FCC TEST REPORT

FCC ID: 2AY3H-AKS068PRO

Report No. : SSP24050197-2E

Applicant: Shenzhen Ajazz Tongchuang Electronic Technology Co., Ltd.

Product Name: Mechanical keyboard

Model Name : AJAZZ AKS068 PRO

Test Standard: FCC Part 15.249

Date of Issue : 2024-05-27

Prepared By Shenzhen CCUT Quality Technology Co., Ltd.

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 25

Test Report Basic Information

Applicant..... Shenzhen Ajazz Tongchuang Electronic Technology Co., Ltd.

2104-1, Block A, CIMC Low Orbit Satellite Internet of Things Industrial Park,

Dongkeng Community, Fenghuang Street, Guangming District, Shenzhen,

Guangdong, China Address of Applicant.....

Shenzhen Ajazz Tongchuang Electronic Technology Co., Ltd. Manufacturer.....

2104-1, Block A, CIMC Low Orbit Satellite Internet of Things Industrial Park,

Dongkeng Community, Fenghuang Street, Guangming District, Shenzhen,

Address of Manufacturer.....: Guangdong, China

Product Name..... Mechanical keyboard

Brand Name....: AIAZZ

Main Model..... AJAZZ AKS068 PRO

Series Models....: AKS068, AKS075

FCC Part 15 Subpart C

ANSI C63.4-2014

Test Standard..... ANSI C63.10-2013

Date of Test: 2024-05-24 to 2024-05-27

Test Result...... PASS

(Walker Wu)

(Lieber Ouyang)

Authorized Signatory..... (Lahm Peng)

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 25

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	8
2. Summary of Test Results	9
3. Antenna Requirement	10
3.1 Standard and Limit	10
3.2 Test Result	
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	15
5.3 Test Data and Results	17
6. Band-edge Emissions	22
6.1 Standard and Limit	22
6.2 Test Procedure.	
6.3 Test Data and Results	22
7. Occupied Bandwidth	24
7.1 Standard and Limit	24
7.2 Test Procedure	
7.3 Test Data and Results	24

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-05-27	Initial Release	Lahm Peng

FCC Test Report Page 4 of 25

1. General Information

1.1 Product Information

Product Name:	Mechanical keyboard
Trade Name:	AJAZZ
Main Model:	AJAZZ AKS068 PRO
Series Models:	AKS068, AKS075
Rated Voltage:	DC 3.7V by battery, USB 5V charging
Battery:	DC 3.7V, 3000mAh
Hardware Version:	DS-GK6800-BYKC-HS6620-MODE-V0
Software Version:	6BA1

Report No: SSP24050197-2E

Note 1: The test data is gathered from a production sample, provided by the manufacturer.

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification	
Wireless Standard:	2.4GHz RF
Operating Frequency:	2402MHz ~2480MHz
Max. Field Strength:	92.79dBuV/m
Quantity of Channel:	40
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	0.338dBi
Type of Antenna:	PCB Antenna
Type of Device:	☑ Portable Device ☐ Mobile Device ☐ Modular Device

FCC Test Report Page 5 of 25

List of Test Mo	odes					
Test Mode	De	escription		Remark		
TM1	Tra	ansmitting		2402/2440/24	80MHz	
TM2	(Charging		-		
-		-		-		
List and Details of Auxiliary Cable						
Descrip	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite	
-		-		-	-	
-		-		-	-	
List and Detail	List and Details of Auxiliary Equipment					
Descrip	Description Manufacturer		r	Model	Serial Number	
Noteb	ook	Lenovo		DESKTOP-2L1QMVA	36E719795B41	
Adap	lapter Huawei		HW-100225C00	HC78E2N6A23645		

Report No: SSP24050197-2E

List of Chann	nels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

FCC Test Report Page 6 of 25

1.3 Compliance Standards

Compliance Standards		
P00 P 145 0 1 10	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
All measurements contained in	this report were conducted with all above standards	
According to standards for te	st methodology	
ECC Dout 15 Culmout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions	
ANSI C05.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.	
ANCI CC2 10 2012	American National Standard of Procedures for Compliance Testing of Unlicensed	
ANSI C63.10-2013	Wireless Devices	
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which		
result is lowering the emission, should be checked to ensure compliance has been maintained.		

Report No: SSP24050197-2E

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,
	Guangming District, Shenzhen, Guangdong, China
CNAS Laboratory No.:	L18863
A2LA Certificate No.:	6893.01
FCC Registration No:	583813
ISED Registration No.:	CN0164
All measurement facilities used	to collect the measurement data are located at 1F Ruilding 35 Changying

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 25

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
	Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30	
		Radiated Emission	ons			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30	
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30	
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06	
	Conducted RF Testing					
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30	

Report No: SSP24050197-2E

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Radiated Emissions	30MHz ∼ 1GHz	±3.32 dB
	1GHz ∼ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %

FCC Test Report Page 8 of 25

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.249(a)&(d)	Radiated Emissions	Passed
FCC Part 15.249(d)	Band-edge Emissions	Passed
FCC Part 15.215(c)	Occupied Bandwidth	Passed

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 9 of 25

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24050197-2E

3.2 Test Result

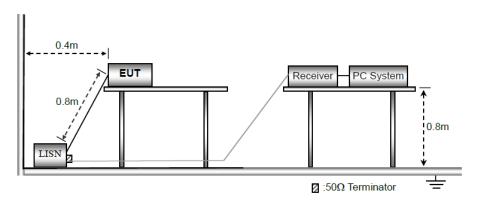
This product has an PCB antenna, fulfill the requirement of this section.

FCC Test Report Page 10 of 25

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:


Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 11 of 25

Report No: SSP24050197-2E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 12 of 25

Test I	Test Plots and Data of Conducted Emissions																								
Teste	d Mod	Mode: TM2																							
Test \	/oltage	e:			AC 120V/60Hz																				
Test I	Power	ver Line: Neutral																							
Rema	nark:																								
90.0	dBu	N			•																				
80																									-
70			+						+									-		-					-
60			_																FCC	Pai	t15 CE	-Class	B_Q	Р	4
50																			FCC	: Pai	t15 CE	-Class	B_A	Ve	
30					-				5															1	,1
40		_ ;	Į			3			Œ.	l lb	7					0								•	
30	W	w	\mathcal{M}	W	rwy	.// ?	mp/MM	w" N	• • • • • • • • • • • • • • • • • • •	puller just	47/4	Mayday	and the second	MANNY	March.	9 N X	w.								
20		wi	2	WW		الأما		al Pila	1	(ppl)b-rey	.X.					APAL ALL	L. Alle	MA AN	Mary.	لعمد	<u> </u>	.1	JJ.		2
10											"	U. myyddydd y	Mark Control of the	h-effetel	Mapera	10	M	l۸	han		The state of the s	- AND WAR	VŢ		peak
																V		70		MA	www	WWW.	۱M	A. di	AVG
0																							*		-
-10 0.	150				0	.500	<u> </u>				\perp		MHz)				5.000							30.	000
i			_			_			_			1			_		_								
No.		equenc (MHz)	у		ading BuV)		Fad (dl	ctor B)		Leve dBu)			mit luV)	Mar (dl		Detecto	or P	P/F	R	ema	ark				
1		0.2760	\dashv		1.80	\dagger	9.6		+	34.4	8	60	.94	-26	.46	QP	†	Р							$\neg \neg$
2		0.2760			2.11		9.6			21.7		-	.94	-29	_	AVG	_	Р							
3	_	0.5550	\dashv		1.00	\perp	9.8		+	33.8			.00	-22		QP	_	P							
5 *	_	0.5550 0.8745	\dashv).07).31	+	9.8		+	20.8		-	.00	-25 -16	_	AVG QP	-	P P							
6		0.8745	\dashv		7.38	+	9.5		+	26.9		-	.00	-19	-	AVG	_	P							
7	_	1.3245	\dashv		3.33	+	10.		+	33.3			.00	-22	_	QP	-	Р							
8	_	1.3245			2.37	\dagger	10.		\dagger	22.3		-	.00	-23	_	AVG	+	Р							
9		4.1685		21	.08	\dagger	10.	17	T	31.2	5	56	.00	-24	.75	QP	\top	Р							
10		4.1685		1.	.29		10.	17		11.4	6	46	.00	-34	.54	AVG		Р							
11	_	7.9690	\rightarrow		.88	T	10.			42.1			.00	-17	-	QP	-	Р							
12	2	7.9690		8.	.03		10.	30		18.3	3	50	.00	-31	.67	AVG		Р							

FCC Test Report Page 13 of 25

Test F	Test Plots and Data of Conducted Emissions										
Teste	sted Mode: TM2										
Test V	⁷ oltage:	AC 120V/60Hz									
Test F	Power Line:	Live									
Rema	emark:										
90.0	dBuV										
30.0	ubur										
80								_			
70											
60									FCC Part15 CE-Class B_QP		
50									FCC Part15 CE-Class B_AVe		
40			3	5							
		/M/M/M	All high hyper	La damandille	Mohama	MAN THE STATE OF T	\ A		9 11		
30		A DAAAAA		happuhan s	N., Y NAPRO		AND	Vegge			
20 10		(AAAU OA ka	TYTICAL IV		Bankalahahahahaha	V ^A		\bigvee	Deak peak		
									AVG		
-10											
	150	0.5	00		(MHz)		5.0	100	30.000		
						I	I				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark		
1	0.3704	26.74	9.85	36.59	58.49	-21.90	QP	Р			
2	0.3704	17.30	9.85	27.15	48.49	-21.34	AVG	Р			
3 *		35.37	9.75	45.12	56.00	-10.88	QP	Р			
4	0.8700	19.29	9.75	29.04	46.00	-16.96	AVG	Р			
5	1.2839	27.42	10.03	37.45	56.00	-18.55	QP	Р			
6	1.2839	14.52	10.03	24.55	46.00	-21.45	AVG	Р			
7	3.4170	25.15	10.12	35.27	56.00	-20.73	QP	Р			
8	3.4170	12.53	10.12	22.65	46.00	-23.35	AVG	Р			
9	12.1020	21.61	10.14	31.75	60.00	-28.25	QP	Р			
10	12.1020	1.25	10.14	11.39	50.00	-38.61	AVG	Р			
11	19.9995 19.9995	22.07 7.29	10.54 10.54	32.61 17.83	60.00 50.00	-27.39 -32.17	QP AVG	P			
12	19.9990	1.29	10.04	17.03	50.00	-32.17	AVG	<u> </u>			

FCC Test Report Page 14 of 25

5. Radiated Emissions

5.1 Standard and Limit

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

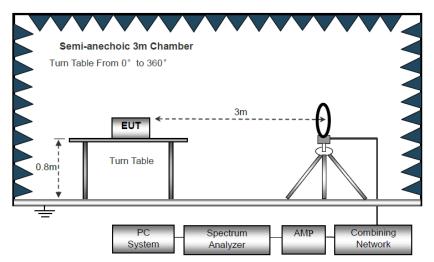
Report No: SSP24050197-2E

Fundamental fraguency	Field strength of fundamental	Field strength of Harmonics		
Fundamental frequency	(milli-volts/meter)	(micro-volts/meter)		
902-928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725-5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

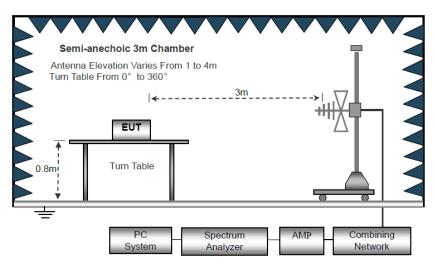
According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

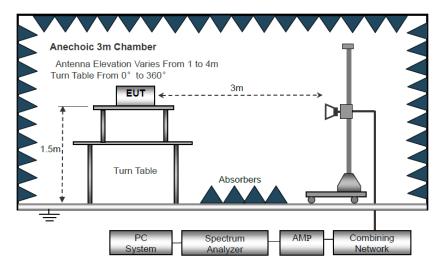
Engagement of omiggion (MHz)	Radiated emissions (3m)					
Frequency of emission (MHz)	Quasi-peak (dBuV/m)					
30-88	40					
88-216	43.5					
216-960	46					
Above 960	54					
Note: The more stringent limit applies at transition frequencies.						


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 15 of 25

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 16 of 25

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and

Report No: SSP24050197-2E

- $1.5\mbox{m}$ above ground plane for test frequency range above 1GHz.
- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

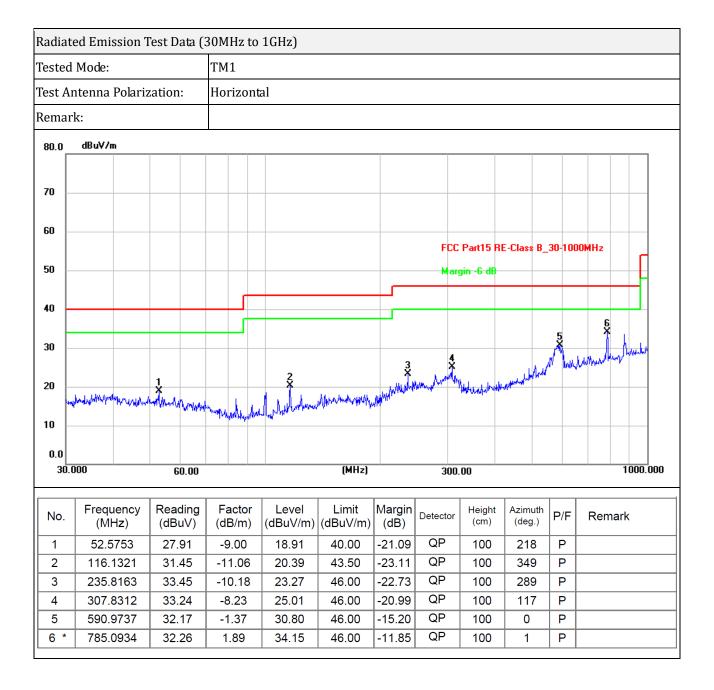
Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

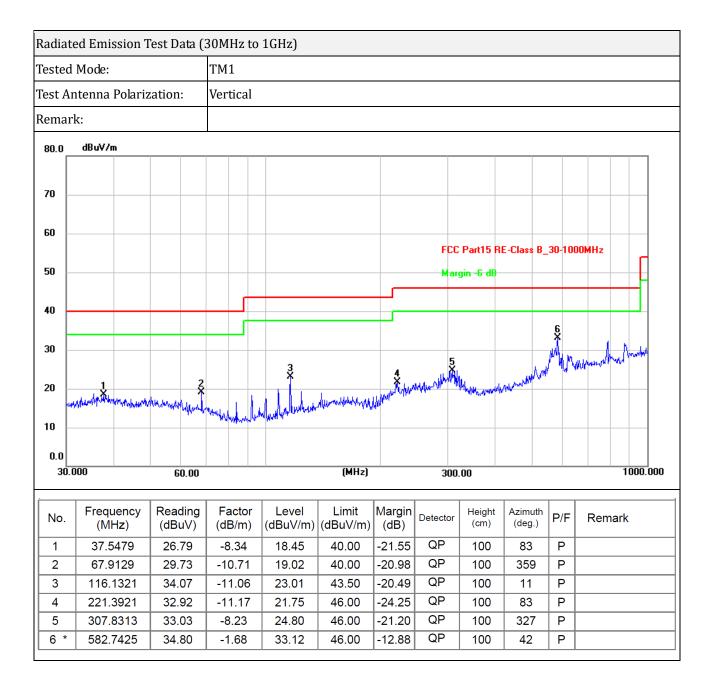
VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold


- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results


All of the 2.4G RF modes have been tested, the EUT complied with the FCC Part 15.249 standard limit for a wireless device, and with the worst case 2.4G RF_2403MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 17 of 25

FCC Test Report Page 18 of 25

FCC Test Report Page 19 of 25

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
-		•	Lowest Chann	el (2402MHz)	•		-1
2402	113.68	-20.89	92.79	114	-21.21	Н	PK
2402	86.15	-20.89	65.26	94	-28.74	Н	AV
4804	76.33	-14.72	61.61	74	-12.39	Н	PK
4804	62.98	-14.72	48.26	54	-5.74	Н	AV
7206	64.23	-8.41	55.82	74	-18.18	Н	PK
7206	46.08	-8.41	37.67	54	-16.33	Н	AV
2402	110.99	-20.89	90.1	114	-23.9	V	PK
2402	89.07	-20.89	68.18	94	-25.82	V	AV
4804	75.04	-14.72	60.32	74	-13.68	V	PK
4804	57.17	-14.72	42.45	54	-11.55	V	AV
7206	62.8	-8.41	54.39	74	-19.61	V	PK
7206	49.67	-8.41	41.26	54	-12.74	V	AV
			Middle Chann	el (2440MHz)			
2440	102.68	-20.7	81.98	114	-32.02	Н	PK
2440	88.34	-20.7	67.64	94	-26.36	Н	AV
4880	74.55	-14.64	59.91	74	-14.09	Н	PK
4880	59.74	-14.64	45.1	54	-8.9	Н	AV
7320	65.92	-8.28	57.64	74	-16.36	Н	PK
7320	47.19	-8.28	38.91	54	-15.09	Н	AV
2440	106.3	-20.7	85.6	114	-28.4	V	PK
2440	89.09	-20.7	68.39	94	-25.61	V	AV
4880	76.13	-14.64	61.49	74	-12.51	V	PK
4880	59.73	-14.64	45.09	54	-8.91	V	AV
7320	64.11	-8.28	55.83	74	-18.17	V	PK
7320	47.17	-8.28	38.89	54	-15.11	V	AV

FCC Test Report Page 20 of 25

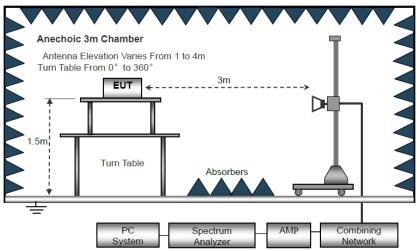
Radiated Emission Test Data (Above 1GHz)										
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector			
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV			
Highest Channel (2480MHz)										
2480	106.66	-20.55	86.11	114	-27.89	Н	PK			
2480	93.13	-20.55	72.58	94	-21.42	Н	AV			
4960	74.94	-14.53	60.41	74	-13.59	Н	PK			
4960	62.97	-14.53	48.44	54	-5.56	Н	AV			
7440	63.09	-8.13	54.96	74	-19.04	Н	PK			
7440	50.68	-8.13	42.55	54	-11.45	Н	AV			
2480	101.68	-20.55	81.13	114	-32.87	V	PK			
2480	98.71	-20.55	78.16	94	-15.84	V	AV			
4960	73.12	-14.53	58.59	74	-15.41	V	PK			
4960	58.87	-14.53	44.34	54	-9.66	V	AV			
7440	65.7	-8.13	57.57	74	-16.43	V	PK			
7440	49.85	-8.13	41.72	54	-12.28	V	AV			

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report. 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

FCC Test Report Page 21 of 25


6. Band-edge Emissions

6.1 Standard and Limit

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result
rest Mode	MHz	dBuV/dBc	Result
Loveget	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
II; ah oat	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

FCC Test Report Page 22 of 25

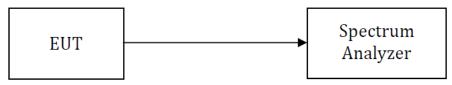
Radiated Emission Test Data (Band edge emissions)											
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector				
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV				
	Lowest Channel GFSK (2402MHz)										
2310	65.97	-21.34	44.63	74	-29.37	Н	PK				
2310	52.12	-21.34	30.78	54	-23.22	Н	AV				
2390	66.97	-20.96	46.01	74	-27.99	Н	PK				
2390	51.95	-20.96	30.99	54	-23.01	Н	AV				
2400	74.83	-20.91	53.92	74	-20.08	Н	PK				
2400	55.6	-20.91	34.69	54	-19.31	Н	AV				
2310	69.87	-21.34	48.53	74	-25.47	V	PK				
2310	49.88	-21.34	28.54	54	-25.46	V	AV				
2390	66.67	-20.96	45.71	74	-28.29	V	PK				
2390	50.56	-20.96	29.6	54	-24.4	V	AV				
2400	67.15	-20.91	46.24	74	-27.76	V	PK				
2400	53.37	-20.91	32.46	54	-21.54	V	AV				
		Hig	ghest Channel	GFSK (2480M)	Hz)						
2483.50	68.84	-20.51	48.33	74	-25.67	Н	PK				
2483.50	55.69	-20.51	35.18	54	-18.82	Н	AV				
2500	64.86	-20.43	44.43	74	-29.57	Н	PK				
2500	51.64	-20.43	31.21	54	-22.79	Н	AV				
2483.50	69.07	-20.51	48.56	74	-25.44	V	PK				
2483.50	52.98	-20.51	32.47	54	-21.53	V	AV				
2500	66.75	-20.43	46.32	74	-27.68	V	PK				
2500	52.6	-20.43	32.17	54	-21.83	V	AV				

FCC Test Report Page 23 of 25

7. Occupied Bandwidth

7.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.


Report No: SSP24050197-2E

7.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

Test Setup Block Diagram

7.3 Test Data and Results

Test Channel	Test Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)
Lowest Channel	2402MHz	1.088	1.0381
Middle Channel	2440MHz	1.08	1.037
Highest Channel	2480MHz	1.109	1.0538

FCC Test Report Page 24 of 25

***** END OF REPORT *****

FCC Test Report Page 25 of 25