 0 Sweep 5.000 ms (10001 p Model Field X Y FUNCTION WOTH FUNCTION WOTH AP 1 Construction FUNCTION WOTH FUNCTION WOTH AP 1 Construction FUNCTION WOTH FUNCTION WOULE AP 1 Construction FUNCTION WOTH FUNCTION WOULE AP 1 Construction FUNCTION WOULE FUNCTION WOULE AP 1 Construction FUNCTION WOULE FUNCTION WOULE AP 1 Construction FUNCTION WOULE FUNCTION WOULE B Image: Status Status Status Status B Image: Status Status Status Status B Image: Status Image: Status Tig: Video Auge: Status Status B Image: Status Tig: Video Auge: Status Auge: Status Auge: Status Auge: Status B Image: Status Tig: Video Tig: Video Auge: Status Auge: Status Auge: Status Aug
Les BW 1.0 MHz #VBW 3.0 MHz Sweep 5.000 ms (riooth p MA2 1 1 2.893 ms (Δ) -7.63 dB A 1 1 1.001 ms 1.53 dBm A 1 1 1.001 ms 1.53 dBm A 1.001 ms 1.53 dBm 1.63 dBm 1.63 dBm B 1 1.001 ms 1.53 dBm 1.63 dBm B 1.001 ms
es BW 1.0 MHz #VBW 3.0 MHz Sweep 5.000 ms (rioo1 p PUNCTION WIDTH PUNCTION VALUE PUNCTION VALUE PUNCTIO
KR MODE TRC SER SER FUNCTION FUNCTION WIDTH FUNCTION VALUE 2 1 <
2 F 1 t 1.001 ms 1.53 dBm 3 5 1 1 1.001 ms 1.53 dBm 5 1 1 1 1.53 dBm 1.53 dBm 6 1 1 1 1.53 dBm 1.53 dBm 9 1 1 1.53 dBm 1.53 dBm 1.53 dBm 9 1 1 1.53 dBm 1.53 dBm 1.53 dBm 9 1 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 9 1 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 9 1 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 9 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 9 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 1.53 dBm 10 1.53 dBm 1.53
3 4 5 6 7
5 6 7 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1
7 7
9 9 9 1 G G STATUS DWell NVNT 3-DH5 2480MHz NVNT 3-DH5 2480MHz Keysight Spectrum Analyzer - Swept SA R R R SO Q AC SENSE:INT ALION AUTO OB:46:20 AHFeb 24, 2 Trig: Video Atten: 24 dB CAMKr1 2.873 m -0.25 c 00 00 00 00 00 00 00 00 00 0
Image: Constraint of the second
G BALIN CONTRACT CON
Dwell NVNT 3-DH5 2480MHz Net Spectrum Analyzer - Swept SA R RF SD Q AC SENSE:INT ALIGN AUTO 08:46:20 AI/Feb 24,2 enter Freq 2.480000000 GHz Trig Delay-1.000 ms Avg Type: Log-Pwr TrACE 2:32 PNO: Fast → Trig Delay-1.000 ms Avg Type: Log-Pwr TrACE 2:33 O dB/div Ref Offset 6.4 dB Calls/air Calls/air Calls/air Calls/air 0 dB/div Ref 20.00 dBm Trig Diday-1.000 ms Avg Type: Log-Pwr Trace 2:33 0 dB/div Ref 20.00 dBm Calls/air Calls/air Calls/air Calls/air Calls/air 0 dB/div Ref 20.00 dBm Calls/air Calls/air Calls/air Calls/air Calls/air 0 dB/div Calls/air Calls/air Calls/air Calls/air Calls/air Calls/air 0 data Calls/air Calls/air Calls/air Calls/air Calls/air Calls/air 0 data Calls/air Calls/air Calls/air Calls/air Calls/air Calls/air
Ikeysight Spectrum Analyzer - Swept SA SEINSE:INT ALIGN AUTO 08:46:20 AMECE 23:4 enter Freq 2.480000000 GHz Firig Delay-1.000 ms Avg Type: Log-Pwr TRACE 12:34 PNO: Fast IFGain:Low Trig Delay-1.000 ms Avg Type: Log-Pwr TRACE 12:34 0 dB/div Ref Offset 6.4 dB CMKr1 2.873 m 0.25 c 0 dB/div Ref 20.00 dBm -0.25 c 0.25 c 0 dB/div Ref 20.00 dBm -0.25 c 0.25 c 0 dB/div Ref 20.00 dBm -0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c 0.25 c 0.25 c 0.25 c 0 dB/div -0.25 c
OddB/div Ref 20.00 dBm -0.25 c 0 0 1Δ2 1 0 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
enter 2.48000000 GHz Span 0
es BW 1.0 MHz #VBW 3.0 MHz Sweep 5.000 ms (10001 p
KR MODE TRC SCI X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 Δ2 1 t (Δ) 2.873 ms (Δ) -0.25 dB
2 F 1 t 1.016 ms -9.00 dBm
3 4 4
5 6

10. Band edge

10.1. Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

10.2. Test procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

10.3. Deviation from standard

No deviation.

10.4. Test setup

10.5. Test results

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant 1	No-Hopping	-57.654	-20	Pass
NVNT	1-DH1	2480	Ant 1	No-Hopping	-56.836	-20	Pass

R F S0.0. AC SENSE:INT ALIGN AUTO 07:33:15 AMFeb 24, 20 Inter Freq 2.356000000 GHz PN0: Fast IFGain:Low ++ Trig: Free Run Atten: 24 dB Aug Type: Log-Pwr Avg Hold: 5000/5000 Trace IP 24, 20 Ref Offset 6.32 dB Mkr1 2.402 00 GHz 0.877 dBT 0.877 dBT 0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Inter Freq 2.355000000 GHz PNO: Fast IFGe Run Atten: 24 dB Avg Type: Log-Pwr Avg/Hold: 5000/5000 TRuce Bast Type Iffed Run Atten: 24 dB Ref Offset 6.32 dB Mkr1 2.402 00 GH 0.877 dBr 0 0 0 0 0 0 0							1		
PNO: Fast				SENSE	:INT		o: Log Dwr		
Bildiv Ref 20.00 dBm 0.877 dBr O Image: Control of the second of the secon	enter Fr	req 2.35600	Р						
Image: state of the s	dB/div							Vkr1 2.4 0 0	02 00 GH .877 dBr
X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 f 2.402 00 GHz 0.877 dBm N 1 f 2.400 00 GHz 56.204 dBm N 1 f 2.400 00 GHz -60.276 dBm N 1 f 2.372 98 GHz -57.328 dBm	23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.								
N 1 f 2.402 00 GHz 0.877 dBm N 1 f 2.400 00 GHz -56.204 dBm N 1 f 2.390 00 GHz -56.276 dBm N 1 f 2.372 98 GHz -57.328 dBm N 1 f 2.372 98 GHz -57.328 dBm	ho								
N 1 f 2.400 00 GHz -56 204 dBm N 1 f 2.390 00 GHz -60.276 dBm N 1 f 2.372 98 GHz -57.328 dBm Image: State of the state of				# VBW 3	00 kHz		Sweep		
N 1 f 2.390 00 GHz -60 276 dBm N 1 f 2.372 98 GHz -57.328 dBm Image: State	art 2.30 Res BW	100 kHz		Y	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 tes BW	100 kHz RC SCL 1 f	2.402 00 GHz	۲ 0.877 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 tes BW R MODE TR N 1 N 1	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 tes BW R MODE TR N 1 N 1 N 1	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 Res BW N 1 N 1 N 1 N 1	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 tes BW N 1 N 1 N 1 N 1	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 Res BW R MODE TR N 1 2 N 1 3 N 1 4 N 1 5 5 6 7	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 Res BW R MODE TR N 1 2 N 1 3 N 1 4 N 1 5	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
STATUS	art 2.30 Res BW R MODE TR N 1 N 1 N 1 N 1	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn	FUNCTION	FUNCTION WIDTH		10.00 ms	s (10001 pt
	art 2.30 les BW R MODE TR N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1	100 kHz RC SCL 1 f 1 f 1 f	2.402 00 GHz 2.400 00 GHz 2.390 00 GHz	Ƴ 0.877 dBn -56.204 dBn -60.276 dBn		FUNCTION WIDTH		10.00 ms	s (10001 pt

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Emission

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission

		yzer - Swept SA												
R Renter Fr	RF	50 Ω A			SENSE	:INT		AL			_og-Pwr			0 AM Feb 24, 20 RACE 1 2 3 4
				PNO: Fast IFGain:Low		ig: Free l tten: 24 d			Avg Ho	old: 5	000/5000			
0 dB/div		fset 6.4 dE 0.00 dBr										Mkr1	2.47 0.	9 99 GH 359 dBi
10.0	1—													
0.00														
20.0														-20.26 d
30.0														
40.0 	<u>^2</u> 4		3											
60.0 ***		فيراحهم المطابط	- Same	anatsislan an dar	a an	والأجريا الأرجرية	aslida ay bi	a desintation	a hala shakili shili a	-	dayaa dayaa daga		is heles and hele	lina linaitinas
70.0		al la facto de constant		l so e ti den a de	h@	a da ta ang katang k	aalaha ay ba	a dadhi sa		al an den son p	den serie (n. d.) or e		le le tra contra de la	
	600 GI				#VBW 3	00 kHz					Swee	p 10.0	Stop 2. 00 ms	57600 GH (10001 pt
70.0 Start 2.47 Res BW	600 GI 100 KI	z	x		Y	FUN	CTION	FUNC	FION WIDTH		Swee	p 10.0	00 ms	57600 GH (10001 pt
itart 2.47 Res BW	600 GI 100 KI	Iz	× 2.479 99 GH	z (Ƴ).359 dBm	FUNG		FUNC	FION WIDTH		Swee	p 10.	00 ms	57600 GI (10001 pi
10.0 tart 2.47 Res BW	600 GI 100 KI	z	× 2.479 99 GH 2.483 50 GH 2.500 00 GH	z (z -58 z -59	Y).359 dBm).296 dBm).843 dBm	FUNG		FUNCT	FION WIDTH		Swee	p 10.	00 ms	57600 GI (10001 p
0.0 tart 2.47 Res BW KR MODE TR 1 N 1	600 GI 100 KI	z	× 2.479 99 GH 2.483 50 GH	z (z -58 z -59	Ƴ).359 dBm 3.296 dBm	FUNG		FUNC	FION WIDTH		Swee	p 10.	00 ms	57600 GI (10001 p
tart 2.47 Res BW KR MODE TR 1 N 1 2 N 1 3 N 1 4 N 1 5 5	600 GI 100 KI	z	× 2.479 99 GH 2.483 50 GH 2.500 00 GH	z (z -58 z -59	Y).359 dBm).296 dBm).843 dBm	FUNG		FUNC	FION WDTH		Swee	p 10.	00 ms	57600 Gi (10001 p
tart 2.47 Res BW KR MODE TR 1 N 1 2 N 1 3 N 1 4 N 1 5	600 GI 100 KI	z	× 2.479 99 GH 2.483 50 GH 2.500 00 GH	z (z -58 z -59	Y).359 dBm).296 dBm).843 dBm	FUNG		FUNC	TION WIDTH		Swee	p 10.	00 ms	57600 Gi (10001 p
itart 2.47 Res BW I N 1 3 N 1 4 N 1 5 6 7 8 9	600 GI 100 KI	z	× 2.479 99 GH 2.483 50 GH 2.500 00 GH	z (z -58 z -59	Y).359 dBm).296 dBm).843 dBm	FUNG		FUNC	FION WIDTH		Swee	p 10.	00 ms	57600 GI (10001 p
tart 2.47 Res BW KR MODE TR 1 N 1 2 N 1 3 N 1 5 0 6 6 7 7 8 9 9	600 GI 100 KI	z	× 2.479 99 GH 2.483 50 GH 2.500 00 GH	z (z -58 z -59	Y).359 dBm 3.296 dBm).843 dBm	FUNG		FUNC	TION WIDTH		Swee	p 10.	00 ms	57600 Gi (10001 p
Image: Constraint of the second sec	600 GI 100 KI	z	× 2.479 99 GH 2.483 50 GH 2.500 00 GH	z (z -58 z -59	Y).359 dBm 3.296 dBm).843 dBm	FUNG		FUNC	FION WIDTH		Swee	p 10.	00 ms	57600 GF (10001 pt

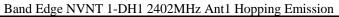
Condit	tion	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVN	T	2-DH3	2402	Ant 1	No-Hopping	-56.068	-20	Pass
NVN	T	2-DH3	2480	Ant 1	No-Hopping	-55.246	-20	Pass

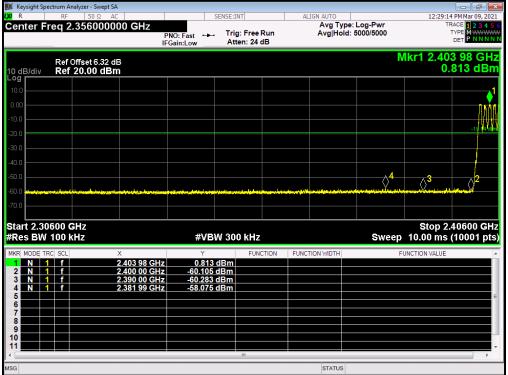
Band Edge NVNT 2-DH3 2480MHz Ant1 No-Hopping Emission

📜 Keysight Spe 🗶 R	ctrum Analyzer - Sv RF 50 S		054	SE:INT		IGN AUTO		00-20-2	AM Feb 24, 202
		00000 GHz	NO: Fast +++ Gain:Low	Trig: Free Ru Atten: 24 dB		Avg Type: Avg Hold:		TF	AM FED 24, 202 RACE 1 2 3 4 5 TYPE M WWW DET P N N N N
10 dB/div Log	Ref Offset 6 Ref 20.00						N	lkr1 2.48 -1.	0 04 GH 128 dBr
	1								
-10.0									
-20.0									-21.98 df
-40.0		3							
-60.0		ante a se a transmissione de la companya de la comp	igen af de ser far an de ser gezege	ter og te veter til det og stare	lehitrist seyataa kad	ere vet teget toerteeten de	المرجوب خاصياتها والماليل	an a	lyn Aperski diw in Abdalau
Start 2.47 Res BW			#VBW	300 kHz			Sweep	Stop 2. 10.00 ms	57600 GF (10001 pt
MKR MODE TR		Х	Y	FUNCTIO	N FUNC	TION WIDTH	FI	JNCTION VALUE	
1 N 1 2 N 1 3 N 1 4 N 1	f f f f	2.480 04 GHz 2.483 50 GHz 2.500 00 GHz 2.483 95 GHz	-1.128 dE -58.622 dE -59.938 dE -57.235 dE	m m					
5 6 7									
8 9 10									
11				III		STATUS			4
SG						STATUS			

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	3-DH5	2402	Ant 1	No-Hopping	-56.797	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-54.957	-20	Pass

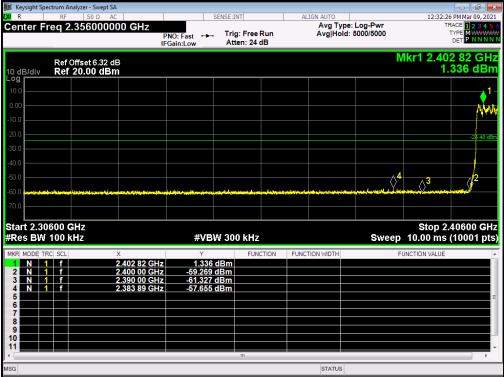
		Analyzer - Swept SA											
R	RF				SENSE:IN	IT		ALI		vne: l	Log-Pwr	08:30	5:27 AM Feb 24, 20 TRACE 1 2 3 4
enter F	req 2	2.35600000	F	PNO: Fast ↔ Gain:Low		: Free R en: 24 di					000/5000		
0 dB/div		Offset 6.32 dE f 20.00 dBm											01 95 GH 0.237 dB
.og 10.0													1
0.00													i A
D.O													-20.69 c
).0).0													
).0												<mark>4</mark> 3	²
0.0 	n thank the second	eller et stat han gestimen alt annae	egentite the constraints of the second	nang langaran ng mang mang mang mang mang mang mang	and the second	aji ina aka Afairo	di tanga laha	*****	konstransjol	l,ngla.htist	Antonio arreitariante	An of March 1999	
tart 2.30	0600	GHz										Stop	2.40600 GI
Res BW	100	kHz		#VB	W 300) kHz					Sweep	10.00 m	s (10001 pi
KR MODE T	RC SCL		x	Y		FUNCT	TION	FUNCT	ION WIDTH	1		UNCTION VALU	E
1 N 1			2.401 95 GHz 2.400 00 GHz		dBm					_			
3 N 1	1 f	2	2.390 00 GHz	-59.121	dBm								
4 <u>N</u> '	1 f	2	2.388 53 GHz	-57.499	dBm								
6													
7													
8 9													
0													
1													
à									STATU	JS			


Band Edge NVNT 3-DH5 2402MHz Ant1 No-Hopping Emission


Band Edge NVNT 3-DH5 2480MHz Ant1 No-Hopping Emission

Keysight S	Spectru	m Ana	lyzer - Swept SA	<u> </u>		-					ping Lin		
R		RF	50 Ω AC			SENSE:	INT		AL	IGN AUTO		08:44:	14 AM Feb 24, 20
enter	Fred	 2 .(5260000		PNO: Fast IFGain:Low		g: Free ten: 24			Avg Type: Avg Hold:		1	TYPE MWWW DET P N N N
0 dB/div og			ffset 6.4 dB 2 0.00 dBn									Mkr1 2.47 -0	79 96 GH .988 dBr
	1-												
10.0	1												22 37 dl
20.0													22.37 d
i0.0		∑ <mark>2</mark>		\\									
io.o <mark>***</mark>	~	harren a	inikal pilen an analikap		in Marylyn Allen I myr y fe	ar for a land of the second	i-lissi tingi.	bach pa	ويترا أوسطوا	ەر بىرىنىيە بەر يەر يەر يەر يەر يەر يەر يەر يەر يەر ي	ili qaaliyaa ku tadiiyaad		ette tilsen en franken killent
tart 2.4 Res BV					#	≇VBW 30	0 kHz				Sweep	Stop 2 5 10.00 ms	2.57600 GI (10001 pi
KR MODE	TRC S	SCL		х		Y	FUN	CTION	FUNCT	TION WIDTH		FUNCTION VALUE	
1 N	1	f		2.479 96 GH		.988 dBm							
2 N	1	f		2.483 50 GH 2.500 00 GH		.570 dBm .178 dBm							
4 N	1	f		2.496 85 GH		.339 dBm							
5													
6													
7 <u> </u>													
9													
0													
1													
	_												
G										STATUS			

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant 1	Hopping	-58.935	-20	Pass
NVNT	1-DH1	2480	Ant 1	Hopping	-57.013	-20	Pass



Band Edge NVNT 1-DH1 2480MHz Ant1 Hopping Emission

		nalyzer - Swept SA												
enter F	_R , req 2	50 Ω AC .5260000	00 GHz	PNO: Fast ↔ FGain:Low		yr j: Free R en: 24 di		AL	IGN AUTO Avg Ty Avg Ho			1	TR T	PM Mar 09, 202 ACE 1 2 3 4 TYPE M DET P N N N
I0 dB/div		Offset 6.4 dB 20.00 dBr										Mkr1 2	2.47 0.4	7 00 GH 449 dBr
10.0														
-10.0														-20.64 dt
30.0														
50.0	\Diamond^2			na a bà ata Masteria	- Line - He - w		ann achan	Auronau	and has streamed	- Seconda				ana manadar basa
70.0														
tart 2.47				#VE	3W 30	0 kHz					Sweep	Ste 5 10.00	op 2.: 1 ms (57600 GI (10001 pt
tart 2.47 Res BW	100 k	(Hz	X 2.477 00 GHz 2.483 50 GHz 2.500 00 GHz 2.497 07 GHz	Y 0.44	9 dBm 6 dBm 6 dBm	0 KHZ	TION	FUNCT	TION WIDTH			Ste D 10.00) ms (57600 GI 10001 pi
tart 2.47 Res BW KR MODE TR 1 N 1 2 N 1	100 k RC SCL	(Hz	2.477 00 GHz 2.483 50 GHz 2.500 00 GHz	0.44 -60.17 -59.18	9 dBm 6 dBm 6 dBm		TION	FUNCT	FION WIDTH			0 10.00) ms (57600 GI 10001 pi
4 N 1 5 6 7	100 k RC SCL	(Hz	2.477 00 GHz 2.483 50 GHz 2.500 00 GHz	0.44 -60.17 -59.18	9 dBm 6 dBm 6 dBm		TION	FUNCT	TION WIDTH			0 10.00) ms (57600 GH (10001 pt

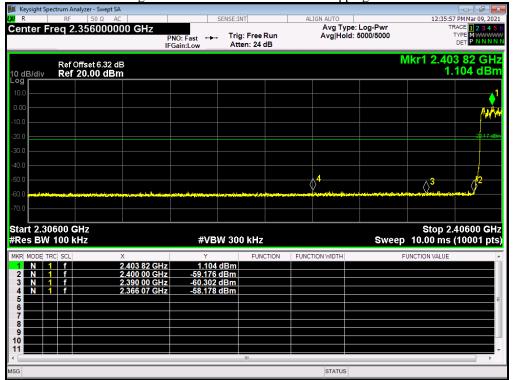
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2-DH3	2402	Ant 1	Hopping	-53.169	-20	Pass
NVNT	2-DH3	2480	Ant 1	Hopping	-53.504	-20	Pass

Band Edge NVNT 2-DH3 2402MHz Ant1 Hopping Emission

Band Edge NVNT 2-DH3 2480MHz Ant1 Hopping Emission

Keysight Spe	ectrum Ar	alyzer - Swept SA						Ant		<u> </u>		
U R	RF	50 Ω AC			SENSE:II	T		ALI	IGN AUTO		12:39:4	41 PM Mar 09, 202
Center Fi	req 2	.52600000		PNO: Fast ↔ FGain:Low		j: Free R en: 24 d			Avg Type Avg Hold:		1	TRACE 1 2 3 4 5 TYPE MWWW DET P N N N N
10 dB/div		Dffset 6.4 dB 20.00 dBm									0 Wkr1 2.47 0	76 82 GH: .913 dBn
10.0												
0.00												
-20.0												-24.53 dB
-40.0			A 4 - 2									
60.0	$\left \right\rangle^2$	and the second secon	2.0 ³	Nerti ava plate ve staat 24.	de et die maar ook die te	مسروبه	ni di selatan	a san the second	nauf a thinn a consta	undet also entre la colatione, de la compañía de la	ud the stid path of Longitic term	ngi mangul nukhanding
70.0	7600 G	Hz									Stop 2	2.57600 GH
Res BW	100 k	Hz		#V	BW 300	0 kHz				Sweep	10.00 ms	(10001 pt
IKR MODE TF	RC SCL		x	Y		FUNC	TION	FUNCT	ION WIDTH		FUNCTION VALUE	
1 N 1	f		2.476 82 GHz 2.483 50 GHz	0.91	3 dBm 3 dBm							
2 N 1 3 N 1	f		2.500 00 GHz	-60.78	1 dBm							
2 N 1 3 N 1 4 N 1 5 6	f			-60.78								
-			2.500 00 GHz	-60.78	1 dBm							
6 7 8			2.500 00 GHz	-60.78	1 dBm	III						

E-mail: NTC@NTC-CERT.COM



Page 67 of 84

Report No.: NTC-ER203011

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	3-DH5	2402	Ant 1	Hopping	-56	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-54.923	-20	Pass

Band Edge NVNT 3-DH5 2402MHz Ant1 Hopping Emission
--

Band Edge NVNT 3-DH5 2480MHz Ant1 Hopping Emission

		nalyzer - Swept SA										
XI R	RF	50 Ω AC			SENSE:	INT		AL	IGN AUTO	: Log-Pwr		4 PM Mar 09, 2021 RACE 1 2 3 4 5 (
Center Fr	eq z	.52600000		PNO: Fast FGain:Low		g: Free ten: 24			Avg Hold:			
10 dB/div		Offset 6.4 dB 20.00 dBm								Ν	/kr1 2.48 1	0 15 GHz 129 dBm
10.0	1 —											
0.00												
-10.0												-22.74 dDm
-30.0												
-40.0												
-50.0	Q^2	A A A A A A A A A A A A A A A A A A A	³			launa an Andre	والمارية الم	بعياسية	hite and an and a state of the	مريد ورواية ورواية والمراجع		and the other sector
-70.0												
Start 2.47											Stop 2	.57600 GHz
#Res BW	100	(Hz		#	VBW 30	0 kHz				Sweep	10.00 ms	(10001 pts)
MKR MODE TR	_		x		Y	FUN	CTION	FUNC	TION WIDTH	F	UNCTION VALUE	
1 N 1 2 N 1	f		2.480 15 GHz 2.483 50 GHz		.129 dBm .339 dBm							_
3 N 1	f		2.500 00 GHz	-59	629 dBm							
4 N 1	f		2.485 96 GHz	-57	663 dBm			+				=
6												
7 8												
9												
10												
•						111						+
ISG									STATUS			
	_											

11. Conducted Spurious Emissions

11.1. Applied procedures / Limit

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

11.2. Test procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold sweep points ≥ investigated frequency range/RBW.

11.3. Deviation from standard

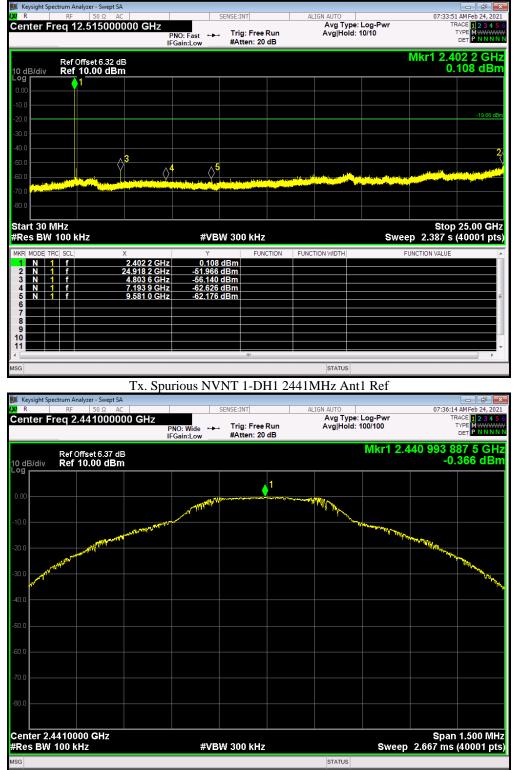
No deviation.

11.4. Test setup

11.5. Test results

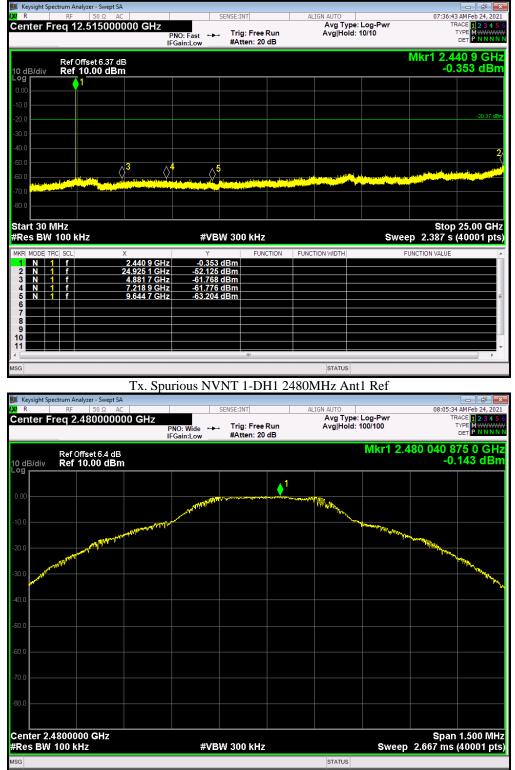
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant 1	-52.298	-20	Pass
NVNT	1-DH1	2441	Ant 1	-51.754	-20	Pass
NVNT	1-DH1	2480	Ant 1	-50.287	-20	Pass

Page 69 of 84

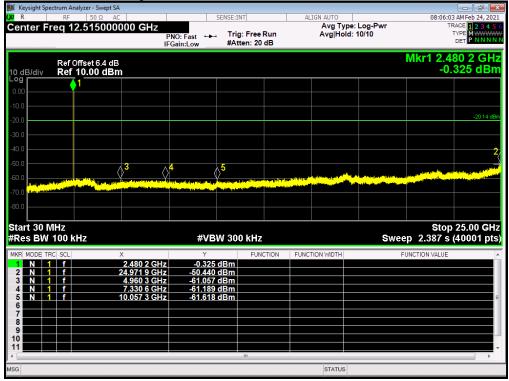

Keysight Spectrum Analyzer - Swept SA			
R RF 50 Ω AC	SENSE:INT	ALIGN AUTO	07:33:21 AM Feb 24, 2021
Center Freq 2.402000000 GHz	PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 20 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 12345 TYPE MWWW DET PNNNN
Ref Offset 6.32 dB 0 dB/div Ref 10.00 dBm		Mkr1 2.4	01 992 987 5 GH 0.338 dBr
0.00			
10.0	- Party Martin Martin Contraction	and a second state of the second s	
20.0		Constrained and a second s	And a state of the
0.0			AND REAL PROPERTY OF A DESCRIPTION OF A
0.0			····
0.0			
0.0			
0.0			
0.0			
enter 2.4020000 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 1.500 Mi 2.667 ms (40001 pt
SG		STATUS	

Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Ref

Page 70 of 84


Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Emission

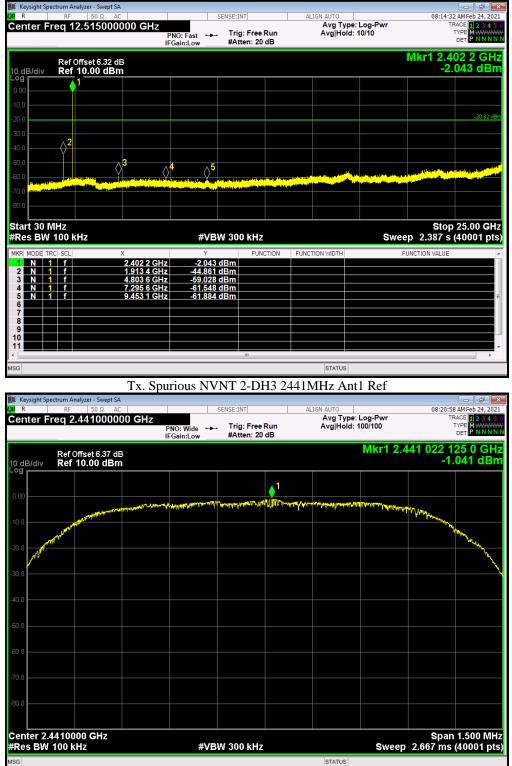
Page 71 of 84


Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Emission

Page 72 of 84

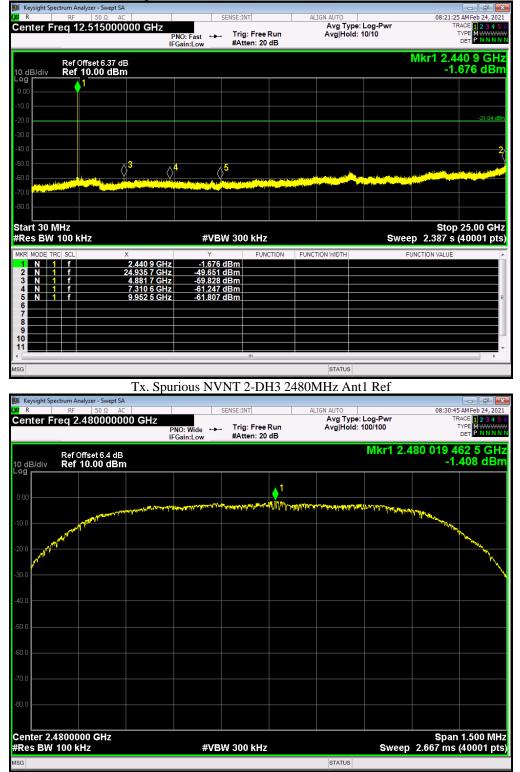
Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2-DH3	2402	Ant 1	-44.042	-20	Pass
NVNT	2-DH3	2441	Ant 1	-48.609	-20	Pass
NVNT	2-DH3	2480	Ant 1	-48.972	-20	Pass

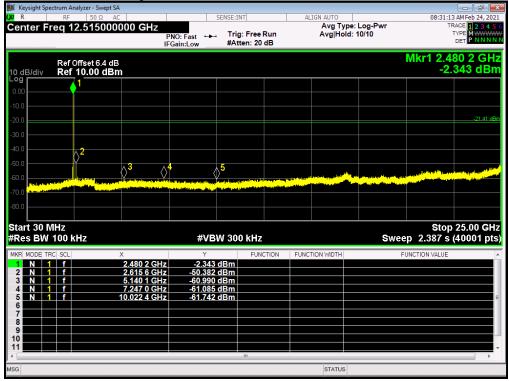

Keysight Spectrum Analyzer - Swept SA			
R RF 50 Ω AC Center Freq 2.402000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pv	08:14:03 AM Feb 24, 2021 Nr TRACE 12 3 4 5
	PNO: Wide ↔ Trig: Free IFGain:Low #Atten: 20	Run Avg Hold: 100/100	
Ref Offset 6.32 dB 0 dB/div Ref 10.00 dBm		Mkı	r1 2.402 024 150 0 GHz -0.818 dBm
		↓ 1	
0.0	and the second	and the forest of the second	Marine Mari
20.0			and the second sec
30.0			
40.0			
0.0			
0.0			
0.0			
0.0			
enter 2.4020000 GHz Res BW 100 kHz	#VBW 300 kH	z	Span 1.500 MH: weep 2.667 ms (40001 pts
SG		STATUS	

Tx. Spurious NVNT 2-DH3 2402MHz Ant1 Ref

Page 73 of 84



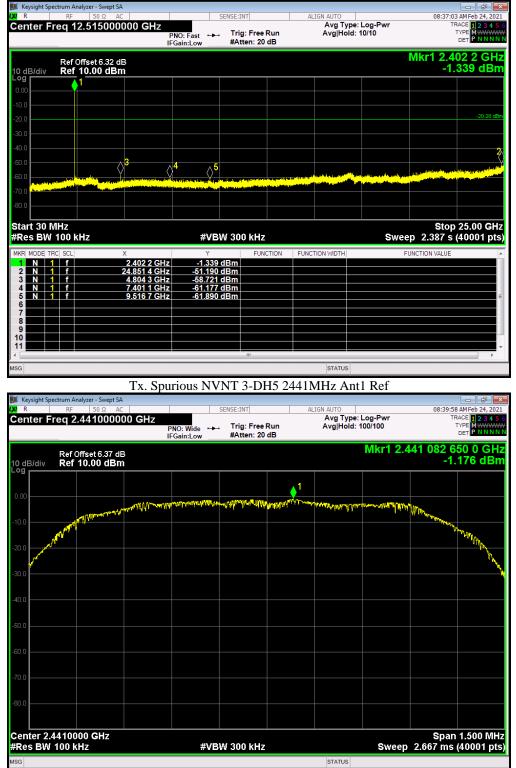
Page 74 of 84


Tx. Spurious NVNT 2-DH3 2441MHz Ant1 Emission

Page 75 of 84

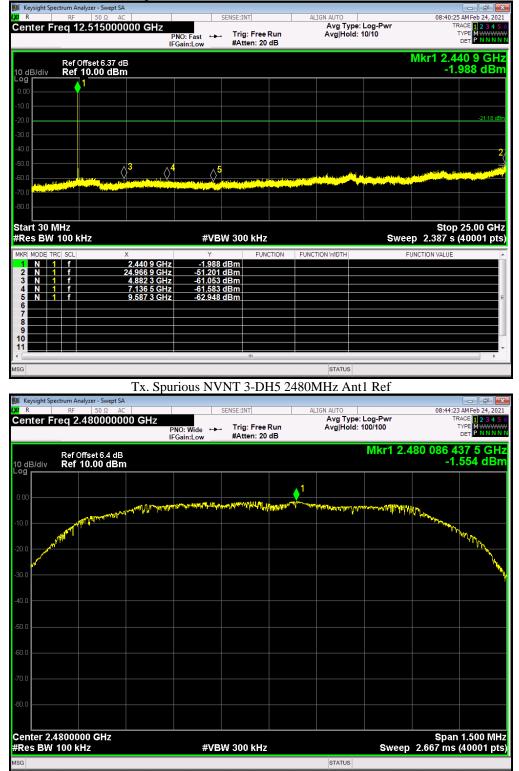
Tx. Spurious NVNT 2-DH3 2480MHz Ant1 Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	3-DH5	2402	Ant 1	-50.9	-20	Pass
NVNT	3-DH5	2441	Ant 1	-50.024	-20	Pass
NVNT	3-DH5	2480	Ant 1	-50.036	-20	Pass

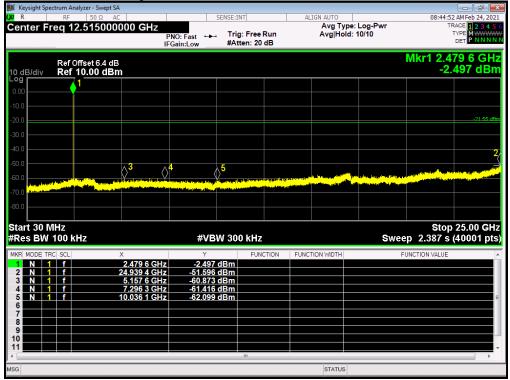

Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC	SENSE:INT	ALIGN AUTO	08:36:35 AM Feb 24, 2021
enter Freq 2.402000000 GHz	PNO: Wide ++ Trig: Free F IFGain:Low #Atten: 20	Avg Type: Log-Pwr Run Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Offset 6.32 dB 0 dB/div Ref 10.00 dBm		Mkr1	2.402 086 025 0 GHz -0.280 dBn
-		≜ 1	
0.0 Manufactor and the state of	กุรุกปุทภาจะสะเทศเปราสมมัตร (194) เรากปุทภาจะสะเทศเปราสมมัตร (194)	al V Bar and the address of the second field	AND
			and all water
0.0			Nr.
0.0			
0.0			
0.0			
0.0			
30.0			
enter 2.4020000 GHz Res BW 100 kHz	#VBW 300 kHz	Swe	Span 1.500 MH eep 2.667 ms (40001 pts
SG		STATUS	

Tx. Spurious NVNT 3-DH5 2402MHz Ant1 Ref

Page 76 of 84



Page 77 of 84

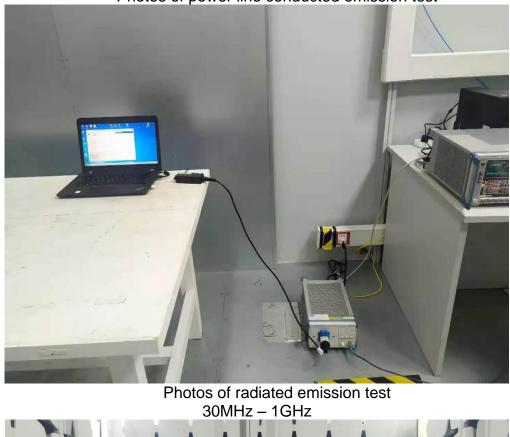

Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Emission

Page 78 of 84

Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission

12. Antenna Requirement

12.1. Standard requirement

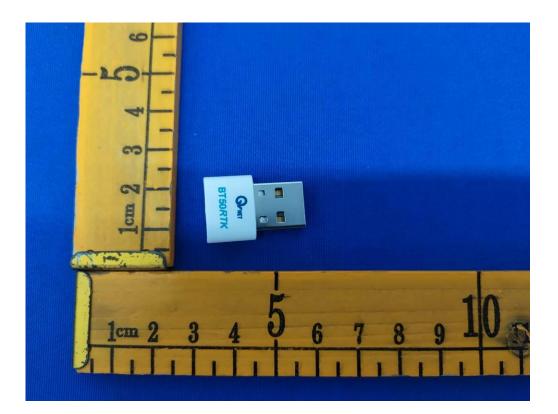

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiatoris reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

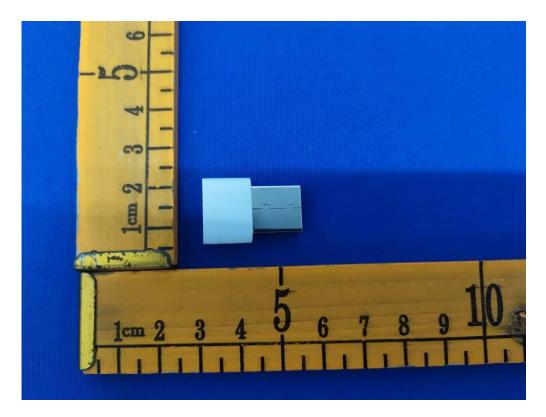
12.2. EUT Antenna

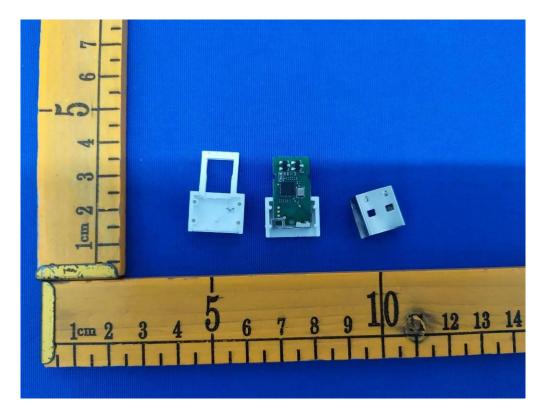
The antenna is Integral PCB Antenna and no consideration of replacement. Antenna gain is Maximum 1.5 dBi from 2.4GHz to 2.5GHz.

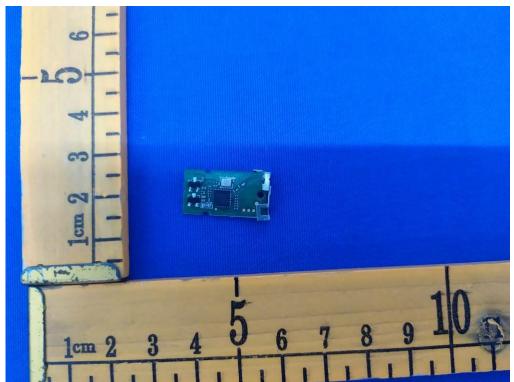
13. Test setup photograph

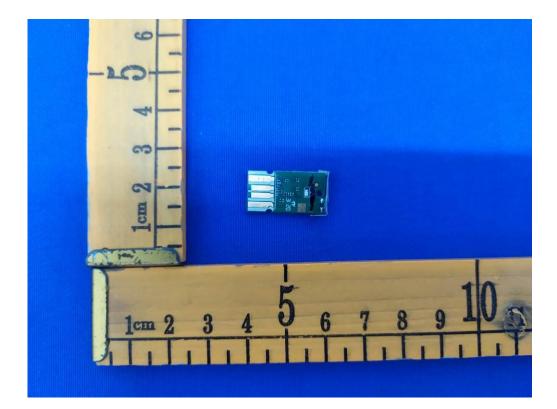
Photos of power line conducted emission test


Page 81 of 84


Photos of radiated emission test Above 1GHz


14. Photos of the EUT





Page 84 of 84

--END OF REPORT--