

FCC ID: ABZ99FT5000 DECLARATION OF COMPLIANCE SAR ASSESSMENT

Government & Enterprise Mobility Solutions EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322 Date of Report: Report Revision: Report ID: August 1, 2005 Rev. C FCC rpt PCII_PMUF1105A_Rev C_050801 SR2172

Responsible Engineer: Date/s Tested: Manufacturer/Location: Sector/Group/Div.: Date submitted for test: **DUT Description:** Test TX mode(s): Max. Power output: Nominal Power: **Tx Frequency Bands:** Signaling type: Model(s) Tested: Model(s) Certified: Serial Number(s): **Classification: Rule Part(s):**

Deanna Zakharia (Principle Staff EME Eng.) 7/12/05 - 7/20/05 Motorola, Penang GEMS 6/22/05 HT1250LS 2.5W Portable Transceiver 746-794MHZ; Full Keypad CW 3.0 W 2.5 W 746-794 MHz FM PMUF1105A **PMUF1105A** 008TCL1865 Occupational/Controlled 90

Applicable Accessories: Antenna(s):

NAF5083A Whip Dipole 746-794MHz 1/2 wave length -0.5dBi gain

Battery(ies): NNTN5332A Battery Shell (Holds 12 AA batteries)

Body-worn: NTN8266B Belt clip

Audio Accessories PMLN4418B (Ear bud with mic)

Max. Calc. 1-g/10-g Avg. SAR: 0.802/0.578mW/g (Body) Max. Calc. 1-g/10-g Avg. SAR: 1.92/1.36mW/g (Face)

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

This reporting format is consistent with the test report guidelines of the TIA TSB-150 December 2004 The results and statements contained in this report pertain only to the device(s) evaluated.

Ken Enger's signature on file Ken Enger GEMS EME Lab Senior Resource Manager, Laboratory Director,

Certification Date: 8/02/05

Certification No.: 050707AD

Approval Date: 8/2/05

Introduction and Overview	3
2.0 References, Standards, and Guidelines	
2.1 SAR Limits	
3.0 Description of Device Under Test (DUT)	. 5
4.0 Description of Test System	. 5
4.1 Description of Robotics/Probes/Readout Electronics	. 5
4.2 Description of Phantom(s)	. 5
4.3 Description of Equivalent Tissues	. 6
5.0 Additional Test Equipment	
6.0 SAR Measurement System Verification	
6.1 Equivalent Tissue Test results	. 7
6.2 System Check Test results	. 8
7.0 DUT Test Strategy and Methodology	. 8
7.1 Test Plan	
7.2 Device Positioning Procedures	19
8.0 Environmental Test Conditions	19
9.0 Test Results Summary	10
9.1 Highest S.A.R. results calculation methodology	
10.0 Conclusion	11

APPENDICES

А	Measurement Uncertainty	12
В	Probe Calibration Certificates	15
С	Dipole Calibration Certificates	
D.	Test System Verification Scans	35
E.	DUT Scans (Shortened scans & highest SAR configurations)	43
F.	DUT Supplementary Data (e.g. Power Slump)	47
G.	DUT Test Position Photos.	49

REVISION HISTORY

Date	Revision	Comments
3/18/02	0	Initial Release
1/28/03	А	Pilot Release
5/22/03	В	Chest pack model HLN6602A was removed from accessory offering
8/01/05	С	Release of new battery accessory compliance results

1.0 Introduction and Overview

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (S.A.R.) measurements performed at the GEMS EME Test Lab for model numbers PMUF1105A, FCC ID: ABZ99FT5000 using the new offered battery shell and belt clip accessories.

The test results presented herein clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of **8.0 mW/g** per the requirements of 47 CFR 2.1093(d).

2.0 Reference Standards and Guidelines

This product is designed to comply with the following national and international standards and guidelines.

- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-1999 Edition
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6. Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, 1999
- Australian Communications Authority Radiocommunications (Electromagnetic Radiation -Human Exposure) Standard 2003
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9KHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"

2.1 SAR Limits

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1-g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Localized SAR (Head and Trunk 10-g)	2.0	10.0		

3.0 Description of Device Under Test (DUT)

FCC ID: ABZ99FT5000 is a hand held portable transceiver with LTR/Passport, and DTMF capabilities. The radio's functional use is at the face in PTT mode or at the body using optional body worn and audio accessories.

The radio operates on traditional Trunked radio systems, PassPort trunked systems (an enhanced trunking protocol for wide area dispatch), LTR trunked systems (a transmission based trunking protocol for single site trunking) and Conventional radio systems (single channel unit to unit communications).

This device will be marketed to and used by employees solely for work-related operations, such as public safety agencies, e.g. police, fire and emergency medical. User training is the responsibility of these agencies that are expected to employ the usage instructions, safety information and operational cautions set forth in the user's manual, instructional sessions or other means. Motorola also makes available to its customers training classes on the proper use of two-way radios. FCC ID: ABZ99FT5000 operates in the 746-794MHz band. The rated power is 2.5 watts with a maximum output capability of 3.0 watts as defined by the upper limit of the production line final test station.

Test Output Power

A table of the characteristic power slump versus time is provided in Appendix F.

4.0 Description of Test System

4.1 Descriptions of Robotics/probes/Readout Electronics

The laboratory utilizes a Dosimetric Assessment System (DASY4TM) S.A.R. measurement system Version 4.5 B19.2 manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot with ET3DV6 and EX3DV3 E-Field probes. Please reference the SPEAG user manual and application notes for detailed probe, robot, and S.A.R. computational procedures. Section 5.0 presents relevant test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum S.A.R. distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

4.2 **Description of Phantom(s)**

4.2.1 Flat Phantom

Phantom Type	Phantom Material	Phantom Dimensions (cm)	Support structure opening dimensions (cm)	Support structure material	Loss Tangent (wood)
	High Density Polyethylene				
Flat	(HDPE)	80x30x20x0.2	68.58x20.32	Wood	< 0.05

4.2.2 SAM Phantom

Phantom Type	Material Parameters	Material Thickness (mm)	Support structure material	Loss Tangent (wood)
NA	200MHz -3GHz; Er = <5, Loss Tangent = <0.05	2mm +/- 0.2mm	Wood	< 0.05

4.3 Description of Equivalent tissues

Type of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques" The simulated tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

% of listed	8351	MHz
ingredients	Head	Body
Sugar	57	44.9
DGBE		
(Glycol)	NA	NA
Diacetin	NA	NA
De ionized -		
Water	40.45	53.06
Salt	1.45	.94
HEC	1	1
Bact.	0.1	0.1

4.3.2 Simulated Tissue Composition

Reference section 6.1 for target parameters

5.0 Additional Test Equipment

			Calibration
Equipment Type	Model Number	Serial Number	Due Date
Power Meter	437B	3125U16028	9/29/2005
Power Meter	437B	3737U26425	11/1/2005
Sensor	8482B	3318A07392	11/22/2005
Sensor	8481H	2703A14631	9/29/2005
Power Meter	E4418B	GB40206480	11/22/2005
Sensor	8482B	3318A07546	9/27/2005
Directional Coupler (NARDA)	3020A	40295	18-Jul-06
Sig Gen	E4421B	RSHPBT02	11/3/2005
AMP (Amplifier Research)	1W1000	16625	CNR
Tissue Station			
Network Analyzer (HP)	8753D	3410A06417	7-Feb-06
Dielectric Probe Kit (HP)	85070C	US99360076	CNR

6.0 SAR Measurement System Verification

The S.A.R. measurements were conducted with probe model/serial number ET3DV6/SN1383. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the system performance test results and the probe/dipole calibration certificates are included in appendices B and C respectively. The table below summarizes the system performance check results normalized to 1W.

Dipole validation scans at the head from SPEAG are provided in Appendix D. The GEMS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the GEMS EME system performance validation are provided herein.

6.1 Equivalent Tissue Test Results

Simulated tissue prepared for S.A.R. measurements is measured daily and within 24 hours prior to actual S.A.R. testing to verify that the tissue is within 5% of target parameters at the center of the transmit band. This measurement is done using the Agilent (HP) probe kit model 85070C and a HP8753D Network Analyzer.

FCC Body						
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m		
835	55.2	52.6-54.2	0.97	0.99-1.01		
770	55.5	53.3-54.6	0.96	0.92-0.94		

Target versus measured tissue parameters (7/12, 14, 19 & 20/05)

IEEE Head					
Di-electric Di-electric Conductivity Conductivity					
Frequency (MHz)	Constant	Constant	Target	Meas. (Range)	
Frequency (WIIIZ)	Target	Meas. (Range)	S/m	S/m	
770	41.8	43.0-43.4	0.89	0.92-0.93	

6.2 System Check Test Results

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #	System Perf. Result when normalized to 1W (mW/g)	Reference S.A.R @ 1W (mW/g)	Test Date(s)
	FCC					7/12, 14, 19 &
1383	Body	2/24/05	D835V2/426	9.77 +/- 0.38	9.37 +/- 10%	20/2005 (4 days)

Note: See Appendix D for an explanation of the reference S.A.R. targets stated above. (System performance results reflects the median performance $+/-\frac{1}{2}$ of the test date(s) performance ranges)

The DASY4[™] system is operated per the instructions in the DASY4[™] Users Manual. The complete manual is available directly from SPEAG[™]. All measurement equipment used to assess EME S.A.R. compliance was calibrated according to 17025 A2LA guidelines.

7.0 DUT Test Strategy and Methodology

DUT Configuration

PTT operation using Frequency Modulation (FM) in CW transmission mode The DUT's PTT switch is engaged and the radio is placed in the reported test positions presented in Appendix G.

7.1 Test Plan

All options and accessories listed on the cover page and sec 3.0 of this report were considered in order to develop the S.A.R. test plan for this product. S.A.R. measurements were performed using a flat phantom with the applicable simulated tissue to assess performance at the body and face using CW transmission mode.

Note that a coarse-to-cube approximation methodology was utilized to determine the worst-case S.A.R. performance configuration for each applicable body location. The test configurations that produced the highest S.A.R. results for each body position using the coarse-to-cube approximation methodology were assessed using the full DASY4TM coarse and 7x7x7 cube scans.

Assessments at the Body [Page 10 of 50; Table 1]

- Assessment of new offered battery shell and belt clip using the relevant worst case test configurations at the body from the previous filing.

Assessments at the face [Page 11 of 50; Table 2]

- Assessment of new offered battery shell and belt clip using the relevant worst case test configurations from the previous filing.

Shortened scan assessment at the face [Appendix E]

A "shortened" scan was performed using the test configuration that produced the highest S.A.R. results overall at the body and the face. Note that the shortened scan is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, perform a cube scan only. The shortened scan represents the cube scan performance results.

7.2 Device Positioning Procedures

Reference Appendix G for photos of the DUT tested positions.

7.2.1 Body

The DUT was positioned at the center of the flat phantom with the belt clip flat against the bottom. Attached audio accessories are allowed to hang straight down from the radio.

7.2.2 Head

NA

7.2.3 Face

The DUT was positioned at the center of the flat phantom with a 2.5cm separation distance from the front housing.

8.0 Environmental Test Conditions

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was 15cm +/- 0.5cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the S.A.R. tests reported herein:

	Target	Measured
		Range: 20.4-21.9°C
Ambient Temperature	20 - 25 °C	Avg. 21.15°C
		Range: 49.6-55.7%
Relative Humidity	30 - 70 %	Avg. 52.65%
		Range: 20.3-21.8°C
Tissue Temperature	NA	Avg. 21.05 °C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the S.A.R scans are repeated. However, the lab environment is sufficiently protected such that no S.A.R. impacting interference has been experienced to date.

9.0 Test Results Summary

All S.A.R. results obtained by the tests described in Section 7.1 are listed below. As noted in section 7.1, a coarse-to-cube approximation methodology, was utilized to ascertain the worst-case test configuration for each body location. The worst case test configurations observed for each body location were then assessed using the full DASY4TM coarse and 7x7x7 cube methodology, and they are presented as bolded results. The associated S.A.R. plots are provided in Appendix E. Appendix E also presents a shortened S.A.R. cube scan to assess the validity of the calculated results presented herein. Note: The results of the shortened cube scan presented in Appendix E, demonstrates that the scaling methodology used to determine the calculated S.A.R. results presented herein are valid.

					Tab	lei						
	DUT assessment at the body; CW mode											
Run Number/ SN	Antenna	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
Assessment of new offered battery shell (AA)/belt clip with antenna model PMAE4003A												
*CM-Ab-R2-050712- 03/008TCL1865	NAF5083A	776	NNTN5332A w/AA batteries	Against phantom	NTN8266B	PMLN4418B	2.94	-0.51	1.24	0.896	0.71	0.51
CM-Ab-050720- 02/008TCL1865	NAF5083A	746	NNTN5332A w/AA batteries	Against phantom	NTN8266B	PMLN4418B	2.74	0.149	0.75	0.540	0.41	0.30
CM-Ab-050720- 03/008TCL1865	NAF5083A	794	NNTN5332A w/AA batteries	Against phantom	NTN8266B	PMLN4418B	3.09	-0.469	1.01	0.726	0.56	0.40
*Assessment with the worst case test configuration above using the full DASY 4 coarse and 7x7x7 cube scan measurements.												
CM-050720- 05/008TCL1865	NAF5083A	776	NNTN5332A w/AA batteries	Against phantom	NTN8266B	PMLN4418B	2.95	-0.775	1.250	0.920	0.76	0.56

Table1

Table 2												
	DUT assessment at the Face; CW mode											
Run Number/ SN	Antenna	Freq. (MHz)	Battery	Test position	Carry Case	Additional attachments	Initial Power (W)	S.A.R. Drift (dB)	Meas. 1g-S.A.R. (mW/g)	Meas. 10g-S.A.R. (mW/g)	Max Calc. 1g-S.A.R. (mW/g)	Max Calc. 10g-S.A.R. (mW/g)
	Assessment of new offered battery shell (AA)/belt clip with antenna model PMAE4003A											
*CM-Face-R2- 050714- 06/008TCL1865	NAF5083A	776	NNTN5332A w/AA batteries	DUT front @ 2.5cm		None	2.71	-0.503	2.70	1.93	1.68	1.20
CM-Face-050719- 08/008TCL1865	NAF5083A	776	NNTN5332A w/AA batteries	DUT front @ 2.5cm		None	2.70	-0.0019	2.310	1.660	1.28	0.92
*CM-Face-050719- 09/008TCL1865	NAF5083A	776	NNTN5332A w/AA batteries	DUT front @ 2.5cm	NTN8266B	None	3.01	-0.484	2.890	2.060	1.62	1.15
*Assessmer	nt with the wor	rst case t	est configuration	on above u	sing the full l	DASY 4 coarse	e and 7x7	x7 cube s	can and Sho	orten Scan m	easurements	i.
*CM-Face-050719- 07/008TCL1865	NAF5083A	776	NNTN5332A w/AA batteries	DUT front	NTN8266B	None	2.83	-0.935	2.920	2.070	1.92	1.36
(Shorten Scan) CM-Face-050719- 10/008TCL1865	NAF5083A	776	NNTN5332A w/AA batteries	DUT front @ 2.5cm	NTN8266B	None	2.86	-0.336	3.020	2.150	1.71	1.22

Table 2

9.1 Highest S.A.R. results calculation methodology

The calculated maximum 1-gram and 10-gram averaged S.A.R. results reported herein for the full DASY 4^{TM} coarse and 7x7x7 cube measurements are determined by scaling the measured S.A.R. to account for power leveling variations and power slump. For this device the Maximum Calculated 1-gram and 10-gram averaged peak S.A.R. is calculated using the following formula:

Max. Calc. 1-g/10-g Avg. SAR = $((S.A.R. meas. / (10^(Pdrift/10)))*(Pmax/Pint))* DC%$ $P_{max} = Maximum Power (W)$ $P_{int} = Initial Power (W)$ Pdrift = DASY drift results (dB) - (for conservative results positive drifts are not accounted for) SAR_{meas.} = Measured 1 gram averaged peak S.A.R. (mW/g) DC % = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation.

10.0 Conclusion

The highest Operational Maximum Calculated 1-gram and 10-gram average S.A.R. values found for FCC ID: ABZ99FT5000 model PMUF1105A.

At the Body: 1-g Avg. = 0.80mW/g; 10-g Avg. = 0.58mW/g At the Face: 1-g Avg. = 1.92mW/g; 10-g Avg. = 1.36mW/g

These test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of **8.0 mW/g** per the requirements of 47 CFR 2.1093(d).

APPENDIX A Measurement Uncertainty

Uncertainty Budget for Dev	nee e	nuci	rest,	101 30 1		036	112		
							h =	i =	
а	b	с	d	e = f(d, k)	f	g	c x f / e	c x g / e	k
	IEEE	Tol.	Prob		c;	c;	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u i	U j	
Uncertainty Component	section			Div.			(±%)	(±%)	vi
Measurement System									
Probe Calibration	E.2.1	5.9	Ν	1.00	1	1	5.9	5.9	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	æ
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	œ
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.4	Ν	1.00	1	1	3.4	3.4	29
Device Holder Uncertainty	E.4.1	3.8	Ν	1.00	1	1	3.8	3.8	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	æ
Liquid Conductivity (measurement)	E.3.3	3.3	Ν	1.00	0.64	0.43	2.1	1.4	æ
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	Ν	1.00	0.6	0.49	1.1	0.9	æ
Combined Standard Uncertainty			RSS				11	11	506
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				22	22	

Uncertainty Budget for Device Under Test, for 30 MHz to 3 GHz

Cheertainty Dudget for System Fer			cen (m		it phu		h =	i =	
				~	~				
a	b	с	d	e = f(d, k)	f	g	c x f / e	c x g / e	k
		Tol.	Prob.		c _i	c _i	1 g	10 g	
	IEEE 1528	(± %)	Dist.		(1 g)	(10 g)	u _i	u _i	
Uncertainty Component	section			Div.			(±%)	(±%)	v i
Measurement System									-
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	8
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	œ
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	œ
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	œ
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	œ
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	œ
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	œ
Combined Standard Uncertainty			RSS				9	9	99999
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				18	17	

Uncertainty Budget for	System Performance Check	(dipole & flat phantom) for 30 MHz to 3 GHz

Notes for Tables 1 and 2

a) Column headings *a*-*k* are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) *ci* - sensitivity coefficient that should be applied to convert the variability of the

uncertainty component into a variability of SAR.

g) *ui* – SAR uncertainty

h) vi - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty.

Appendix B Probe Calibration Certification

eughausstrasse 43, 8004 Zuric	ry of		chweizerischer Kalibrierdienst ervice suisse d'étalonnage ervizio svizzero di taratura wiss Calibration Service
ccredited by the Swiss Federal of he Swiss Accreditation Servic fultilateral Agreement for the r	e is one of the signatori	ies to the EA	.: SCS 108
Client Motorola CGIS	S	Certificate No: E	T3-1383_Feb05
CALIBRATION O	CERTIFICAT	E	A COMPANY AND AND AND A
Object	ET3DV6 - SN:13	383	
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes	
Calibration date:	February 24, 20	05	E Parameter Constant
Condition of the calibrated item	In Tolerance	State of the second second	
The measurements and the unco	ertainties with confidence	stional standards, which realize the physical units o probability are given on the following pages and ar ony facility: environment temperature (22 ± 3) °C an	e part of the certificate.
The measurements and the unce All calibrations have been condu	ertainties with confidence	probability are given on the following pages and an ory facility: environment temperature (22 ± 3) °C an	e part of the certificate.
The measurements and the unco All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence	probability are given on the following pages and an ory facility: environment temperature (22 ± 3) °C an	e part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B	ertainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence intend in the closed laboration TE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power setsor E44198 Power sensor E4412A Reference 3 dB Attenuator	ertainties with confidence cted in the closed laborati TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence cted in the closed laborati TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00389)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 May-05 May-05
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Aug-05
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2	ertainties with confidence cted in the closed laboration) TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00389)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 May-05 May-05
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence inted in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b) SN: 3013 SN: 617	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	e part of the certificate. Id humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Jan-06
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ertainties with confidence inted in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b) SN: 3013	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house)	e part of the certificate. Id humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Aug-05 Jan-06
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	ertainties with confidence inted in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID #	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05)	e part of the certificate. Id humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	ertainties with confidence inted in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	e part of the certificate. Id humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 84848C	ertainties with confidence inted in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41082180 US3642U01700	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03)	e part of the certificate. Id humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Dec-05
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8548C Network Analyzer HP 8753E	ertainties with confidence inted in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585	probability are given on the following pages and ar ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-04)	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Nov 05
The measurements and the unco	ertainties with confidence inted in the closed laboration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 Name	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00403) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. ES3-3013_Jan05) 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-04) Function	e part of the certificate. d humidity < 70%. Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-06 Jan-06 Scheduled Check In house check: Oct 05 In house check: Nov 05

Certificate No: ET3-1383_Feb05

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

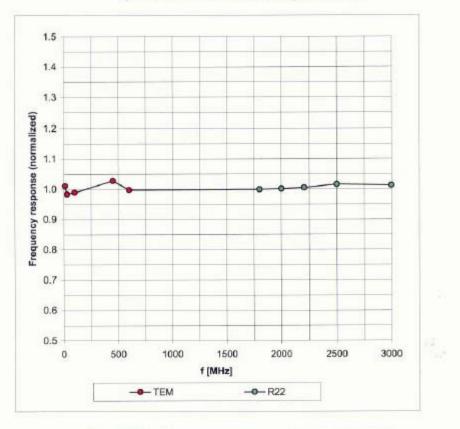
- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1383_Feb05

Page 2 of 9

ET3D	ET3DV6 SN:1383 February 24, 2005							
DAS	SY - Para	mete	rs of Pr	obe: ET	3DV6	SN:	1383	
Sens	itivity in Free	e Space	e ^A			Diode	Compre	ession ^B
	NormX NormY NormZ	1.6	6 ± 10.1% 0 ± 10.1% 7 ± 10.1%	μV/(V/m) ² μV/(V/m) ² μV/(V/m) ²		DCP X DCP Y DCP Z	90 r 90 r 90 r	πV
Sens	itivity in Tiss	sue Sim	nulating Lie	quid (Conve	ersion	Factors	s)	
Please	see Page 8.							
Boun	ndary Effect							
TSL	90	0 MHz	Typical SA	R gradient: 5	% per m	n		
	Sensor Center to Phantom Surface Distance SAR _{be} [%] Without Correction Algorithm SAR _{be} [%] With Correction Algorithm					3.7 mm 10.3 0.7	4.7 mm 5.2 0.1	
TSL	181	0 MHz	Typical SA	R gradient: 10) % per n	nm		
	Sensor Center SAR _{be} [%] SAR _{be} [%]	Withou	om Surface Di ut Correction A correction Algo	lgorithm		3.7 mm 14.9 0.9	4.7 mm 9.6 0.1	
Sens	sor Offset							
	Probe Tip to S				2.7 mm very low, but repeatable			
	Optical Surfac	e Detectio	л		Very	011, 00	ropoutd	
meas	reported uncer surement multi esponds to a c	iplied by	the coverage	ge factor k=2,	which	for a nor	uncertain mal distri	ty of Ibution
	ncertainties of NormX rical linearization par				rst (see Pa	ge 8).		

Certificate No: ET3-1383_Feb05

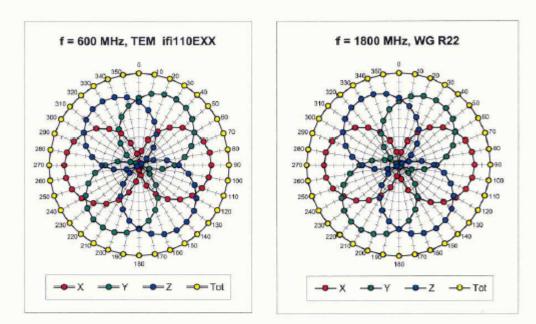

Page 4 of 9

ET3DV6 SN:1383

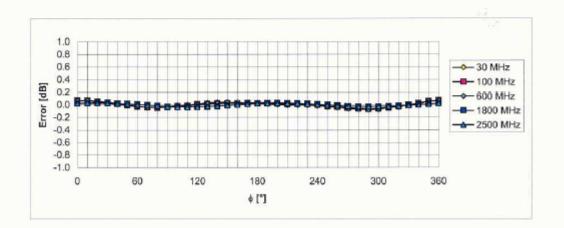
February 24, 2005

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

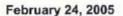
Certificate No: ET3-1383_Feb05

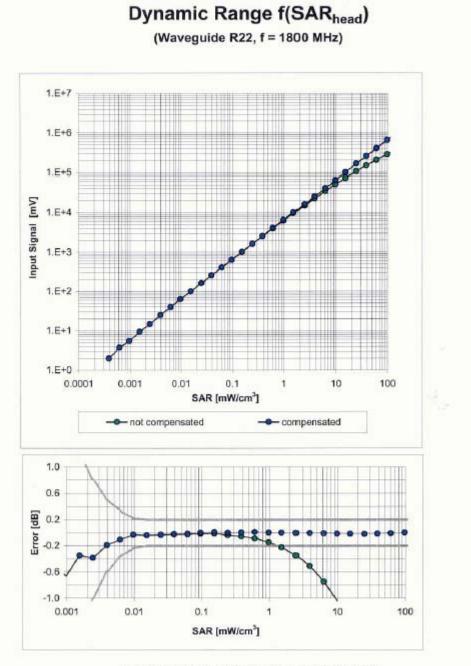

Page 5 of 9

ET3DV6 SN:1383

February 24, 2005

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

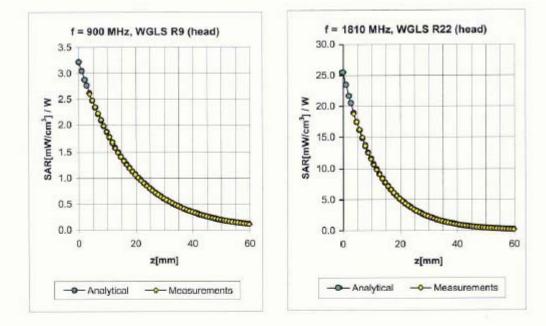

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ET3-1383_Feb05

Page 6 of 9

SR2172

ET3DV6 SN:1383


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1383_Feb05

Page 7 of 9

ET3DV6 SN:1383

February 24, 2005

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
300	± 50 / ± 100	Head	45.3 ± 5%	0.87 ± 5%	0.13	1.55	7.96 ± 13.3% (k=2)
450	± 50 / ± 100	Head	43.5±5%	0.87 ± 5%	0.12	1.15	7.26 ± 13.3% (k=2)
900	± 50 / ± 100	Head	$41.5\pm5\%$	$0.97 \pm 5\%$	1.44	1.38	6.35 ± 11.0% (k=2)
1450	±50/±100	Head	40.5 ± 5%	1.20 ± 5%	1.03	1.72	5.69 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.76	2.16	5.26 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.87	2.04	4.59 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.09	1.13	7.05 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	1.40	1.46	6.03 ± 11.0% (k=2)
1450	± 50 / ± 100	Body	54.0 ± 5%	1.30 ± 5%	0.88	2.03	5.22 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.73	2.47	4.71 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	1.05	1.71	4.34 ± 11.8% (k=2)

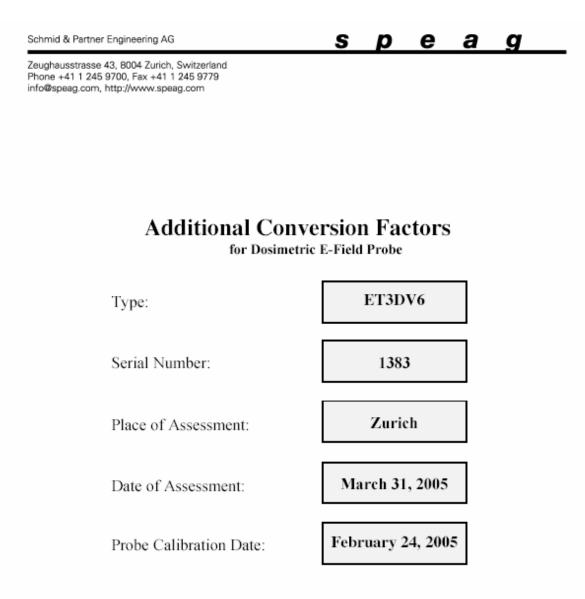
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1383_Feb05

Page 8 of 9

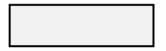
ET3DV6 SN:1383

February 24, 2005


Deviation from Isotropy in HSL Error (\u03c6, \u03c8), f = 900 MHz

1.0 0.8 0.6 0 0.4 40 0.2 Error [dB] 80 0.0 120 -0.2 160 -0.4 200 -0.6 -0.B φ 240 1.0 280 0 10 20 30 40 50 60 320 9 ■-1.00--0.80 ■-0.80--0.60 ■-0.60--0.40 ■-0.40--0.20 ■-0.20-0.00 0.00-0.20 0.20-0.40 0.40-0.60 0.60-0.80 0.80-1.00

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)


Certificate No: ET3-1383_Feb05

Page 9 of 9

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

ET3DV6-SN:1383

Page 1 of 2

March 31, 2005

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1383

Conversion factor (± standard deviation)

380 MHz	ConvF	7.6 ± 9 %	$\epsilon_r = 44.3$ $\sigma = 0.87$ mho/m (head tissue)
480 MHz	ConvF	7.3±8%	$\epsilon_r = 43.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
380 MHz	ConvF	7.5±9%	$\epsilon_r = 58.2$ $\sigma = 0.92$ mho/m (body tissue)
480 MHz	ConvF	7.3±8%	$\epsilon_r = 56.7$ $\sigma = 0.94$ mho/m (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.