

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V03 Report Template Revision Date: Mar.1st, 2017

Test Report

Applicant:Chengdu Huaxin Zhiyun Technology Co., Ltd.Address of Applicant:1-4021, Science Park, West District, University of Electronic Science and
technology, No. 88, Tianchen Road, Chengdu, China
Chengdu Huaxin Zhiyun Technology Co., Ltd.Manufacturer:1.4021, Science Park, West District, University of Electronic Science and
Chengdu Huaxin Zhiyun Technology Co., Ltd.

Address of 1-4021, Science Park, West District, University of Electronic Science and technology, No. 88, Tianchen Road, Chengdu, China

Equipment	Under	Test	(EUT):	
-----------	-------	------	--------	--

Product:	Infrared people counter
All Model No.:	HX-HE1, HX-HE2, HX-HE3
Test Model No.:	HX-HE1
Brand Name:	Huaxinzhiyun
FCC ID:	2AYE6-HXHE2
Standards:	47 CFR FCC Part 15 Subpart C 15.247
Date of Test:	Nov. 28, 2020 to Dec. 11, 2020
Date of Issue:	Dec. 28, 2020

PASS

Test Result :

Tested By:

Juh Li

Im lin

(Jun Li)

Reviewed By:

(Ares Liu)

Approved By:

(Sheek Luo)

* In the configuration tested, the EUT complied with the standards specified above.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s)

tested. Without written approval of CQA, this report can't be reproduced except in full.

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20201200045EX-01	Rev.01	Initial report	Dec. 28, 2020

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak & Average Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

NOTE: N/A means not applicable to this device

4 Contents

			Page
1	cov	ER PAGE	
2	VER	SION	
3	TES	SUMMARY	
4	CON	TENTS	
5	GEN	ERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST LOCATION	
	5.5	TEST FACILITY	
	5.6	STATEMENT OF THE MEASUREMENT UNCERTAINTY	7
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	
6	TES	Γ RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK & AVERAGE OUTPUT POWER	-
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8.1		
	6.8.2		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PHO	TOGRAPHS - EUT TEST SETUP	
8	РНО	TOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

5 General Information

5.1 Client Information

Applicant:	Chengdu Huaxinzhiyun Techlnology.,Ltd
Address of Applicant:	1-4021, Science Park, West District, University of Electronic Science and technology, No. 88, Tianchen Road, Chengdu, China
Manufacturer:	Chengdu Huaxinzhiyun Techlnology.,Ltd
Address of Manufacturer:	1-4021, Science Park, West District, University of Electronic Science and technology, No. 88, Tianchen Road, Chengdu, China

5.2 General Description of EUT

Product Name:	Infrared people counter
Model No.:	HX-HE1
Trade Mark:	Huaxinzhiyun
Hardware version:	V1.0
Software version:	V2.5
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g : OFDM IEEE for 802.11n(HT20): OFDM
Product Type:	Mobile Portable Fix Location
Test Software of EUT:	RF test (manufacturer declare)
Antenna Type	PCB Antenna
Antenna Gain	0dBi
Power Supply:	AC 120V 50/60Hz
Adapter Information:	/

Note: Please refer to the instruction manual for details.

EspRFtestT	lool	10.00			
Tools Help					
ChipType E	SP8266 💌	COM	▼ BaudRate	9600	
IDLE					RAM -
					0% load bin
wifi Test	BT Test	wifi Adaptivity	Manual		
Test Mode	e :	WiFi Rate:	BandWidth:	C	Channel:
TX conti	nues 👻	11b 1M -	20M	-	1/2412 👻
Attenuati	i on (dB)				
0	×0.	25			
				start	stop
					🔲 Add ' \r'
					📝 Show Send
					Show Time
					log Clear
					log Save

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

For 802.11b/g/r	h (HT20)·
101002.110/9/1	1(1120).

Note: Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

5.3 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
RX	Chengdu Huaxinzhiyun Techlnology.,Ltd	/	Provide by applicant	SDOC
PC	DELL	TP00067A	Provide by lab	ID
PC-ADAPTER	DELL	/	Provide by lab	SDOC

5.4 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration

Laboratories) for the competence in the field of testing.

• ISED Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

5.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10-8	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Equipment List

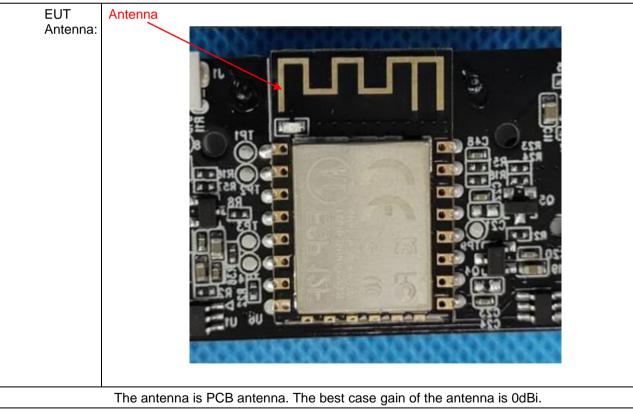
			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2020/9/22	2021/9/21
Spectrum analyzer	R&S	FSU26	CQA-038	2020/10/24	2021/10/23
Preamplifier	MITEQ	AFS4-00010300-18-10P- 4	CQA-035	2020/9/22	2021/9/21
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2020/10/28	2021/10/27
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2020/10/24	2021/10/23
Bilog Antenna	R&S	HL562	CQA-011	2020/9/22	2021/9/21
Horn Antenna	R&S	HF906	CQA-012	2020/9/22	2021/9/21
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2020/9/22	2021/9/21
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2020/9/22	2021/9/21
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2020/9/22	2021/9/21
Antenna Connector	CQA	RFC-01	CQA-080	2020/9/22	2021/9/21
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2020/9/22	2021/9/21
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2020/9/22	2021/9/21
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2020/9/22	2021/9/21
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2020/9/22	2021/9/21
EMI Test Receiver	R&S	ESPI3	CQA-013	2020/9/22	2021/9/21
LISN	R&S	ENV216	CQA-003	2020/11/1	2021/10/30
Coaxial cable	CQA	N/A	CQA-C009	2020/9/22	2021/9/21

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna Requirement


Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--

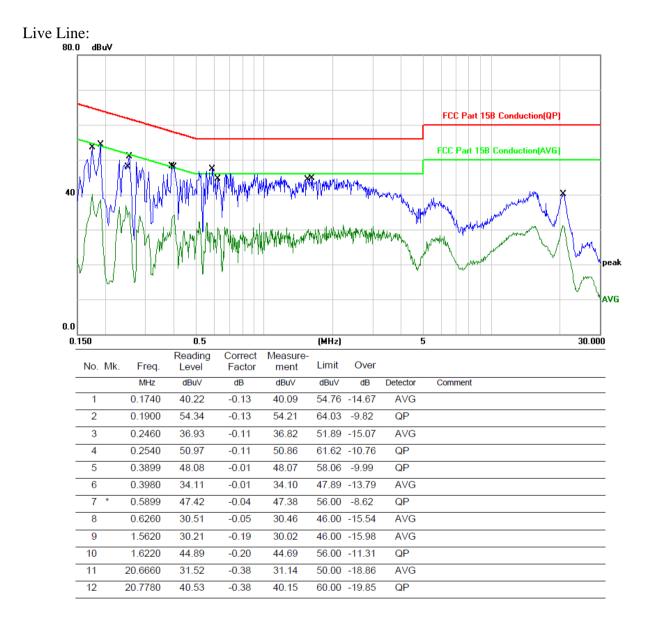
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

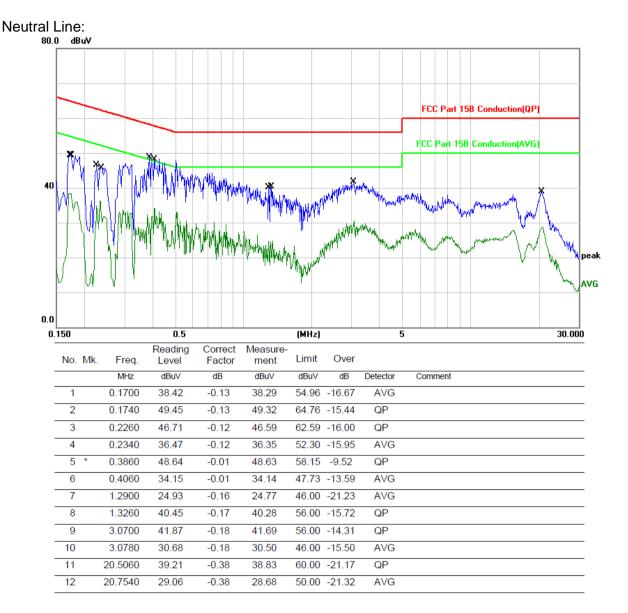
Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
	Limit (dBuV)			
	Frequency range (MHz)		,	
		Quasi-peak	Average	
Limit:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test Procedure:	 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 			
Test Setup:	Shielding Room Test Receiver EUT AE Ground Reference Plane			
Exploratory Test Mode:	de: Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.			


6.2 Conducted Emissions

Report No.: CQASZ20201200045EX-01

Final Test Mode:	All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH1 was reported as below
Test Voltage:	AC120V 60Hz
Test Results:	Pass

Measurement Data


Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

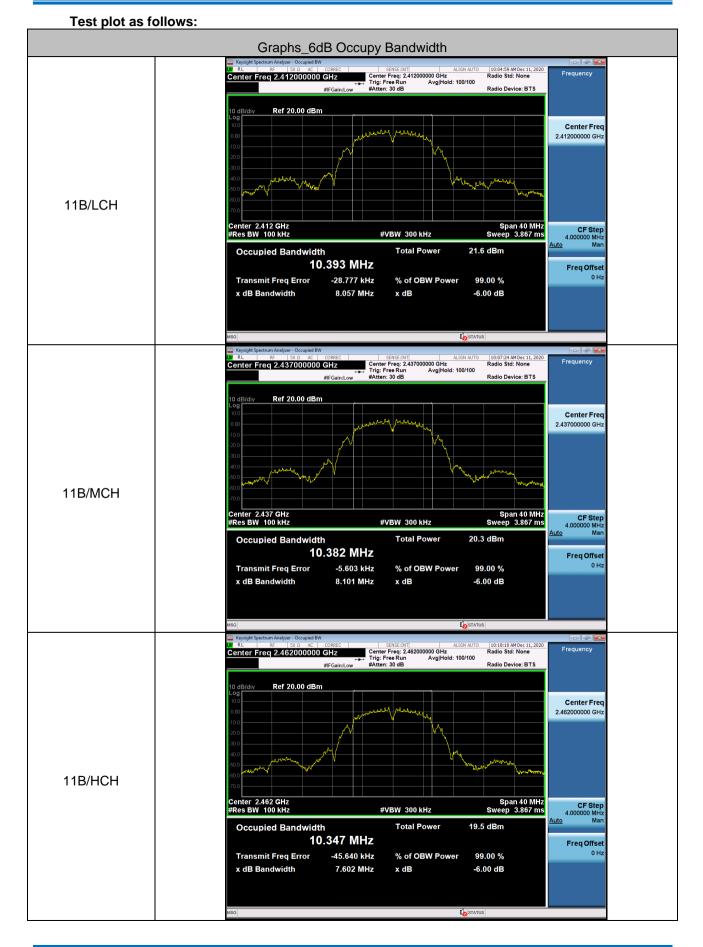
6.3 Conducted Peak & Average Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10: 2013	
Test Setup:	EUT Power Meter	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates	
Final Test Mode:	Through Pre-scan, find the 11Mbps of rate is the worst case of 802.11b; 54Mbps of rate is the worst case of 802.11g; MCS7Mbps of rate is the worst case of 802.11n(HT20);Only the worst case is recorded in the report.	
Limit:	30dBm	
Test Results:	Pass	

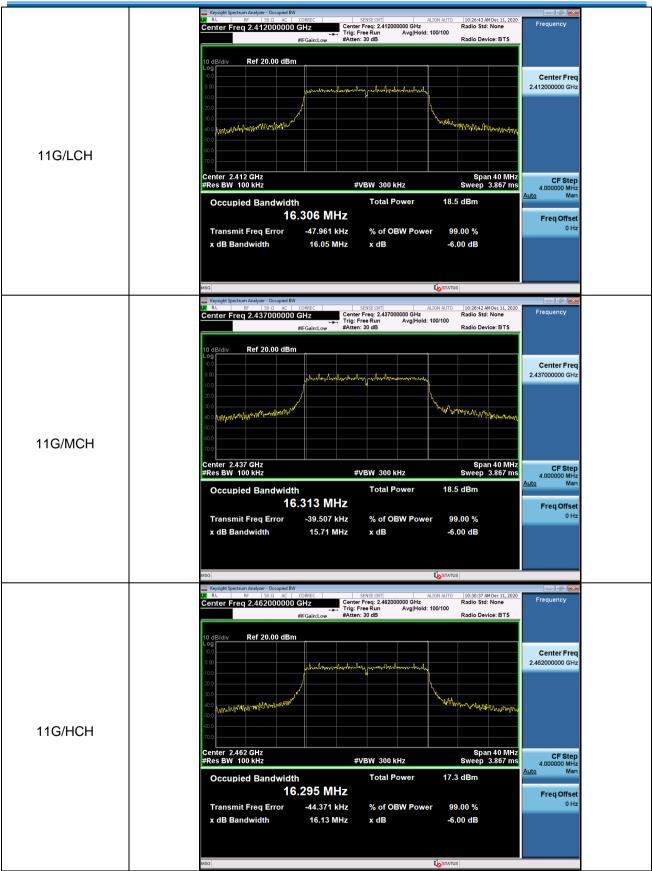
WIFI

Туре	Test channel	Peak Output Power (dBm)	Average Output Power dBm)	Limit (dBm)	Result
	Lowest	14.27	11.61		
802.11b	Middle	13.11	10.40	30.00	Pass
	Highest	12.21	9.62		
	Lowest	11.64	9.24		
802.11g	Middle	11.74	9.27	30.00	Pass
	Highest	10.48	8.06		
	Lowest	11.68	9.42		
802.11n	Middle	11.78	9.43	30.00	Pass
(HT20)	Highest	10.31	8.06		

Note: 1.The test results including the cable lose.

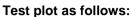

6.4 6dB Occupy Bandwidth

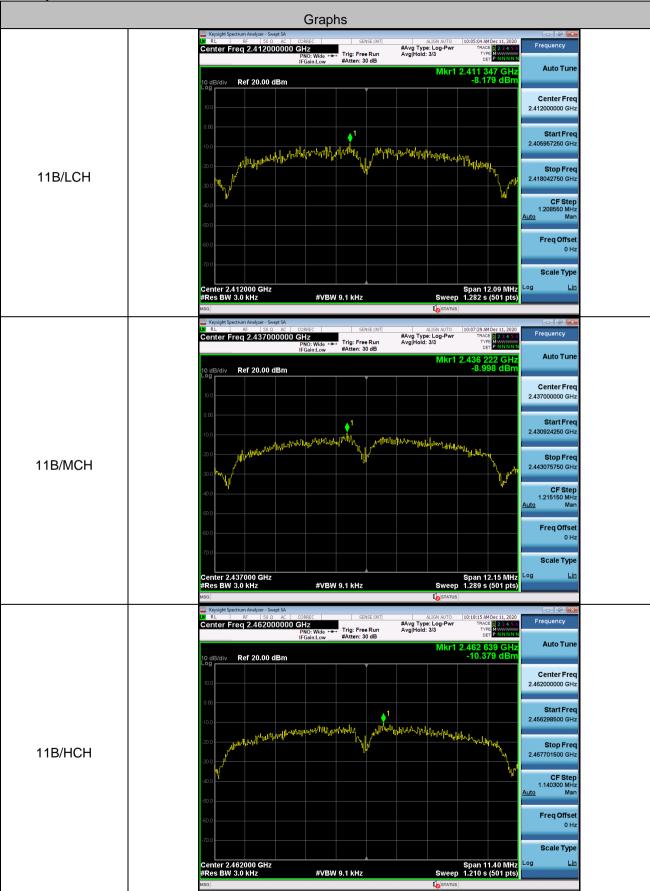
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10: 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Offset=cable loss+ attenuation factor	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates	
Final Test Mode:	Through Pre-scan, find the 11Mbps of rate is the worst case of 802.11b; 54Mbps of rate is the worst case of 802.11g; MCS7Mbps of rate is the worst case of 802.11n(HT20);Only the worst case is recorded in the report.	
Limit:	≥ 500 kHz	
Test Results:	Pass	


Measurement Data

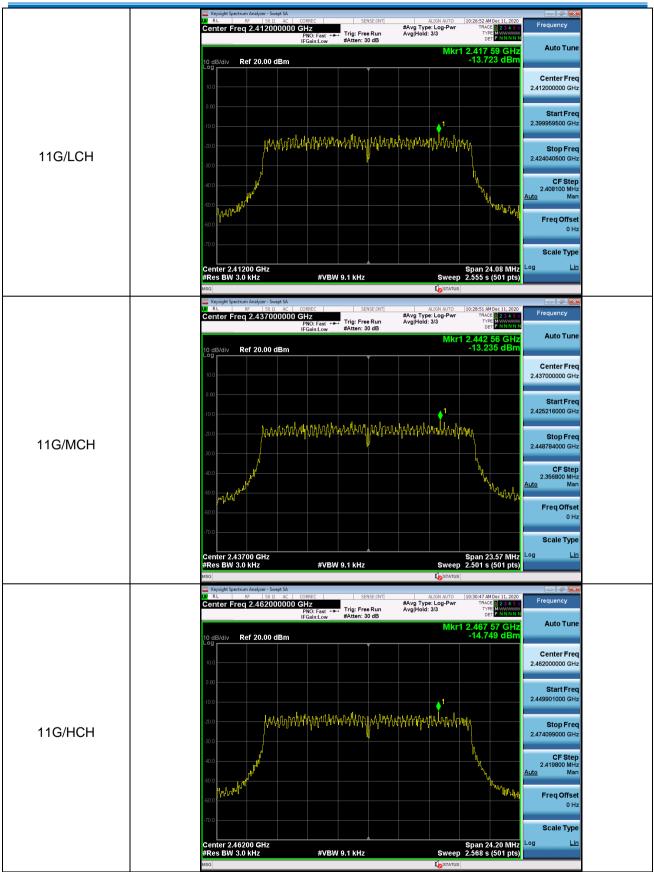
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	Lowest	8.057		
802.11b	Middle	8.101	≥500	Pass
	Highest	7.602		
	Lowest	16.05		
802.11g	Middle	15.71	≥500	Pass
	Highest	16.13		
	Lo est	15.77		
802.11n(HT20)	Middle	15.68	≥500	Pass
	Highest	16.29		

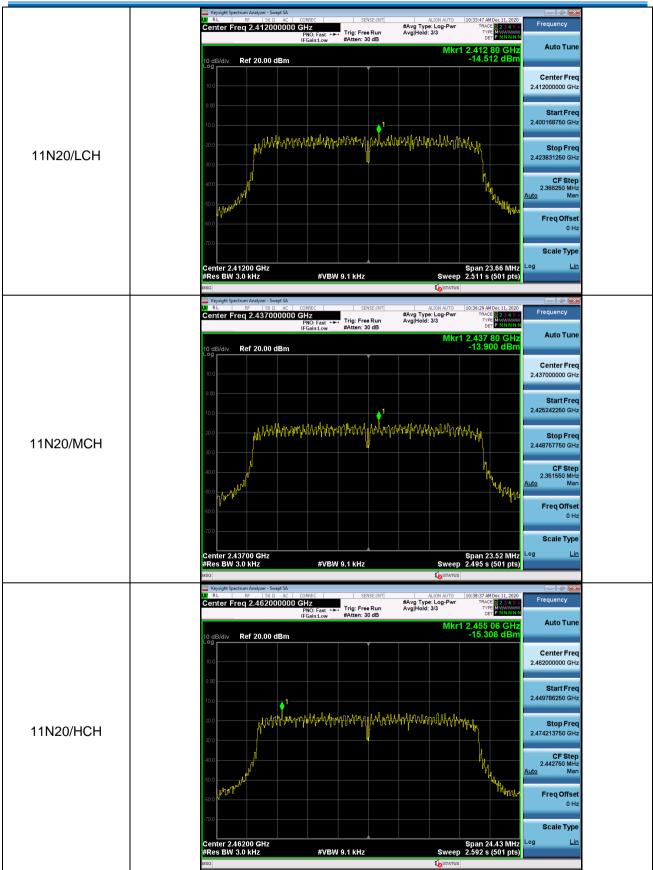
	Keysight Spectrum Analyzer - Occupied BW Keysight Spectru
	Center Freq 2.412000000 GHz Center Freq: 2.41200000 GHz Radio Std: None
	#IFGain:Low #Atten: 30 dB Radio Device: BTS
	10 dB/div Ref 20.00 dBm
	100 Center Freq
	0.00 2.412000000 GHz
	30.0 Stanky with the stanky wi
11N20/LCH	-700
	Center 2.412 GHz CF Step
	#Res BW 100 kHz #VBW 300 kHz Sweep 3.867 ms 4.00000 MHz Auto Man
	Occupied Bandwidth Total Power 18.7 dBm
	17.319 MHz Freq Offset
	Transmit Freq Error 46.557 kHz % of OBW Power 99.00 %
	x dB Bandwidth 15.77 MHz x dB -6.00 dB
	Keysight Spectrum Analyzer - Occupied BW
	Center Freq 2.437000000 GHz Center Freq: 2.437000000 GHz Radio Std: None Frequency Trig: FreeRun Avg Hold: 100/100
	#IFGain:Low #Atten: 30 dB Radio Device: BTS
	10 dB/div Ref 20.00 dBm
	Log
	000
	30.0 40.0 provide land all and and and a second and
	60.0
11N20/MCH	
	Center 2.437 GHz Span 40 MHz CF Step #Res BW 100 kHz #VBW 300 kHz Sweep 3.867 ms 4.00000 MHz
	Occupied Bandwidth Total Power 18.8 dBm
	17.323 MHz Freq Offset
	Transmit Freq Error -26.280 kHz % of OBW Power 99.00 %
	x dB Bandwidth 15.68 MHz x dB -6.00 dB
	MSG Loss Andread L
	Keysight Spectrum Analyzer - Occupied BW
	X RL BF SD Q. ACC CORREC SENSE:INTI ALIGN AUTO 10:38:27 AM Dec 11, 2020 Center Freq 2.4262000000 GHz Center Freq: 2.42620000 GHz Center Freq: 2.4262000 GHz Radio Std: None Frequency
	Image: Strategy and S
	10 dB/div Ref 20.00 dBm
	10.0 Center Freq 0.00 2.462000000 GHz
	100 2.45200000 GH2
	300 400 mmghatati maatin wat
	400 month the month were a second with the second s
11N20/HCH	60.0
	-70.0
	Center 2.462 GHz Span 40 MHz CF Step
	#Res BW 100 KH2 #VBW 300 KH2 Sweep 3.867 ms 4.000000 MHz Auto Man
	Occupied Bandwidth Total Power 17.3 dBm
	17.303 MHz Freq Offset
	Transmit Freq Error 44.313 kHz % of OBW Power 99.00 %
	Transmit Freq Error 44.313 kHz % of OBW Power 99.00 %
	Transmit Freq Error 44.313 kHz % of OBW Power 99.00 %

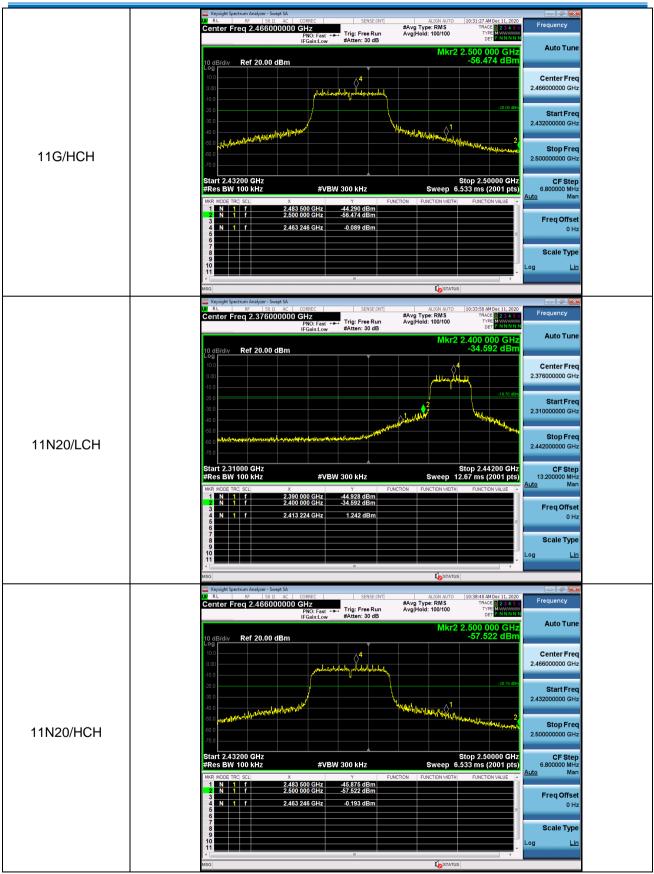

6.5 Power Spectral Density


Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10: 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Offset=cable loss+ attenuation factor	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates	
Final Test Mode:	Through Pre-scan, find the 11Mbps of rate is the worst case of 802.11b; 54Mbps of rate is the worst case of 802.11g; MCS7Mbps of rate is the worst case of 802.11n(HT20);Only the worst case is recorded in the report.	
Limit:	≤8.00dBm/3kHz	
Test Results:	Pass	

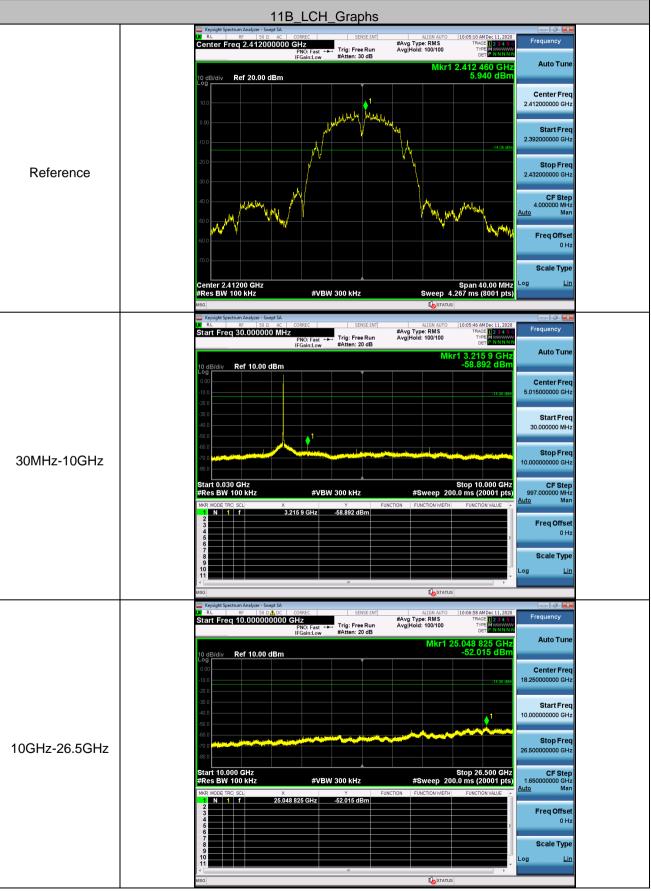
Measurement Data


Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	Lowest	-8.179		
02.11b	Middle	-8.998	8	Pass
	Highest	-10.379		
802.1 g	Lowest	-13.723		Pass
	Middle	-13.235	8	
	Highest	-14.749		
802.11n(HT20)	Lowest	-14.512		
	Middle	-13.9	8	Pass
	Highest	-15.306		

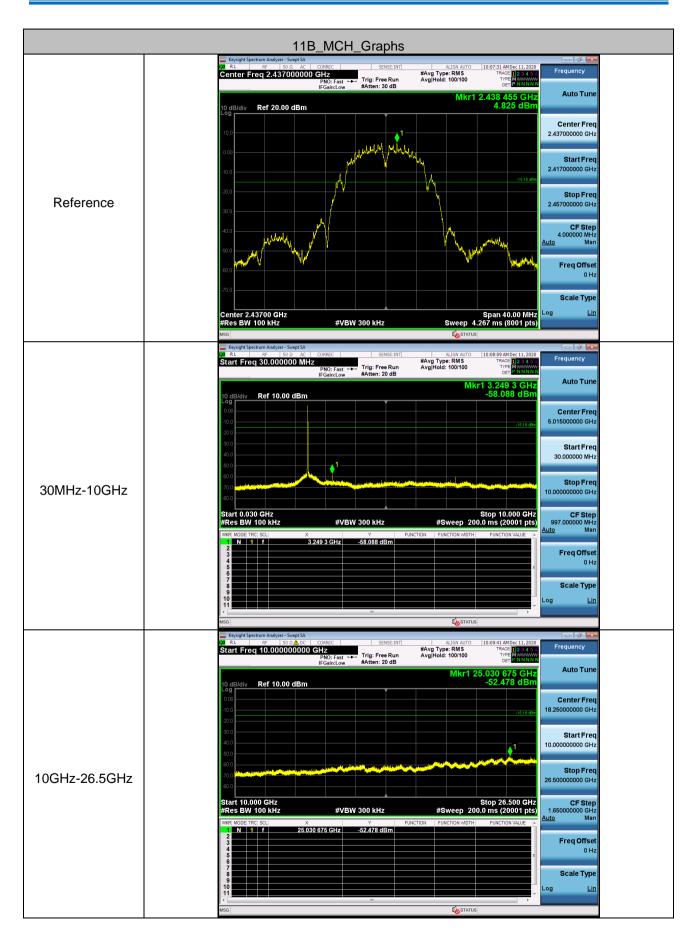


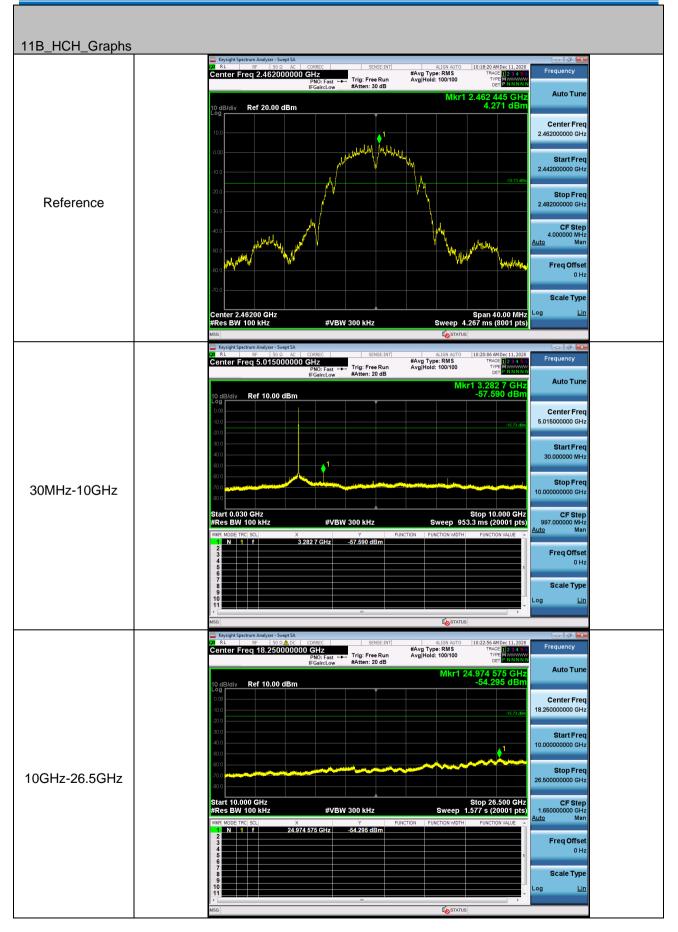

6.6 Band-edge for RF Conducted Emissions

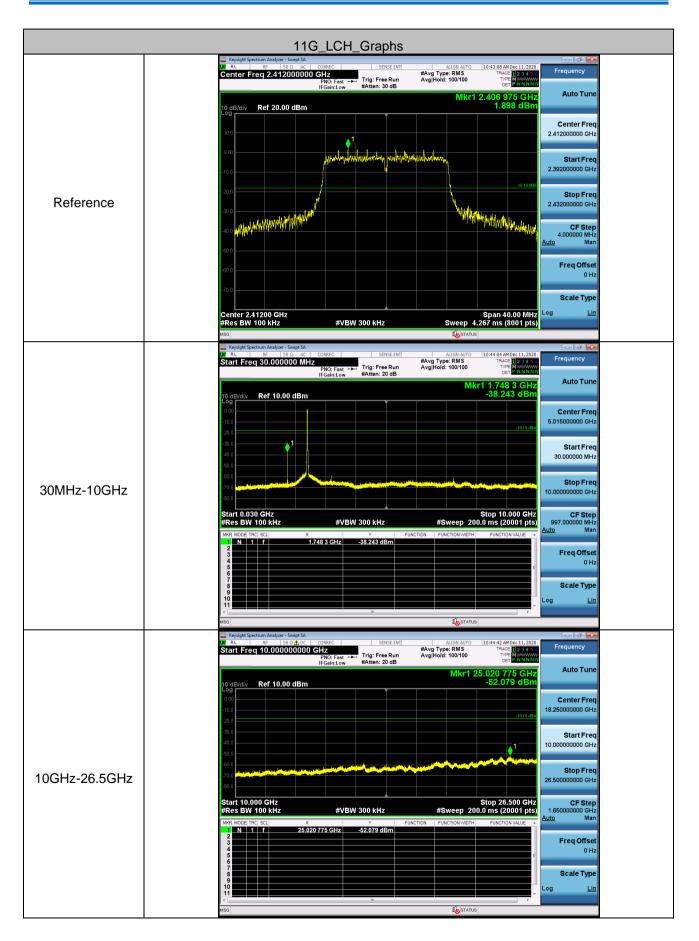
Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10: 2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 11Mbps of rate is the worst case of 802.11b; 54Mbps of rate is the worst case of 802.11g; MCS7Mbps of rate is the worst case of 802.11n(HT20); Only the worst case is recorded in the report.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Results:	Pass			


6.7 RF Conducted Spurious Emissions

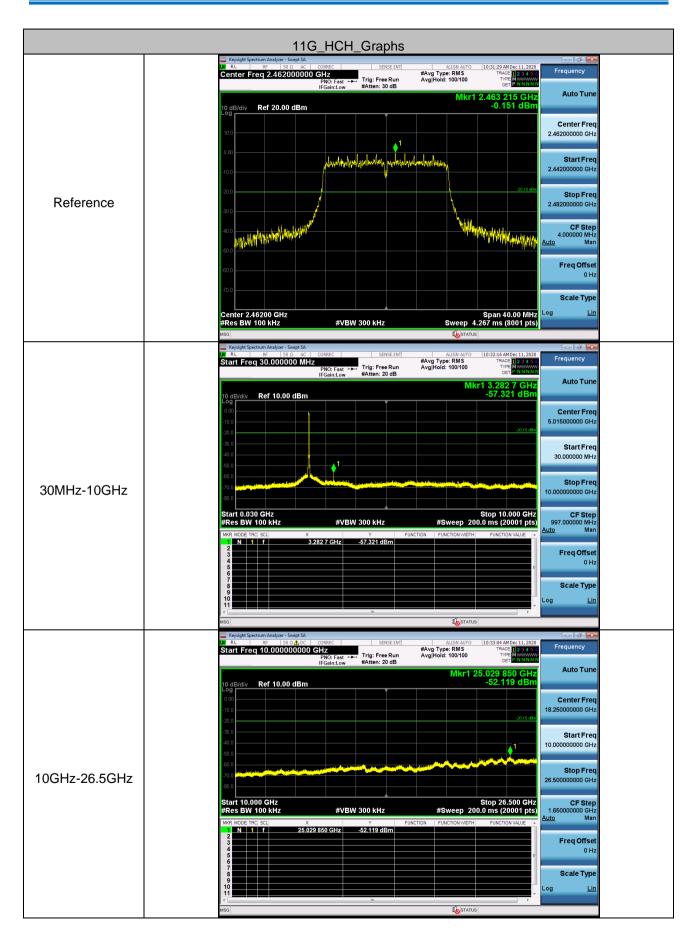
Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10: 2013				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Offset=cable loss+ attenuation factor				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
Final Test Mode:	Through Pre-scan, find the 11Mbps of rate is the worst case of 802.11b; 54Mbps of rate is the worst case of 802.11g; MCS7Mbps of rate is the worst case of 802.11n(HT20);Only the worst case is recorded in the report.				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test Results:	Pass				

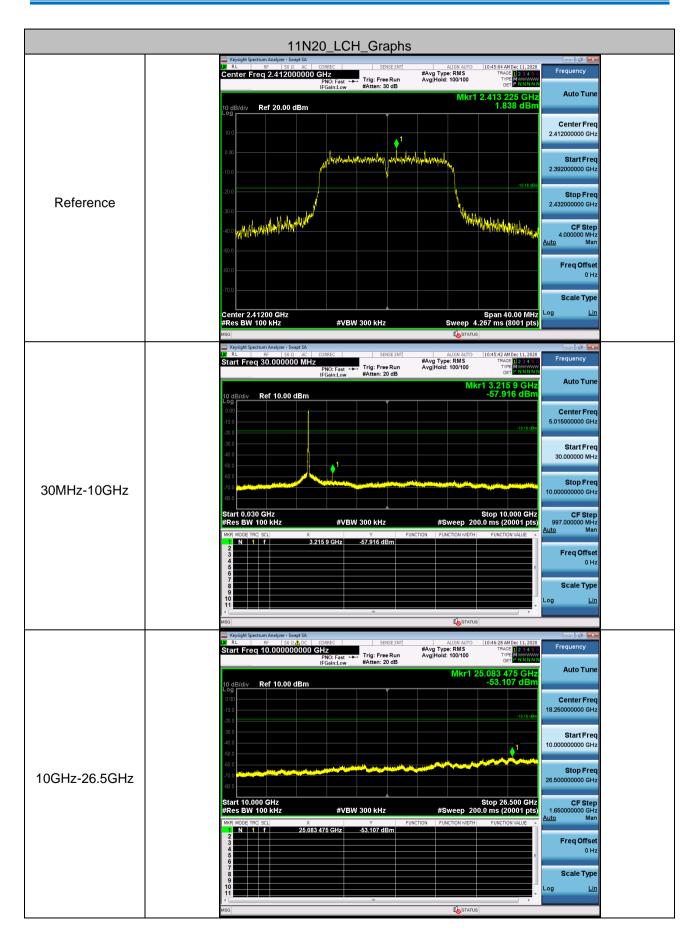


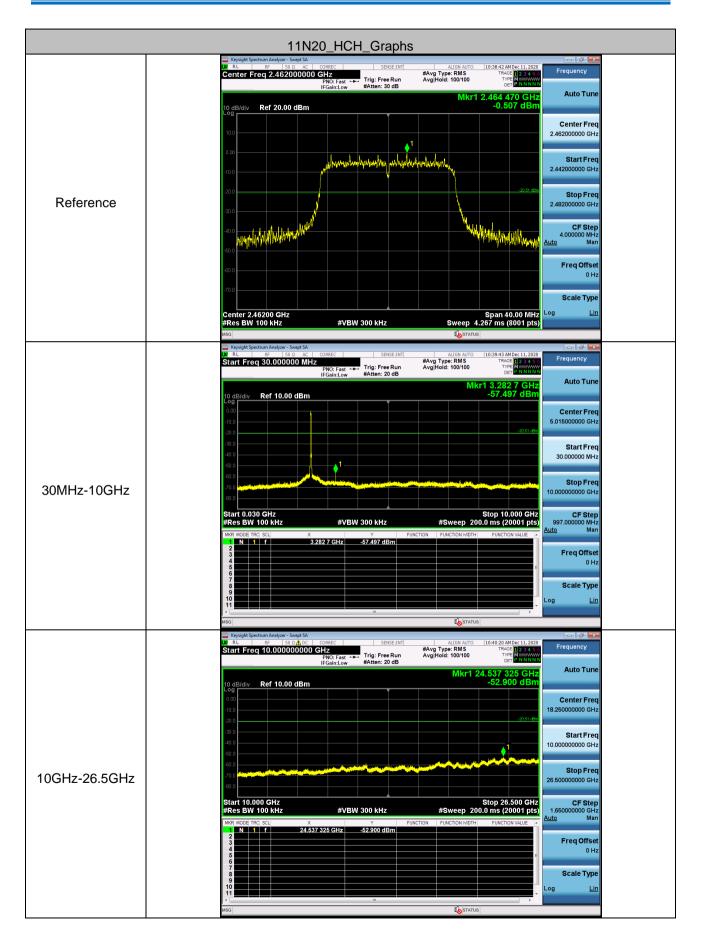




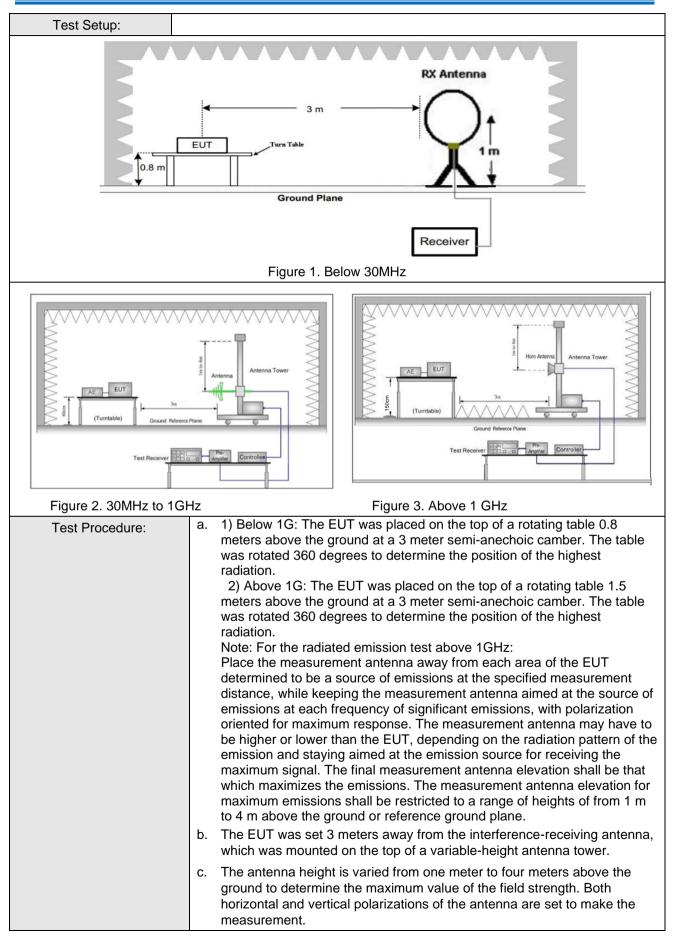






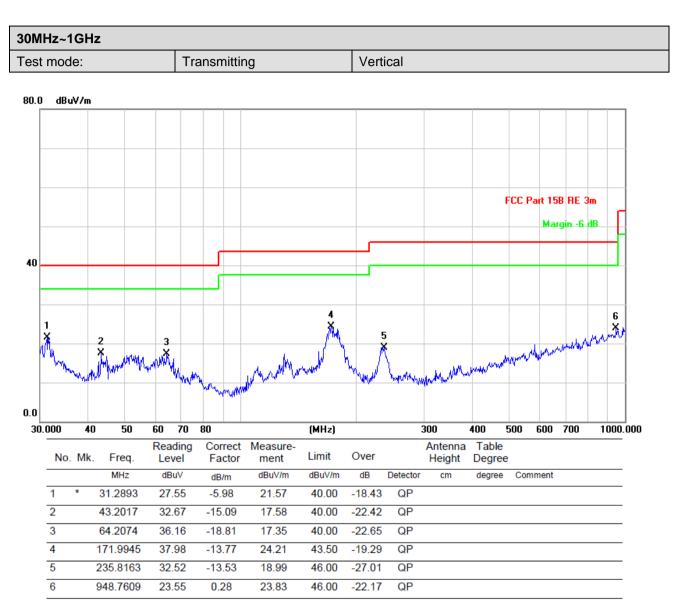


Report No.: CQASZ20201200045EX-01


Remark: Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

6.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above TGHZ	Peak	1MHz	10Hz	Average		
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30		
	1.705MHz-30MHz	30	-	-	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						

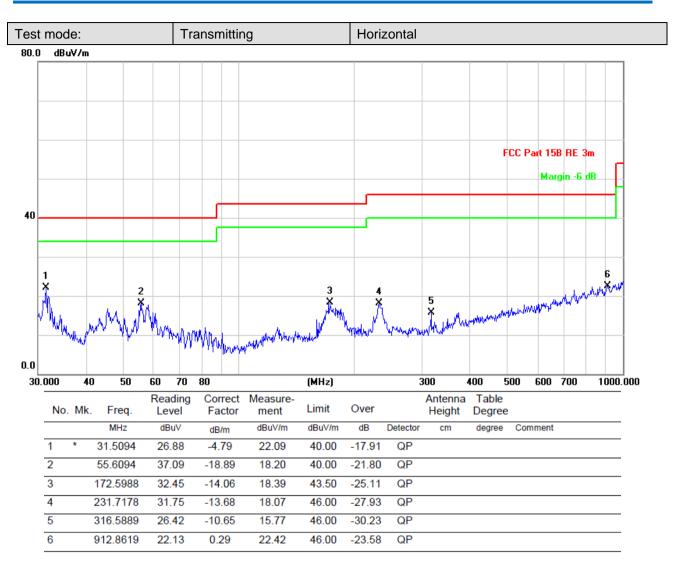


	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
	h. Repeat above procedures until all frequencies measured was complete.
Evoloratory Test Mode	Transmitting with all kind of modulations, data rates.
Exploratory Test Mode:	Transmitting mode, Charge + Transmitting mode.
	Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case
	Through Pre-scan, find the11Mbps of rate is the worst case of 802.11b;
Final Test Mode:	54Mbps of rate is the worst case of 802.11g; MCS7Mbps of rate is the worst case of 802.11n(HT20);
	For below 1GHz, through Pre-scan, find the 11Mbps of rate of 802.11b at lowest channel is the worst case.
	Only the worst case is recorded in the report.
Test Results:	Pass

6.8.1 Radiated emission below 1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Report No.: CQASZ20201200045EX-01

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

6.8.2 Transmitter emission above 1GHz

Test m	ode:	802.11b((11Mbps)	Test channel:		Low	vest
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4824.000	60.51	-4.26	56.25	74	-17.75	PK	н
4824.000	41.57	-4.26	37.31	54	-16.69	AV	н
7236.000	61.71	1.18	62.89	74	-11.11	PK	н
7236.000	40.72	1.18	41.90	54	-12.10	AV	н
4824.000	58.51	-4.26	54.25	74	-19.75	PK	V
4824.000	42.58	-4.26	38.32	54	-15.68	AV	V
7236.000	59.90	1.18	61.08	74	-12.92	PK	V
7236.000	38.28	1.18	39.46	54	-14.54	AV	V

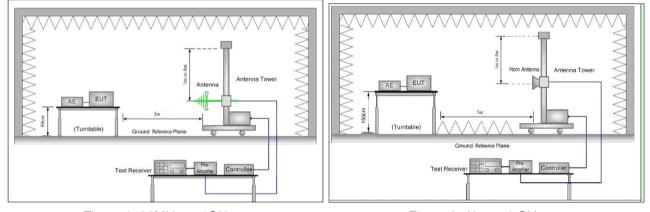
Test m	ode:	802.11b((11Mbps)	Test ch	nannel:	Mid	ldle
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4874.000	60.43	-4.12	56.31	74	-17.69	PK	н
4874.000	42.67	-4.12	38.55	54	-15.45	AV	н
7311.000	62.75	1.46	64.21	74	-9.79	PK	н
7311.000	38.10	1.46	39.56	54	-14.44	AV	н
4874.000	59.13	-4.12	55.01	74	-18.99	PK	V
4874.000	40.75	-4.12	36.63	54	-17.37	AV	V
7311.000	62.78	1.46	64.24	74	-9.76	PK	V
7311.000	39.69	1.46	41.15	54	-12.85	AV	V

Test m	ode:	802.11b	(11Mbps)	Test ch	nannel:	High	nest
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4924.000	59.68	-4.03	55.65	74	-18.35	PK	Н
4924.000	42.29	-4.03	38.26	54	-15.74	AV	Н
7386.000	60.07	1.66	61.73	74	-12.27	PK	Н
7386.000	39.79	1.66	41.45	54	-12.55	AV	Н
4924.000	61.23	-4.03	57.20	74	-16.80	PK	V
4924.000	41.13	-4.03	37.10	54	-16.90	AV	V
7386.000	61.98	1.66	63.64	74	-10.36	PK	V
7386.000	38.49	1.66	40.15	54	-13.85	AV	V

Remark:

- 1) The 1Mbps of rate of 802.11b is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

6.9 Restricted bands around fundamental frequency

		equelley						
Test Requirement:	47 CFR Part 15C Section 2	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013						
Test Site:	Measurement Distance: 3n	n (Semi-Anechoic Chambe	r)					
	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
Limit:	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
	Above IGHZ	74.0	Peak Value					
Test Setup:								

Test Setup:

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Figure 1. 30MH	z to 1GHZ Figure 2. Above 1 GHZ
	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:
Test Procedure:	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	h. Repeat above procedures until all frequencies measured was complete.
Evolution Test Made	Transmitting with all kind of modulations, data rates.
Exploratory Test Mode:	Transmitting mode.
	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case
Final Test Mode:	Through Pre-scan, find the 11Mbps of rate is the worst case of 802.11b;
Final Test Mode.	54Mbps of rate is the worst case of 802.11g; MCS7Mbps of rate is the worst case of 802.11n(HT20);
	Only the worst case is recorded in the report.
Test Results:	Pass

Test data:

Worse case	Worse case mode:		Mbps)	Test channel:		Lowest	
F	Meter	Fastar	Emission	Lingita	0		Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	58.47	-9.2	49.27	74	-24.73	РК	н
2390.000	37.06	-9.2	27.86	54	-26.14	AV	н
2400.000	56.99	-9.39	47.60	74	-26.40	РК	н
2400.000	37.72	-9.39	28.33	54	-25.67	AV	н
2390.000	56.98	-9.2	47.78	74	-26.22	РК	V
2390.000	35.44	-9.2	26.24	54	-27.76	AV	V
2400.000	57.75	-9.39	48.36	74	-25.64	РК	V
2400.000	35.58	-9.39	26.19	54	-27.81	AV	V

Worse case mode:		802.11b(11Mbps)		Test channel:		Highest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	56.92	-9.29	47.63	74	-26.37	PK	Н
2483.500	37.07	-9.29	27.78	54	-26.22	AV	Н
2483.500	57.47	-9.29	48.18	74	-25.82	PK	V
2483.500	35.72	-9.29	26.43	54	-27.57	AV	V

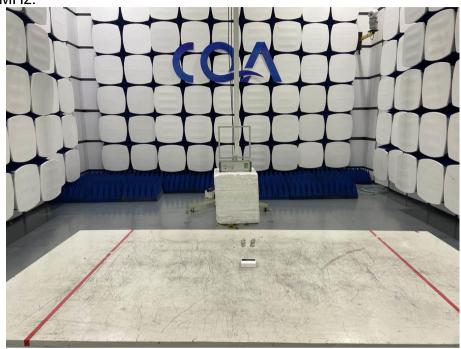
Worse case	mode:	802.11g(54Mbps) Test channel:		el:	Lowest		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over		Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	H/V
2390.000	58.29	-9.2	49.09	74	-24.91	РК	Н
2390.000	36.18	-9.2	26.98	54	-27.02	AV	Н
2400.000	56.73	-9.39	47.34	74	-26.66	РК	Н
2400.000	35.48	-9.39	26.09	54	-27.91	AV	Н
2390.000	58.27	-9.2	49.07	74	-24.93	РК	V
2390.000	37.10	-9.2	27.90	54	-26.10	AV	V
2400.000	58.42	-9.39	49.03	74	-24.97	РК	V
2400.000	36.84	-9.39	27.45	54	-26.55	AV	V

Worse case	mode:	de: 802.11g(54Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	58.20	-9.29	48.91	74	-25.09	РК	н
2483.500	37.50	-9.29	28.21	54	-25.79	AV	Н
2483.500	55.70	-9.29	46.41	74	-27.59	PK	V
2483.500	35.78	-9.29	26.49	54	-27.51	AV	V

Worse case	se mode: 802.11n(HT20)(MCS7) Test channel:		el:	Lowest			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	56.77	-9.29	47.48	74	-26.52	PK	Н
2390.000	37.06	-9.29	27.77	54	-26.23	AV	Н
2400.000	57.84	-9.29	48.55	74	-25.45	РК	Н
2400.000	37.82	-9.29	28.53	54	-25.47	AV	Н
2390.000	56.57	-9.29	47.28	74	-26.72	РК	V
2390.000	36.25	-9.29	26.96	54	-27.04	AV	V
2400.000	56.57	-9.29	47.28	74	-26.72	PK	V
2400.000	36.12	-9.29	26.83	54	-27.17	AV	V

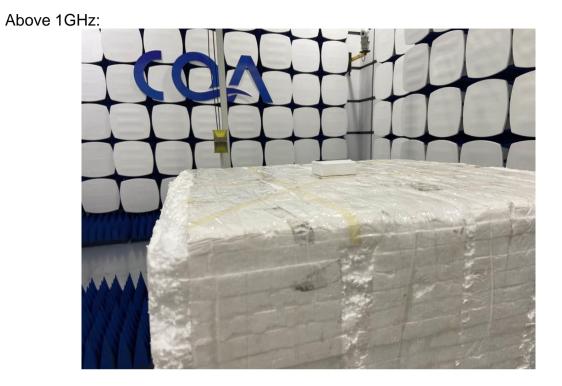
Worse case mode:		802.11n(HT20)(MCS7)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	H/V
2483.500	57.33	-9.29	48.04	74	-25.96	PK	н
2483.500	36.03	-9.29	26.74	54	-27.26	AV	Н
2483.500	57.37	-9.29	48.08	74	-25.92	PK	V
2483.500	35.55	-9.29	26.26	54	-27.74	AV	V

Note:

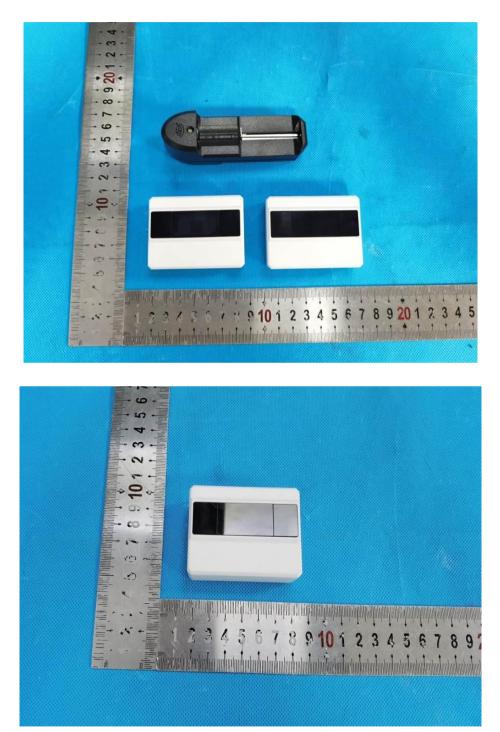

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

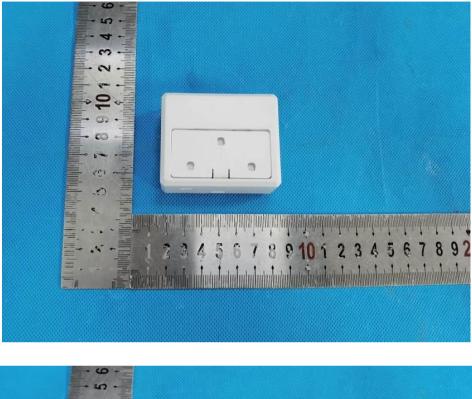
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

7 Photographs - EUT Test Setup


9kHz~30MHz:

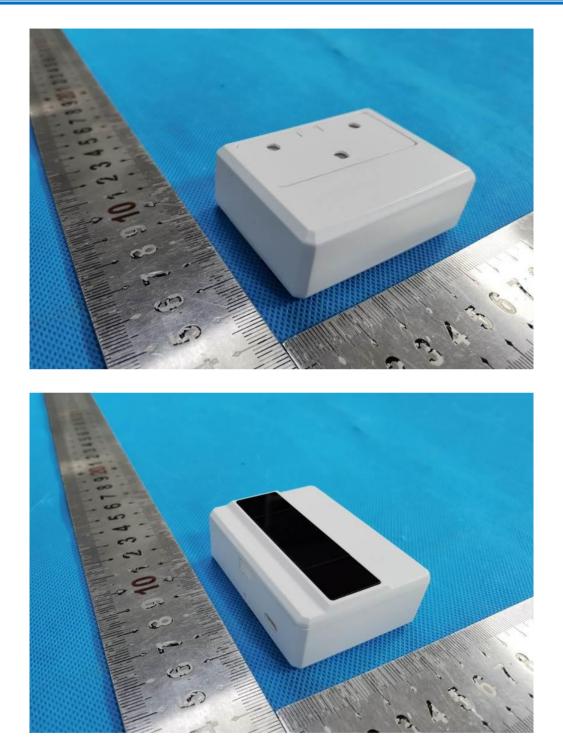
30MHz~1GHz:

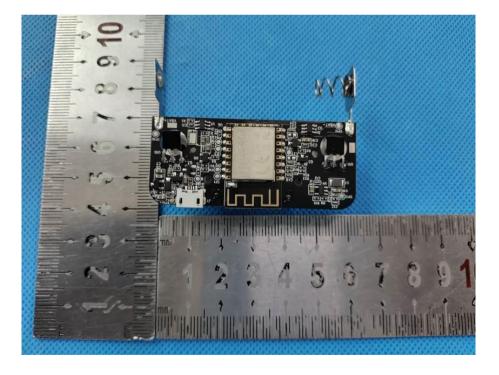


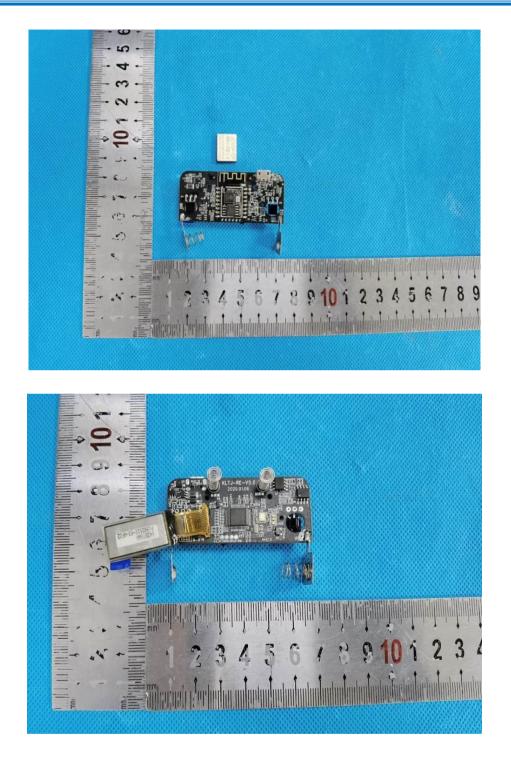


8 Photographs - EUT Constructional Details

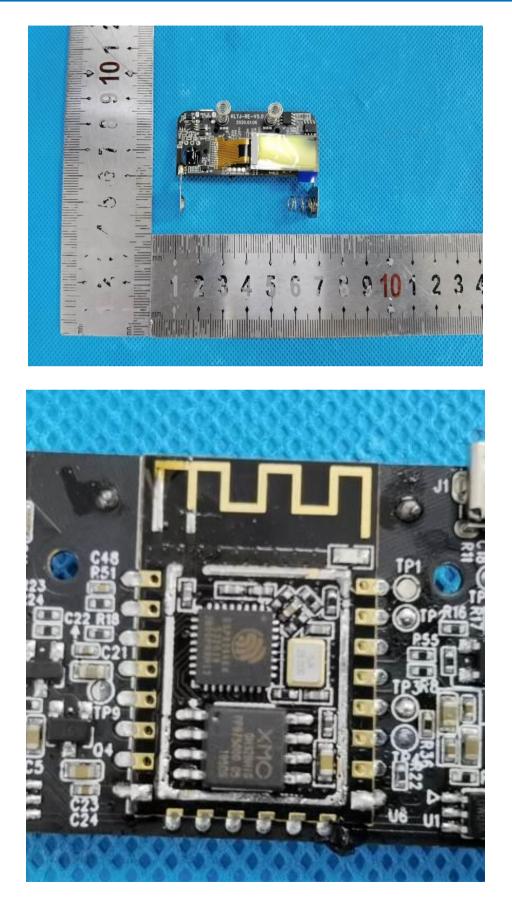
External photos






Report No.: CQASZ20201200045EX-01

Internal photos



THE END