

RADIO TEST REPORT FCC ID: 2AX4YN55

Product: Smart Phone Trade Mark: DOOGEE Model No.: N55 Family Model: N55 Pro, N55S, N55E, N55 SE, N55 Plus, N55 Max, N55 Ultra Report No.: S24031407607002 Issue Date: Apr 07, 2024

Prepared for

Shenzhen DOOGEE Hengtong Technology CO.,LTD

B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22,Longhua New District,Shenzhen,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

2 SUMMARY OF TEST RESULTS	1	TEST RESULT CERTIFICATION	4
3.1 FACILITIES 6 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENT SLIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1.1 CONDUCTED EMISSIONS TEST 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 RADIATED SPURIOUS EMISSION 17 7.2.2 RADIATED SPURIOUS EMISSION 17 7.3.3 Measuring Instruments 17 7.3.4 Test Configuration 18 7.2.5 Test Maskits 26 7.3.4	2	SUMMARY OF TEST RESULTS	5
3.1 FACILITIES 6 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENT SLIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1.1 CONDUCTED EMISSIONS TEST 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 RADIATED SPURIOUS EMISSION 17 7.2.2 RADIATED SPURIOUS EMISSION 17 7.3.3 Measuring Instruments 17 7.3.4 Test Configuration 18 7.2.5 Test Maskits 26 7.3.4	3		
3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST TITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 16 7.2.4 Test Configuration 17 7.2.5 Test Results 20 7.3 Measuring Instruments 16 7.4.1<	-		
3.3 MEASUREMENT UNCERTAINTY			
4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENT LIST FOR ALL TEST TIEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Results 20 7.3 OB BANDWIDTH 26 7.3.4 Test Configuration 18 7.2.5 Te			
5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Regular Environments 14 7.1.5 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 Paplicable Standard 17 7.2.7 RADIATED SPURIOUS EMISSION 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Configuration 18 7.2.4 Test Configuration 18 7.2.5 Test Results 20 7.3.6 GB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit			
6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Procedure 14 7.1.5 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Results 20 7.3 Gendard 26 7.3.4 Test Configuration 18 7.2.5 Test Configuration 18 7.2.6 Test Configuration 26 7.3.1 Applicable Standard 26 <th></th> <th></th> <th></th>			
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Recults 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3.1 Applicable Standard 26 7.3.2 Measuring Instruments 26 7.3.3 Measuring Instruments 26 7.3.4 Test Configuration 26 7.3.5 Test Measuring Instrum	5	DESCRIPTION OF TEST MODES	9
6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Orofiguration 14 7.1.5 Test Procedure 14 7.1.6 Test Reguits 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GB BANDWIDTH 26 7.3.4 Test Standard 26 7.3.4 Test Standard 27 7.4.1 Applicable Standard 26 7.3.4 Test Standard 26 7.3.4 <th>6</th> <th>SETUP OF EQUIPMENT UNDER TEST</th> <th>10</th>	6	SETUP OF EQUIPMENT UNDER TEST	10
6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results. 20 7.3 Measuring Instruments. 26 7.3.1 Applicable Standard 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments. 26 7.3.4 Test Results. 26 7.3.4 Test Results 26	6.		
7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard. 14 7.1.2 Conformance Linit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Linit. 17 7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.6 Test Results. 20 7.3 GDB BANDWIDTH 26 7.3.4 Destandard. 26 7.3.5 Test Procedure 26 7.3.4 Destandard. 26 7.3.5 Test Procedure 26 7.3.6 DI TY CYCLE 26 7.3.7 Test Results 26 7.3.7 Test Results <td></td> <td></td> <td></td>			
7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 20 7.3 GDB BANDWIDTH 26 7.3.4 Test Standard 26 7.3.4 Applicable Standard 26 7.3.5 Test Procedure 20 7.3.6 DB BANDWIDTH 26 7.3.6 Conformance Limit 26 7.3.7 Measuring Instruments 26 7.3.6 Test Results 26 7.3.7 Test Results 26 7.3.6 <	6.		
7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.4 Test Setup 26 7.4.4 Test Setup 26 7.4.4 Test Setup 27 7.4.5 Test Setup 27<	7	TEST REQUIREMENTS	14
7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Noredure 26 7.4.4 Test Setup 26 7.4.5 Test Setup	7	CONDUCTED EMISSIONS TEST	
7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Results 20 7.3 GDB BANDWIDTH 20 7.3 GDB BANDWIDTH 20 7.3 GDB BANDWIDTH 20 7.3.4 Test Results 20 7.3.4 Test Setup 20 7.3.5 Test Procedure 20 7.3.4 Test Setup 20 7.3.5 Test Procedure 20 7.3.6 Test Results 20 7.3.7 GDB BANDWIDTH 20 7.3.6 Test Results 20 7.3.6 Test Results 20 <	<i>,</i> .		
7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Test Results 26 7.3.5 Test Noncelure 26 7.3.4 Test Setup 26 7.3.5 Test Noncelure 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.3.8 Test Setup 26 7.4.4 Test Setup 26 7.4.5 Test Madred 27			
7.1.4 Test Configuration 14 7.15 Test Procedure 14 7.16 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Configuration 18 7.2.6 Test Results 20 7.3 OB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Test Results 26 7.3.5 Test Results 26 7.3.4 Test Setup 26 7.3.5 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.5 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.3.6 Test Results 26			
7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Conformance Limit 26 7.3.5 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Noreclure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 <td></td> <td>7.1.4 Test Configuration</td> <td>14</td>		7.1.4 Test Configuration	14
7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Configuration 18 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Apsuring Instruments 26 7.3.5 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Setup 26 7.3.6 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Setup 26 7.3.6 Test Setup 26 7.3.7 Test Setup 26 7.4 Test Setup 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27			
7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.3 Measuring Instruments 26 7.3.4 Test Stetup 26 7.3.5 Test Procedure 26 7.3.6 Test Procedure 26 7.3.6 Test Stetup 26 7.3.6 Test Procedure 26 7.3.6 Test Procedure 26 7.4 DUTY CYCLE 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.5 Test Results <			
7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.5 Test Procedure 26 7.3.5 Test Setup 26 7.3.5 Test Procedure 26 7.3.5 Test Nesults 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 26 7.4 Duty CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 28	7.		
7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27			
7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH. 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Nesults 26 7.3.6 Test Results 26 7.3.7 Measuring Instruments 26 7.3.6 Test Nesults 26 7.3.4 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.4 Test Setup 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Results 28 7.5 PEAK OUTPUT POWER 29			
7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH. 26 7.3.1 Applicable Standard. 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments. 26 7.3.4 Test Setup 26 7.3.5 Test New Setup 26 7.3.4 Test Setup 26 7.3.5 Test New Setup 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29			
7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Setup 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29			
7.3 6DB BANDWIDTH			
7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test New Setup 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Setup 29 7.5.6 Test Results 29 <td>7</td> <td></td> <td></td>	7		
7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Necedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Necedure 29 7.5.6 Test Results 29	/.		
7.3.3 Measuring Instruments. 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		0	
7.4 DUTY CYCLE		7.3.5 Test Procedure	
7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		7.3.6 Test Results	26
7.4.2 Conformance Limit. 27 7.4.3 Measuring Instruments. 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29 7.5.6 Test Results 29	7.		
7.4.3 Measuring Instruments. 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		r	
7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29			
7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	7		
7.5.2 Conformance Limit	7.		
7.5.3 Measuring Instruments		••	
7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		5	
7.5.5 Test Procedure 29 7.5.6 Test Results 29		8	
7.5.6 Test Results		1	
	7.		

Report No.: S24031407607002

7.6.1	Applicable Standard	
7.6.2	Conformance Limit	
7.6.3	Measuring Instruments	30
7.6.4	Test Setup	
7.6.5	Test Procedure	
7.6.6	Test Results	
7.7 C	CONDUCTED BAND EDGE MEASUREMENT	
7.7.1	Applicable Standard	
7.7.2	Conformance Limit	
7.7.3	Measuring Instruments	
7.7.4	Test Setup	
7.7.5	Test Procedure	
7.7.6	Test Results	
7.8 S	PURIOUS RF CONDUCTED EMISSIONS	
7.8.1	Conformance Limit	
7.8.2	Measuring Instruments	
7.8.3	Test Setup	
7.8.4	Test Procedure	
7.8.5	Test Results	
7.9 A	NTENNA APPLICATION	
7.9.1	Antenna Requirement	
7.9.2	Result	34
8 TEST	RESULTS	35
1M·		35
8.1.1	Duty Cycle	
8.1.2	Maximum Conducted Output Power	
8.1.3	-6dB Bandwidth	
8.1.4	Occupied Channel Bandwidth	
8.1.5	Maximum Power Spectral Density Level	
8.1.6	Band Edge	
8.1.7	Conducted RF Spurious Emission	53
2M:	-	
8.1.8	Duty Cycle	57
8.1.9	Maximum Conducted Output Power	60
8.1.10	-	
8.1.11	Occupied Channel Bandwidth	
8.1.12	Maximum Power Spectral Density Level	60
	Maximum Fower Spectral Density Level	09
8.1.13		
8.1.13 8.1.14	Band Edge	72

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22,Longhua New District,Shenzhen,China
Manufacturer's Name:	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No.22,Longhua New District,Shenzhen,China
Product description	
Product name:	Smart Phone
Model and/or type reference:	N55
Family Model:	N55 Pro, N55S, N55E, N55 SE, N55 Plus, N55 Max, N55 Ultra
Test sample number	S240314076007
Date of Test	Mar 18, 2024 ~ Apr 02, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared . By ·	Allen Liu (Project Engineer)	Reviewed . By ··	Aaron Cheng (Supervisor)	Approved : Alex Li By : Alex Li (Manager)

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm Site Location	 Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Smart Phone		
Trade Mark	DOOGEE		
FCC ID	2AX4YN55		
Model No.	N55		
Family Model	N55 Pro, N55S, N55E, N55 SE, N55 Plus, N55 Max, N55 Ultra		
Model Difference	All models are the same circuit and RF module, except the model name.		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK		
Number of Channels	40 Channels		
Antenna Type	PIFA Antenna		
Antenna Gain	2.11dBi		
Adapter	Model: DGCDQ-BC023-02 Input: AC100-240V~50/60Hz 0.35A Max Output: 5.0V2.0A 10.0W Power: 10.0W Max		
Battery	DC 3.87V, 5150 mAh		
Power supply	DC 3.87V from battery or DC 5V from adapter		
HW Version	N/A		
SW Version	N/A		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

		vision History	
Report No.	Version	Description	Issued Date
S24031407607002	Rev.01	Initial issue of report	Apr 07, 2024

NTEK 北测

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps / 2Mbps for GFSK modulation) were used for all test.

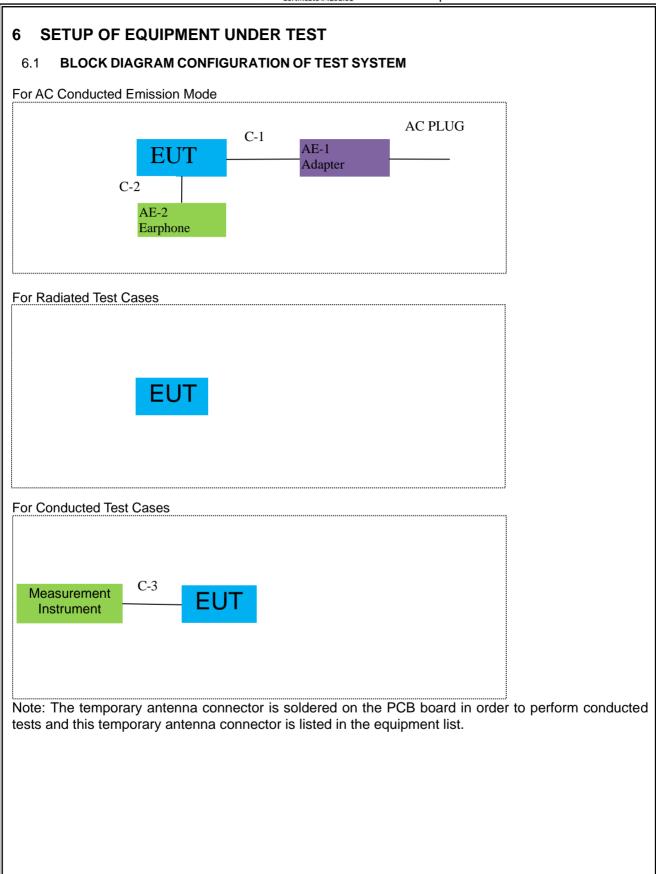
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Test Cases				
Test Item	Data Rate/ Modulation			
AC Conducted Emission	Mode 1: normal link mode			
	Mode 1: normal link mode			
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps			
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps			
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps			
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps			
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps			
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps			

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
	Smart Phone	N55	N/A	EUT
AE-1	Adapter	DGCDQ-BC023-02	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.03.12	2025.03.11	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.03.12	2025.03.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2023.05.29	2024.05.28	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.05.29	2024.05.28	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.05.29	2024.05.28	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	· R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

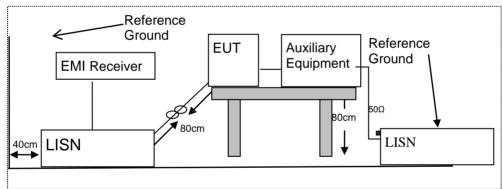
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

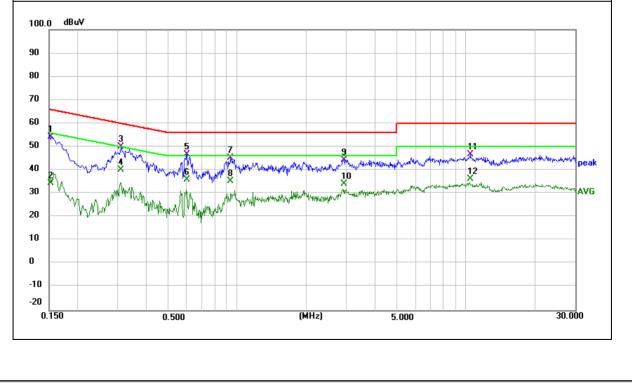
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Smart Phone	Model Name :	N55
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

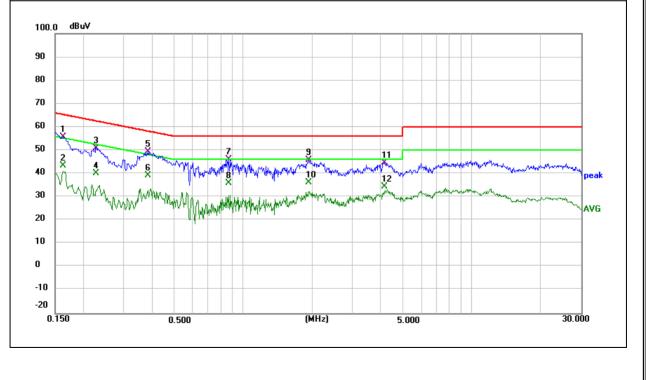
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	44.29	9.93	54.22	65.79	-11.57	QP
0.1539	24.43	9.93	34.36	55.79	-21.43	AVG
0.3100	39.82	10.26	50.08	59.97	-9.89	QP
0.3100	29.86	10.26	40.12	49.97	-9.85	AVG
0.6020	35.93	10.85	46.78	56.00	-9.22	QP
0.6020	25.17	10.85	36.02	46.00	-9.98	AVG
0.9340	33.84	11.52	45.36	56.00	-10.64	QP
0.9340	23.81	11.52	35.33	46.00	-10.67	AVG
2.9300	34.81	9.67	44.48	56.00	-11.52	QP
2.9300	24.48	9.67	34.15	46.00	-11.85	AVG
10.4260	36.91	9.69	46.60	60.00	-13.40	QP
10.4260	26.66	9.69	36.35	50.00	-13.65	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Smart Phone	Model Name :	N55
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerly
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1623	45.80	9.95	55.75	65.35	-9.60	QP
0.1623	33.41	9.95	43.36	55.35	-11.99	AVG
0.2267	40.80	10.10	50.90	62.57	-11.67	QP
0.2267	30.05	10.10	40.15	52.57	-12.42	AVG
0.3820	38.98	10.40	49.38	58.24	-8.86	QP
0.3820	28.96	10.40	39.36	48.24	-8.88	AVG
0.8660	34.86	11.40	46.26	56.00	-9.74	QP
0.8660	24.62	11.40	36.02	46.00	-9.98	AVG
1.9340	32.48	13.52	46.00	56.00	-10.00	QP
1.9340	22.60	13.52	36.12	46.00	-9.88	AVG
4.1380	34.91	9.67	44.58	56.00	-11.42	QP
4.1380	24.85	9.67	34.52	46.00	-11.48	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

NTEK 北测

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

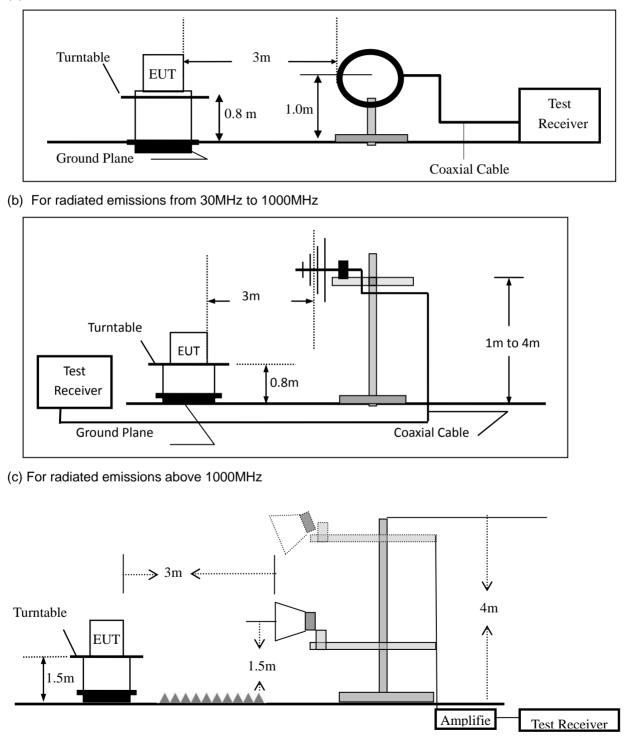
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
riequency(Minz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

NTEK 北测

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
30 to 1000	QP	120 kHz	300 kHz								
Above 1000	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	Model No.:	N55
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK ÀV		H/V PK AV PK AV		PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

	odes nave been tested, and	the worst result was report as	below.
EUT:	Smart Phone	Model Name :	N55
Temperature:	24 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.87V		

Polar	Frequency	Meter Reading	leading Factor Level		Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)			(dBuV/m)	(dB)	
V	36.0007	5.02	23.03	28.05	40.00	-11.95	QP
V	59.6493	10.47	12.04	22.51	40.00	-17.49	QP
V	137.4202	13.31	18.60	31.91	43.50	-11.59	QP
V	301.4223	9.97	20.17	30.14	46.00	-15.86	QP
V	552.8832	5.19	25.71	30.90	46.00	-15.10	QP
V	603.5391	5.34	26.48	31.82	46.00	-14.18	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remark
Н	85.5977	5.05	16.03	21.08	40.00	-18.92	QP
Н	136.9391	9.09	18.60	27.69	43.50	-15.81	QP
Н	210.7860	6.24	16.46	22.70	43.50	-20.80	QP
Н	285.9778	6.86	19.97	26.83	46.00	-19.17	QP
H	414.7223	4.93	23.52	28.45	46.00	-17.55	QP
<u> </u>	622.8900	5.89	26.77	32.66	46.00	-13.34	QP
Remar Emissio 80.0	ĸ: on Level= Meter dBu∀/m	Reading+ Fa	ctor, Margir	n= Emission Le	evel - Limit		
70							
60							
50							
40						6 Subarbuchin	Instant
30 20	hardfalan Maring hard water and had	1 Marine Marine States	+mmytoriuth marging	multinul ation man make	the adverse of the second s	hundratt	
10	and the second	Marine Malan Markata					
0.0	1000		,				1000 000
30	.000 6	0.00	l	MHz)	300.00		1000.000

JT:		Smart Ph	one		Model No.:		N55		
emperature	:	20 ℃			Relative Hum	nidity:	48%		
est Mode:		Mode2/M	ode3/Mode	4	Test By:		Allen Liu		
									-
Frequency	Read Leve		e Antenna Factor	Pream Facto		Limits	Margin	Remark	Comment
(MHz)	(dBµ∖	/) (dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
			Low (Channel	(2402 MHz)(GF	SK)Above	e 1G		
4804.338	62.66	5.21	35.59	44.30	59.16	74.00	-14.84	Pk	Vertical
4804.338	41.93	3 5.21	35.59	44.30	38.43	54.00	-15.57	AV	Vertical
7206.107	60.3 ⁻	1 6.48	36.27	44.60	58.46	74.00	-15.54	Pk	Vertical
7206.107	40.96	6.48	36.27	44.60	39.11	54.00	-14.89	AV	Vertical
4804.169	64.07	7 5.21	35.55	44.30	60.53	74.00	-13.47	Pk	Horizontal
4804.169	43.02	2 5.21	35.55	44.30	39.48	54.00	-14.52	AV	Horizontal
7206.214	61.48	6.48	36.27	44.52	2 59.71	74.00	-14.29	Pk	Horizontal
7206.214	41.49	9 6.48	36.27	44.52	39.72	54.00	-14.28	AV	Horizontal
			Mid C	Channel	(2440 MHz)(GF	SK)Above	1G		
4880.473	63.9 ⁻	1 5.21	35.66	44.20	60.58	74.00	-13.42	Pk	Vertical
4880.473	44.17	7 5.21	35.66	44.20	40.84	54.00	-13.16	AV	Vertical
7320.265	64.87	7 7.10	36.50	44.43	64.04	74.00	-9.96	Pk	Vertical
7320.265	42.63	3 7.10	36.50	44.43	3 41.80	54.00	-12.20	AV	Vertical
4880.366	63.59	9 5.21	35.66	44.20	60.26	74.00	-13.74	Pk	Horizontal
4880.366	41.64	4 5.21	35.66	44.20	38.31	54.00	-15.69	AV	Horizontal
7320.234	60.5 ⁻	1 7.10	36.50	44.43	3 59.68	74.00	-14.32	Pk	Horizontal
7320.234	44.88	8 7.10	36.50	44.43	3 44.05	54.00	-9.95	AV	Horizontal
			High (Channel	(2480 MHz)(GF	SK) Abov	e 1G		
4960.482	64.3	5 5.21	35.52	44.2	l 60.87	74.00	-13.13	Pk	Vertical
4960.482	41.70	5.21	35.52	44.2	I 38.22	54.00	-15.78	AV	Vertical
7440.131	65.49	9 7.10	36.53	44.60	64.52	74.00	-9.48	Pk	Vertical
7440.131	48.4	1 7.10	36.53	44.60) 47.44	54.00	-6.56	AV	Vertical
4960.326	64.3	5 5.21	35.52	44.2	l 60.87	74.00	-13.13	Pk	Horizontal
4960.326	44.0	5 5.21	35.52	44.2	40.57	54.00	-13.43	AV	Horizontal
7440.199	63.98	8 7.10	36.53	44.60	63.01	74.00	-10.99	Pk	Horizontal
7440.199	44.49	9 7.10	36.53	44.60	43.52	54.00	-10.48	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

JT:	Smart Phone Model No.:				N	N55			
emperature:	e: 20 °C Relative			e Humidity	/: 48	: 48%			
est Mode:	Mode2/	Mode4		Test B	y:	A	llen Liu		
_	Meter	Cable	Antenna	Preamp	Emission				
Frequency	Reading	Loss	Factor	Factor	Level	Limits	s Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	m) (dB)	Туре	
				1Mbps	(GFSK)				
2310.00	64.10	2.97	27.80	43.80	51.07	74	-22.93	Pk	Horizontal
2310.00	43.98	2.97	27.80	43.80	30.95	54	-23.05	AV	Horizontal
2310.00	61.62	2.97	27.80	43.80	48.59	74	-25.41	Pk	Vertical
2310.00	41.75	2.97	27.80	43.80	28.72	54	-25.28	AV	Vertical
2390.00	62.82	3.14	27.21	43.80	49.37	74	-24.63	Pk	Vertical
2390.00	43.05	3.14	27.21	43.80	29.60	54	-24.40	AV	Vertical
2390.00	63.07	3.14	27.21	43.80	49.62	74	-24.38	Pk	Horizontal
2390.00	42.43	3.14	27.21	43.80	28.98	54	-25.02	AV	Horizontal
2483.50	61.51	3.58	27.70	44.00	48.79	74	-25.21	Pk	Vertical
2483.50	43.89	3.58	27.70	44.00	31.17	54	-22.83	AV	Vertical
2483.50	65.23	3.58	27.70	44.00	52.51	74	-21.49	Pk	Horizontal
2483.50	43.16	3.58	27.70	44.00	30.44	54	-23.56	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Smart F	hone		Model	Model No.:					
emperature:	20 ℃			Relativ	e Humidity	<i>r</i> : 2	48%			
est Mode:	Mode2/	Mode4		Test By	/:	ŀ	Allen	Liu		
				_						
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	
3260	64.26	4.04	29.57	44.70	53.17	74	1	-20.83	Pk	Vertical
3260	57.45	4.04	29.57	44.70	46.36	54	1	-7.64	AV	Vertical
3260	67.02	4.04	29.57	44.70	55.93	74	1	-18.07	Pk	Horizontal
3260	58.68	4.04	29.57	44.70	47.59	54	1	-6.41	AV	Horizontal
3332	65.05	4.26	29.87	44.40	54.78	74	1	-19.22	Pk	Vertical
3332	56.48	4.26	29.87	44.40	46.21	54	1	-7.79	AV	Vertical
3332	65.48	4.26	29.87	44.40	55.21	74	1	-18.79	Pk	Horizontal
3332	53.03	4.26	29.87	44.40	42.76	54	1	-11.24	AV	Horizontal
17797	46.00	10.99	43.95	43.50	57.44	74	1	-16.56	Pk	Vertical
17797	36.39	10.99	43.95	43.50	47.83	54	1	-6.17	AV	Vertical
17788	44.42	11.81	43.69	44.60	55.32	74	1	-18.68	Pk	Horizontal
17788	35.64	11.81	43.69	44.60	46.54	54	1	-7.46	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	N55
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	N55
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Smart Phone	Model No.:	N55
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	N55
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	N55
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

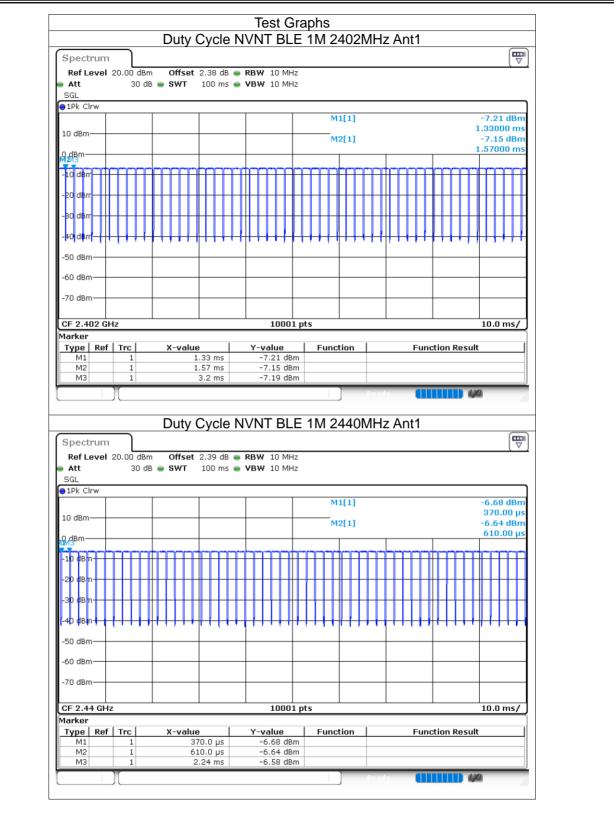
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

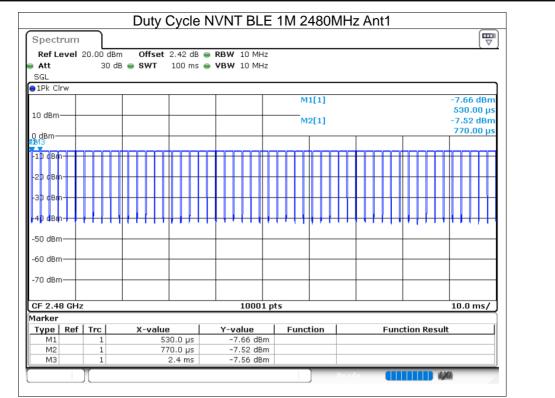
The EUT antenna is permanent attached PIFA antenna (Gain: 2.11dBi). It comply with the standard requirement.

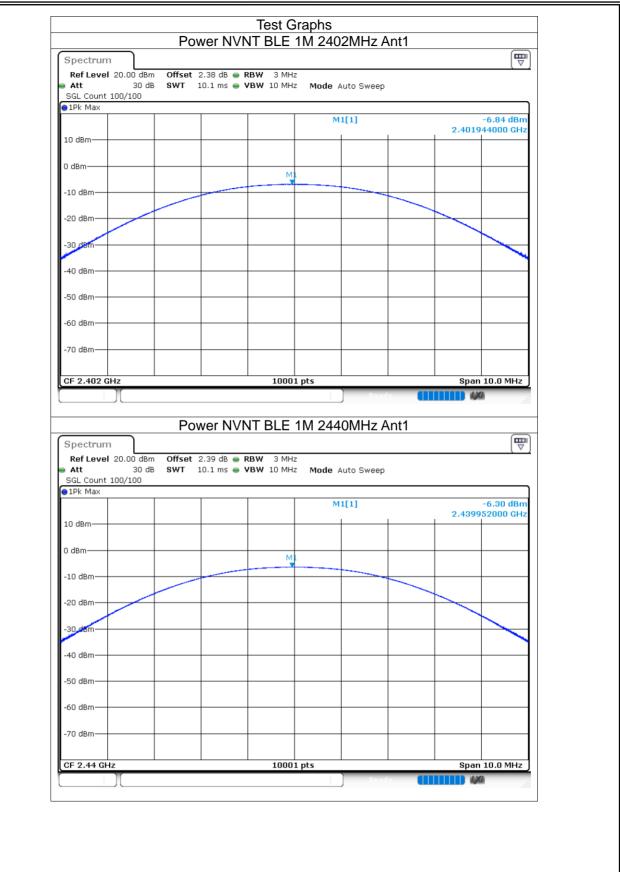
8 TEST RESULTS


1M:

8.1.1 **Duty Cycle**

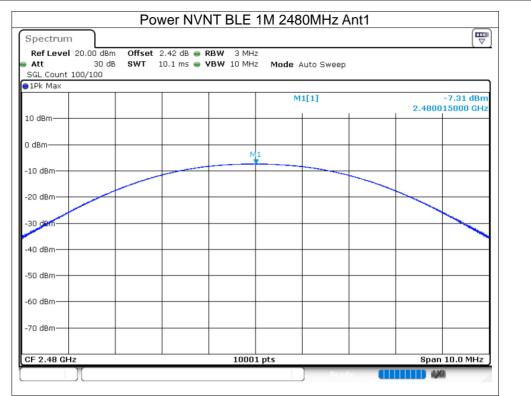
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	87.81	0.56	0.61
NVNT	BLE 1M	2440	Ant1	87.58	0.58	0.61
NVNT	BLE 1M	2480	Ant1	87.71	0.57	0.61





8.1.2 Maximum Conducted Output Power

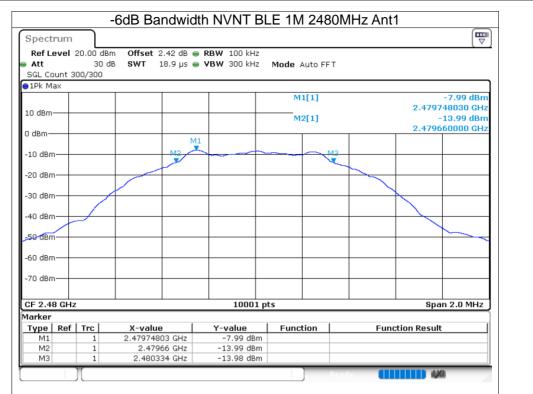
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-6.84	30	Pass
NVNT	BLE 1M	2440	Ant1	-6.3	30	Pass
NVNT	BLE 1M	2480	Ant1	-7.31	30	Pass

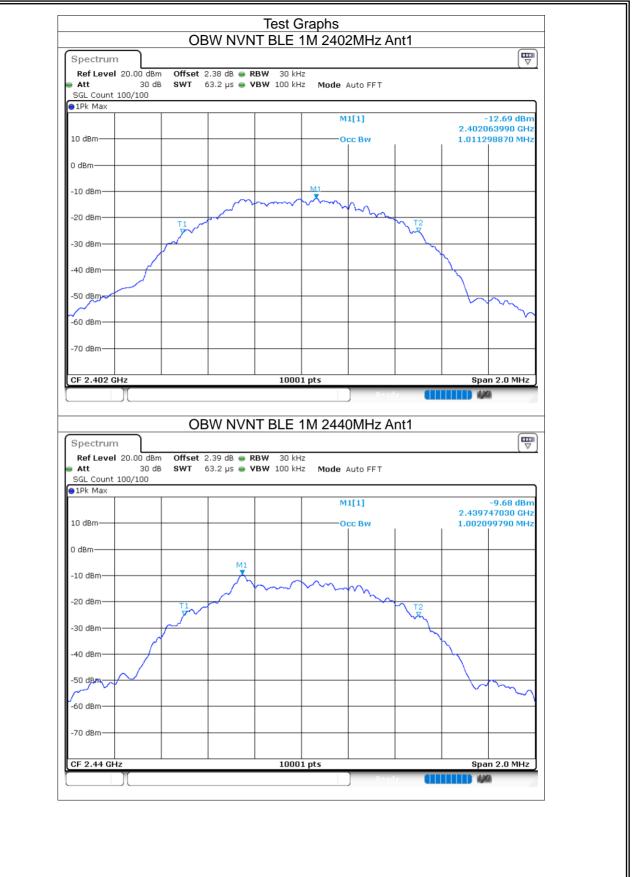


Report No.: S24031407607002

8.1.3 -6dB Bandwidth

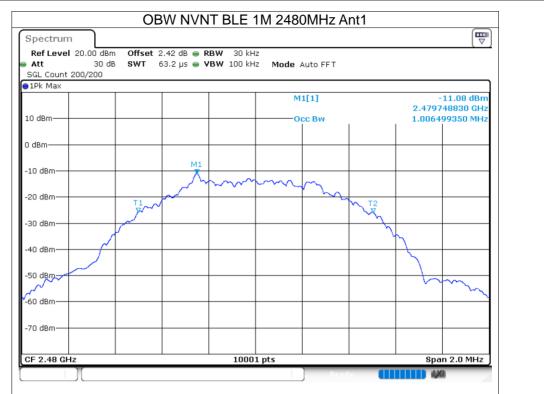
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.672	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.687	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.674	0.5	Pass

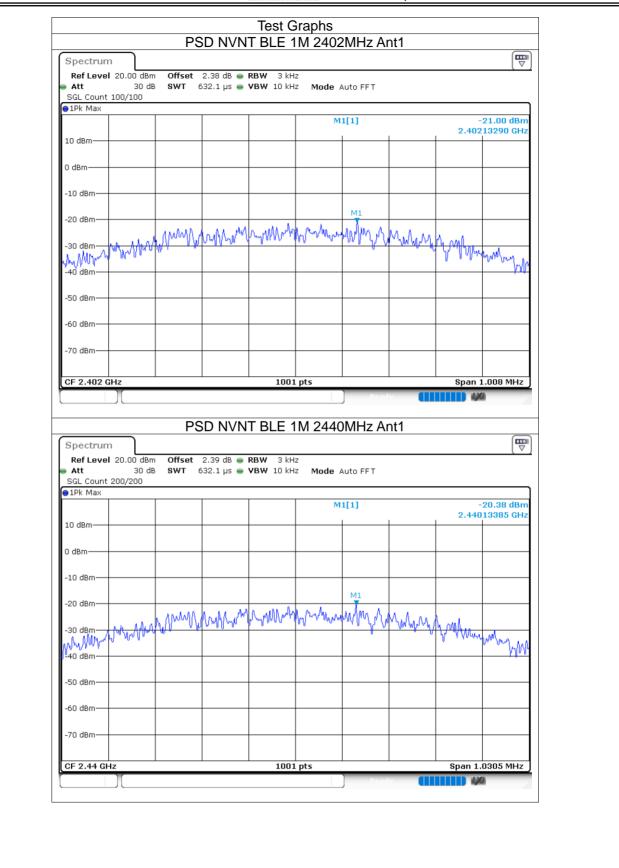




8.1.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.011
NVNT	BLE 1M	2440	Ant1	1.002
NVNT	BLE 1M	2480	Ant1	1.006





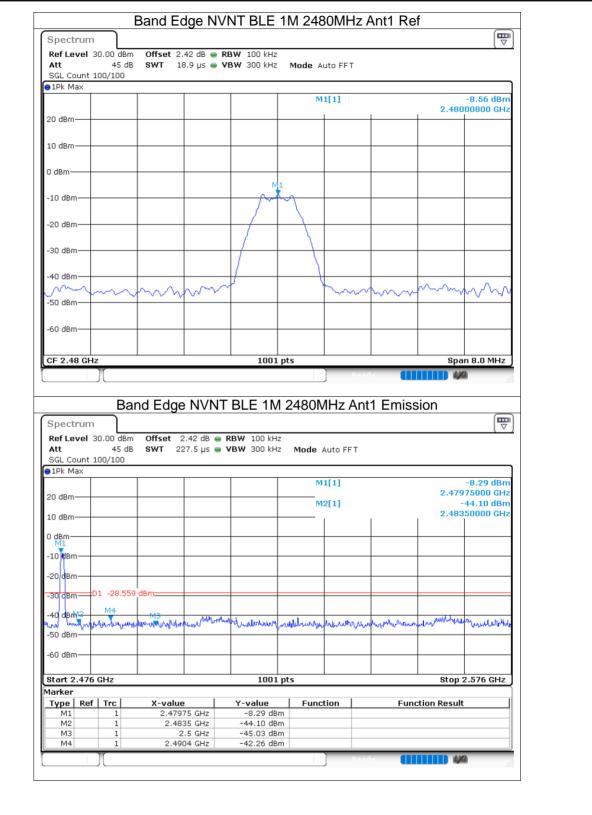
8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-21	8	Pass
NVNT	BLE 1M	2440	Ant1	-20.38	8	Pass
NVNT	BLE 1M	2480	Ant1	-21.49	8	Pass

	Odb SWT 6	42 dB 👄 RBW 3 kHz 32 μs 👄 VBW 10 kHz				
● 1Pk Max	U					
			M1[1]			21.49 dBm 13530 GHz
10 dBm				+ +	2.480	13530 GH2
0 dBm						
-10 dBm	_					
			M1			
-20 dBm		a an an a	a multi willow to			
-30 dBm		MULTIN	Mar way and the by	MAAM	4 Million	
My My W	1		www.www.	1	A dam	WWW was
-40 dBm						l h
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.48 GHz	<u> </u>	1001	l pts		Span 1	.011 MHz

8.1.6 Band Edge

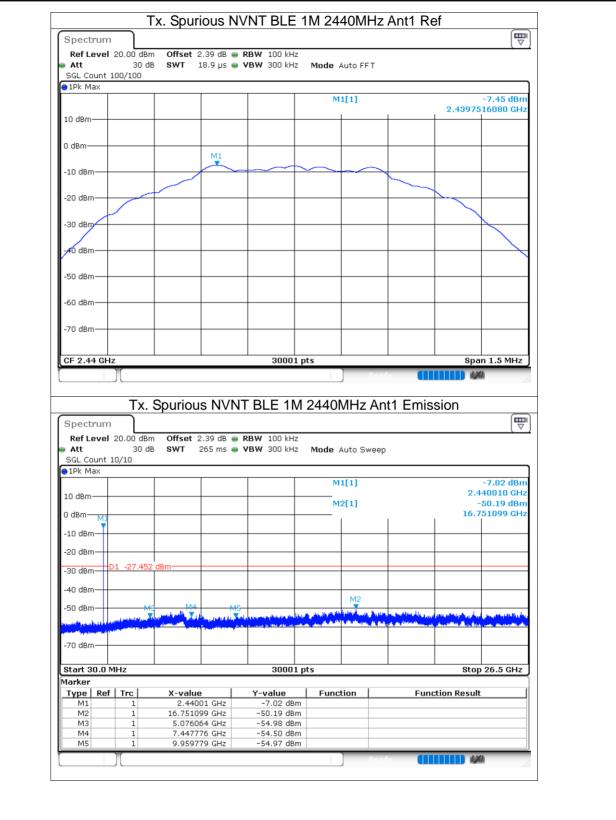
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-41.74	-20	Pass
NVNT	BLE 1M	2480	Ant1	-33.7	-20	Pass



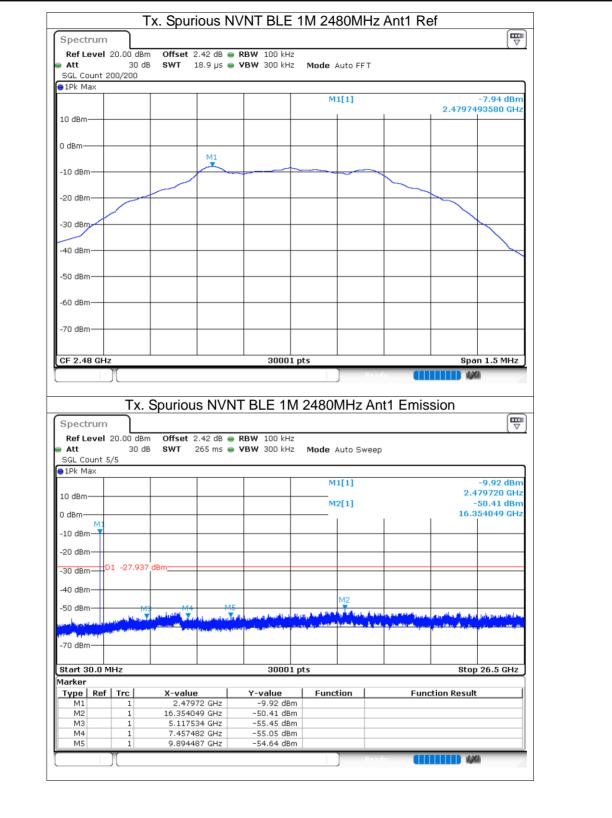
Spectru			9	NT BLE						ī
-	l 20.00 dBm			BW 100 kHz BW 300 kHz		uto FFT			(~)	!
SGL Coun						-				
∎тнк мах					м	1[1]			-8.01 dBm	
10 dBm								2.401	.99200 GHz	
0 dBm				м	1					
-10 dBm—				تم	m					
-20 dBm—										
-30 dBm—					\vdash					
-40 dBm—			7	/						
-50 dBm—	hn							m		
-60 dBm—			***						- 10 - Par 10	
-70 dBm—										
	1			1001	nte					- 1
CF 2.402		nd Edge	• NVNT	BLE 1M) 1Hz Ant	1 Emiss		in 8.0 MHz	_
Spectru	Ba m			BLE 1M	1 2402N) Read	1 Emiss			
Spectrui Ref Level Att	Ba m I 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F		<u>1 2402N</u>		1 Emiss			
Spectrui Ref Level Att SGL Coun	Ba m I 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 1M	<u>1 2402N</u>		1 Emiss			
Spectrui Ref Level Att SGL Coun 1Pk Max	Ba m I 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 1M	1 2402N		1 Emiss	sion		
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm—	Ba m I 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 1M	1 2402N	Auto FFT	1 Emiss	sion 2.401		
Spectrum Ref Level Att SGL Coun PIPk Max 10 dBm	Ba m I 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 1M	1 2402N	Auto FFT 1[1]	1 Emiss	sion 2.401	-7.64 dBm .75000 GHz .53.49 dBm	
Ref Level Att SGL Coun 1Pk Max 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200	Offset 2 SWT 22	2.38 dB 👄 F	BLE 1M	1 2402N	Auto FFT 1[1]	1 Emiss	sion 2.401	-7.64 dBm .75000 GHz :53.49 dBm 000000 GHz	
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm	Ba m I 20.00 dBm 35 dB	Offset 2 SWT 22	2.38 dB 👄 F	BLE 1M	1 2402N	Auto FFT 1[1]	1 Emiss	sion 2.401	-7.64 dBm .75000 GHz :53.49 dBm 000000 GHz	
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200	Offset 2 SWT 22	2.38 dB 👄 F	BLE 1N	A 2402N	Auto FFT 1[1] 2[1]		sion 2.401	-7.64 dBm .75000 GHz :53.49 dBm 000000 GHz	
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200	Offset 2 SWT 22	2.38 dB 👄 F	BLE 1N	1 2402N	Auto FFT 1[1] 2[1]		sion 2.401	-7.64 dBm .75000 GHz 53.49 dBm 000000 GHz	
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200	Offset 2 SWT 22	2.38 dB 🕳 F 27.5 µs 🖷 \	BLE 1N	A 2402N	Auto FFT 1[1] 2[1]		2.401 2.400	-7.64 dBm .75000 GHz 53.49 dBm 000000 GHz	
Spectrum Ref Level Att SGL Coun 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200	Offset 2 SWT 22	2.38 dB 🕳 F 27.5 µs 🖷 \	BLE 1N	1 2402N	Auto FFT 1[1] 2[1]		2.401 2.400	-7.64 dBm .75000 GHz 53.49 dBm 000000 GHz	
Spectrum Ref Level Att SGL Coun 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200 D1 -28.013 D1 -28.013 D1 -28.013 D1 -28.013 D1 -28.013	Offset 2 SWT 22	2.38 dB • Γ 27.5 μs • \	BLE 1N	1 2402M	Auto FFT 1[1] 2[1]		2.400 2.400 2.400 	-7.64 dBm 75000 GHz 53.49 dBm M1 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	
Spectrui Ref Level Att SGL Coun 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200 D1 -28.013 D1 -28.013 D1 -28.013 D1 -28.013 D1 -28.013	Offset 2 SWT 22	2.38 dB • Γ 27.5 μs • \	BLE 1N	1 2402N	Auto FFT 1[1] 2[1]		2.401 2.400	-7.64 dBm 75000 GHz 53.49 dBm M1 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	
Spectrui Ref Level Att SGL Coun 1Pk Max 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200 D1 -28.013 D1 -28.013 06 GHz ef Trc 1 1	Offset 2 SWT 22 dBmM	2.38 dB 27.5 μs 27.5 μs	BLE 1N	1 2402N	Auto FFT 1[1] 2[1]		2.400 2.400 2.400 	-7.64 dBm 75000 GHz 53.49 dBm M1 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	
Spectrum Ref Level Att SGL Coun 10 dBm	Ba m 1 20.00 dBm 35 dB t 200/200 D1 -28.013 D1 -	Offset 2 SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm 2.401 2.401 2.201 2.	2.38 dB • Γ	BLE 1N RBW 100 kH yBW 300 kH 300 kH 100 kH yBW 300 kH	1 2402N	Auto FFT 1[1] 2[1]		2.400 2.400 2.400 	-7.64 dBm 75000 GHz 53.49 dBm M1 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	

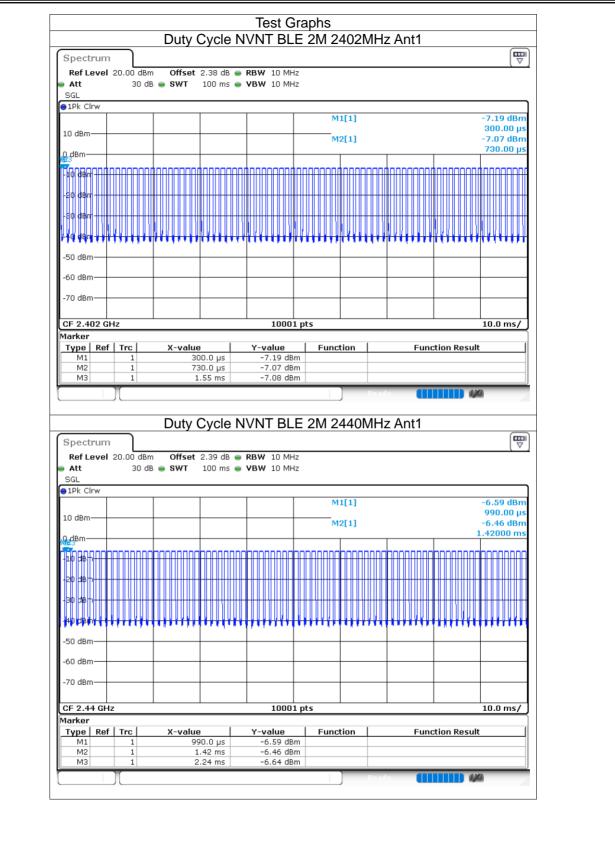
8.1.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-42.89	-20	Pass
NVNT	BLE 1M	2440	Ant1	-42.73	-20	Pass
NVNT	BLE 1M	2480	Ant1	-42.47	-20	Pass



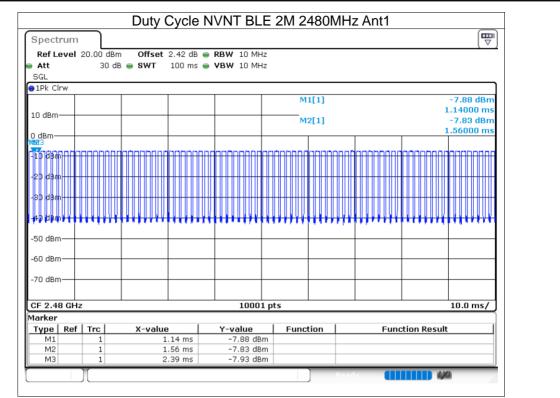
Spectrum		0#					
Ref Level 20. Att SGL Count 300,	30 dB		dB 🖷 RB₩ 100 kHz µs 🖷 VB₩ 300 kHz		T		
●1Pk Max			1 1	M1[1]			-7.49 dBm
				M1[1]	1	2.40174	-7.49 dBm 68080 GHz
10 dBm							
0 dBm							
		M			_		
-10 dBm							
-20 dBm						<u> </u>	
-30 dBm							
-30 UBIL							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
				1	1	1	
Spectrum			30001	1 2402MHz	Ant1 Emis		n 1.5 MHz
RefLevel 20. Att	.00 dBm 30 dB	Offset 2.38		1 2402MHz			
Spectrum Ref Level 20. Att SGL Count 10/3	.00 dBm 30 dB	Offset 2.38		1 2402MHz Mode Auto St			
Spectrum Ref Level 20. Att SGL Count 10/3	.00 dBm 30 dB	Offset 2.38		Mode Auto St M1[1]		ssion 2.4	-9.67 dBm 02070 GHz
Spectrum Ref Level 20. Att SGL Count 10/: 1Pk Max	.00 dBm 30 dB	Offset 2.38		1 2402MHz Mode Auto St		2.4	-9.67 dBm
Spectrum Ref Level 20. Att SGL Count 10/: 1Pk Max 10 dBm	.00 dBm 30 dB	Offset 2.38		Mode Auto St M1[1]		2.4	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL Count 10/: 10 dBm 0 dBm M1	.00 dBm 30 dB	Offset 2.38		Mode Auto St M1[1]		2.4	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL Count 10/: 1Pk Max 10 dBm 0 dBm -10 dBm	00 dBm 30 dB 10	Offset 2.38 SWT 265		Mode Auto St M1[1]		2.4	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL Count 10/: 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm	00 dBm 30 dB 10	Offset 2.38 SWT 265		Mode Auto St M1[1]		2.4	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL Count 10/: ID dBm 0 dBm -10 dBm -20 dBm -30 dBm D1	-27.490	Offset 2.38 SWT 265	NVNT BLE 1M	Mode Auto Sv Mode Auto Sv M1[1] M2[1]	weep	2.4	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL Count 10/: 1Pk Max 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	00 dBm 30 dB 10	Offset 2.38 SWT 265	NVNT BLE 1M	Mode Auto St Mode Auto St M1[1] M2[1] M2		2.4	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL SGL Count 10/: 1Pk Max 10 dBm 0 dBm	-27.490	Offset 2.38 SWT 265	NVNT BLE 1M	Mode Auto St Mode Auto St M1[1] M2[1] M2	weep	2.4 	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL Count 10/2 SGL Count 10/2 10/2 1D dBm	-27.490	Offset 2.38 SWT 265	NVNT BLE 1M	Mode Auto Sv Mode Auto Sv M1[1] M2[1]	weep	2.4 	-9.67 dBm 02070 GHz 50.38 dBm 95828 GHz
Spectrum Ref Level 20. Att SGL Count 10/ SGL Count 10/ 10/ ID dBm 0 dBm 10 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm D1 -30 dBm -40 dBm	-27.490	Offset 2.38 SWT 265	NVNT BLE 1M	Mode Auto Sv Mode Auto Sv M1[1] M2[1]	weep	2.4 	-9.67 dBm 02070 GHz 50.38 dBm
Spectrum Ref Level 20. Att SGL Count 10/: SGL Count 10/: 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 MHz Marker Type	-27.490	Offset 2.38 SWT 265	NVNT BLE 1M	Mode Auto Sv M1[1] M2[1]	weep	2.4 	-9.67 dBm 02070 GHz 50.38 dBm 95828 GHz
Spectrum Ref Level 20. Att SGL Count 10/2 SGL Count 10/2 10/2 1D dBm	-27.490	Offset 2.38 SWT 265	JVNT BLE 1M dB ● RBW 100 kHz ms ● VBW 300 kHz ms M5 L S0001 Hz -9.67 dBn Hz -50.38 dBn	Mode Auto Sv Mode Auto Sv M1[1] M2[1] M2[1] M2 N2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep	2.4 	-9.67 dBm 02070 GHz 50.38 dBm 95828 GHz
Spectrum Ref Level 20. Att SGL Count 10/2 SGL Count 10/2 10/2 IPK Max - - 10 dBm - - 0 dBm - - -10 dBm - - -20 dBm - - -30 dBm - - -40 dBm - - -50 dBm - - -70 dBm - - Start 30.0 MHz - - Marker - - Type Ref T	-27.490	Offset 2.38 SWT 265	JVNT BLE 1M dB ● RBW 100 kHz ms ● VBW 300 kHz	Mode Auto St Mode Auto St M1[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep	2.4 	-9.67 dBm 02070 GHz 50.38 dBm 95828 GHz
Spectrum Ref Level 20. Att SGL Count 10/3 SGL Count 10/3 10/3 ID dBm 0 0 10/3 10 dBm 0 10/3 10/3 -20 dBm - - 0 -30 dBm - - 0 -30 dBm - - 0 -70 dBm - - - Start 30.0 MHz - - - Marker - - - - M2 M3 - - -	-27.490	Offset 2.38 SWT 265	NVNT BLE 1M	Mode Auto St Mode Auto St M1[1] M2[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	weep	2.4 	-9.67 dBm 02070 GHz 50.38 dBm 95828 GHz




2M:

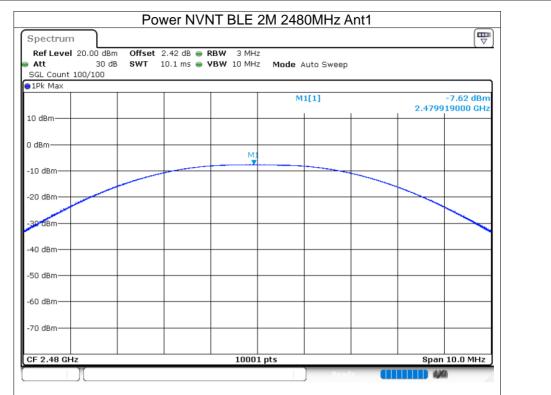
8.1.8 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	66.4	1.78	1.22
NVNT	BLE 2M	2440	Ant1	66.39	1.78	1.22
NVNT	BLE 2M	2480	Ant1	67.19	1.73	1.2



8.1.9 Maximum Conducted Output Power

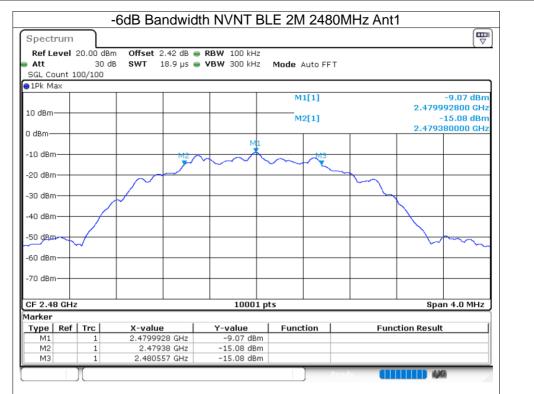
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-6.88	30	Pass
NVNT	BLE 2M	2440	Ant1	-6.31	30	Pass
NVNT	BLE 2M	2480	Ant1	-7.62	30	Pass

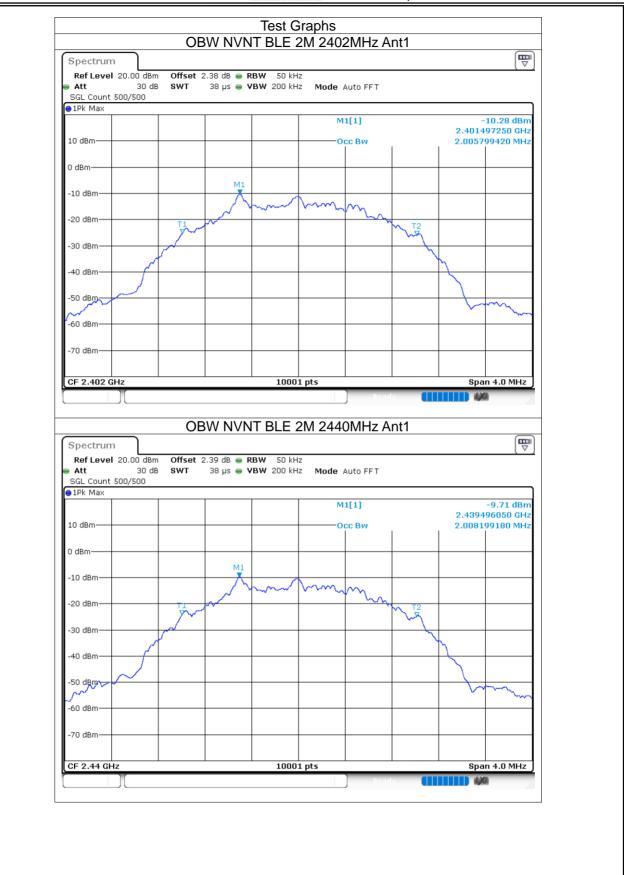


Version.1.3

8.1.10 -6dB Bandwidth

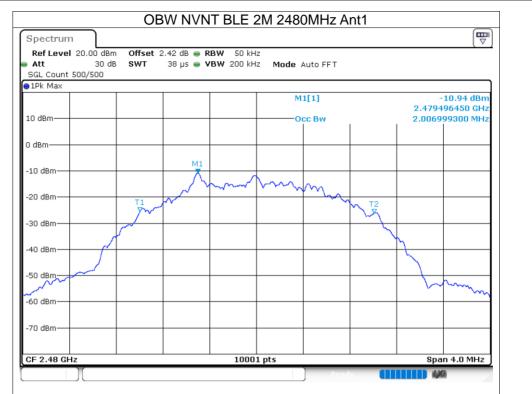
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.21	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.127	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.176	0.5	Pass



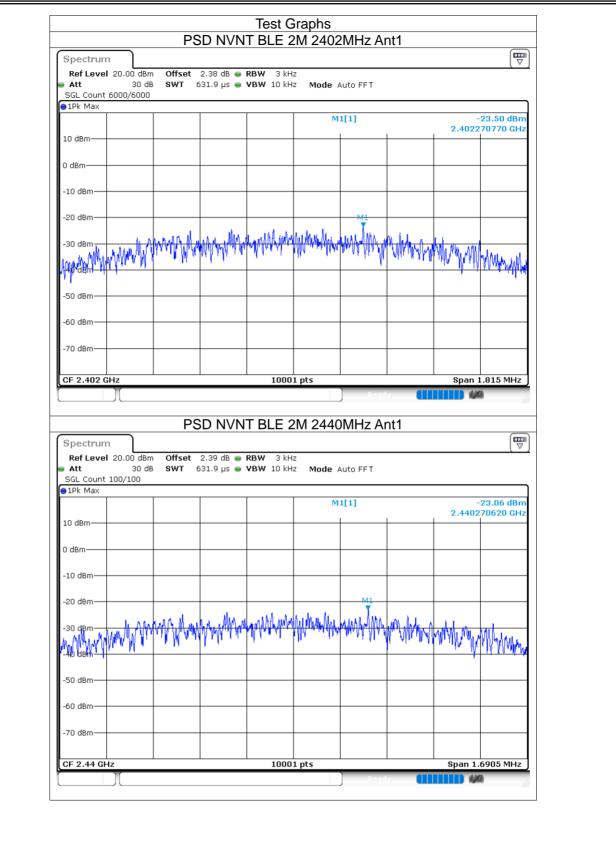


8.1.11 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.006
NVNT	BLE 2M	2440	Ant1	2.008
NVNT	BLE 2M	2480	Ant1	2.007

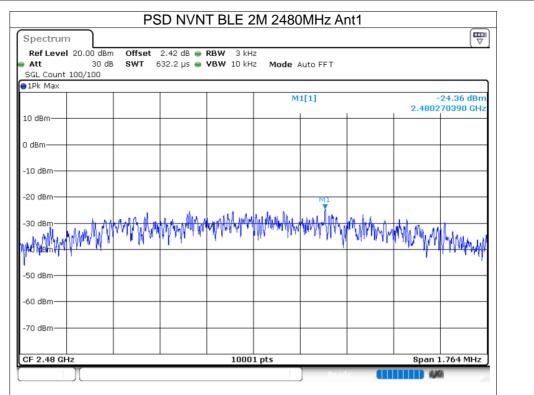


Report No.: S24031407607002



8.1.12 Maximum Power Spectral Density Level

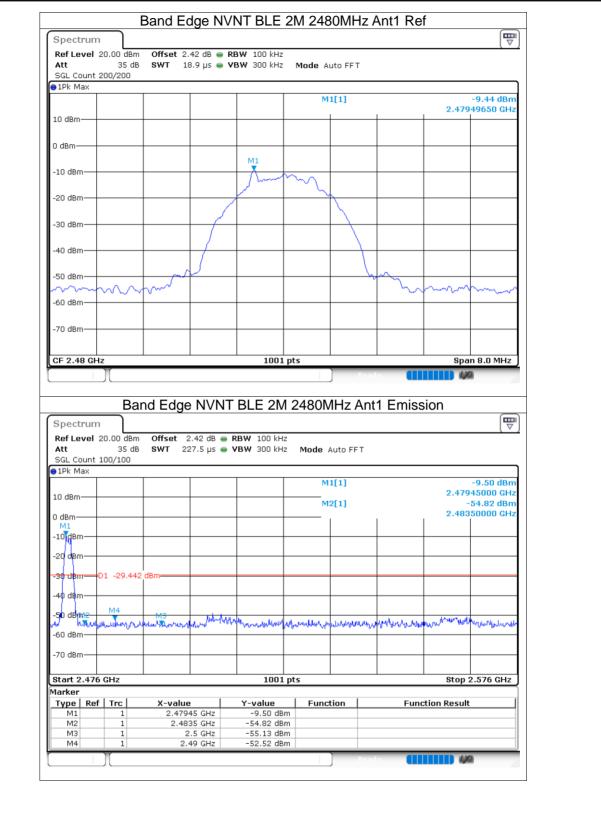
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-23.5	8	Pass
NVNT	BLE 2M	2440	Ant1	-23.06	8	Pass
NVNT	BLE 2M	2480	Ant1	-24.36	8	Pass



Version.1.3

8.1.13 Band Edge

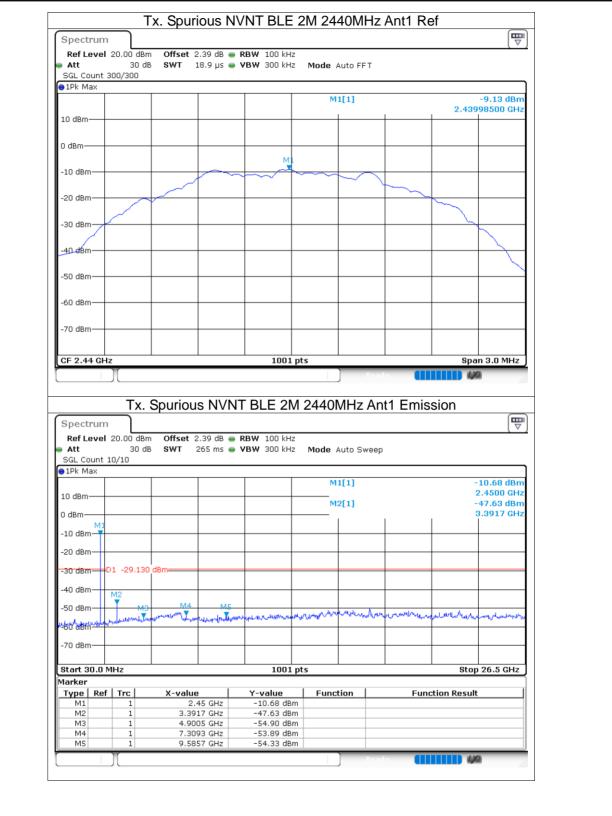
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-41.83	-20	Pass
NVNT	BLE 2M	2480	Ant1	-43.07	-20	Pass



Spectrum		•		NT BLE					
Ref Level		Offset 2.3	38 dB 👄 🖡	RBW 100 kHz					[🔍]
Att	35 dB			/BW 300 kHz		uto FFT			
SGL Count 1Pk Max	1500/1500								
					м	1[1]			-8.26 dBm
10 dBm								2.402	200000 GHz
0 dBm									
-10 dBm				- Ann	1 				
-20 dBm									
20 db			1						
-30 dBm									
-40 dBm			/						
-50 dBm	~~~~~						man	m	mm
-60 dBm									
-70 dBm									
CF 2.402 G][nd Edge	NVNT	1001 BLE 2N) Read	1 Emiss		n 8.0 MHz
	Bai	nd Edge	NVNT	1001 BLE 2M) Prov 1Hz Ant	1 Emiss		IN 8.0 MHZ
Spectrum Ref Level	Bai 20.00 dBm	Offset 2	.38 dB 👄	BLE 2M	1 2402N		tv 🚺		
Spectrum Ref Level Att SGL Count	Bai 20.00 dBm 35 dB	Offset 2	.38 dB 👄	BLE 2N	1 2402N		t1 Emiss		
Spectrum Ref Level Att	Bai 20.00 dBm 35 dB	Offset 2	.38 dB 👄	BLE 2M	1 2402M ^z Mode /	Auto FFT	1 Emiss	sion	
Spectrum Ref Level Att SGL Count 1Pk Max	Bai 20.00 dBm 35 dB	Offset 2	.38 dB 👄	BLE 2M	1 2402N z Mode /	Auto FFT 1[1]	11 Emiss	sion 2.401	
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Bai 20.00 dBm 35 dB	Offset 2	.38 dB 👄	BLE 2M	1 2402N z Mode /	Auto FFT	1 Emiss	sion 	() () 10.09 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	Bai 20.00 dBm 35 dB	Offset 2	.38 dB 👄	BLE 2M	1 2402N z Mode /	Auto FFT 1[1]	1 Emiss	sion 	10.09 dBm 95000 GHz 54.61 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Bai 20.00 dBm 35 dB	Offset 2	.38 dB 👄	BLE 2M	1 2402N z Mode /	Auto FFT 1[1]	1 Emiss	sion 	10.09 dBm 95000 GHz 54.61 dBm 000000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB 👄	BLE 2M	1 2402N z Mode /	Auto FFT 1[1]	t1 Emiss	sion 	10.09 dBm 95000 GHz 54.61 dBm 000000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB 👄	BLE 2M	1 2402N z Mode /	Auto FFT 1[1]	1 Emiss	sion 	10.09 dBm 95000 GHz 54.61 dBm 000000 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● 7.5 µs ●	BLE 2M	1 2402M	Auto FFT 1[1] 2[1]		sion 2.400	10.09 dBm 95000 GHz 54.61 dBm 00000 GHz M1
Spectrum Ref Level Att SGL Count 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● 7.5 µs ●	BLE 2M	1 2402N z Mode /	Auto FFT 1[1] 2[1]		sion	10.09 dBm 95000 GHz 54.61 dBm 00000 GHz M1
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● 7.5 µs ●	BLE 2M	1 2402M	Auto FFT 1[1] 2[1]		sion 2.400	10.09 dBm 95000 GHz 54.61 dBm 00000 GHz M1
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● 7.5 µs ●	BLE 2M	2 Z Mode / M M	Auto FFT 1[1] 2[1]		sion 2.401 2.400	10.09 dBm 95000 GHz 54.61 dBm 00000 GHz M1 M1 M1 M1 M1 M2 M1 M1 M2 M1 M2 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● 7.5 µs ●	BLE 2M	2 Z Mode / M M	Auto FFT 1[1] 2[1]		sion 2.401 2.400	10.09 dBm 95000 GHz 54.61 dBm 00000 GHz M1
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 2.306 Marker Type	Bai 20.00 dBm 35 dB 100/100 01 -28.264 http://www.elum.elum.elum.elum.elum.elum.elum.elum	Offset 2 SWT 22 dBm dBm vvt/vvt/vut/vut/vut/vut/vut/vut/vut/vut/	.38 dB ● 7.5 µs ●	BLE 2M	1 2402N 2 Mode / M M س pts Func	Auto FF T 1[1] 2[1]		sion 2.401 2.400	-10.09 dBm 95000 GHz 54.61 dBm 000000 GHz M1 40 40 40 40 40 40 40 40 40 40 40 40 40
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.306 Marker	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● 7.5 µs ●	BLE 2M	1 2402N	Auto FF T 1[1] 2[1]		Sion 2.401 2.400	-10.09 dBm 95000 GHz 54.61 dBm 000000 GHz M1 40 40 40 40 40 40 40 40 40 40 40 40 40
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.306 Marker Type M1	Bai 20.00 dBm 35 dB 100/100 01 -28.264 *//I/M-(/ww./ 5 GHz f Trc 1 1	Offset 2 SWT 22 dBm dBm w///////////////////////////////	.38 dB ● 7.5 µs ●	BLE 2M	1 2402N	Auto FF T 1[1] 2[1]		Sion 2.401 2.400	-10.09 dBm 95000 GHz 54.61 dBm 000000 GHz M1 40 40 40 40 40 40 40 40 40 40 40 40 40

8.1.14 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-43.08	-20	Pass
NVNT	BLE 2M	2440	Ant1	-38.5	-20	Pass
NVNT	BLE 2M	2480	Ant1	-41.65	-20	Pass



Spectrum	<u> </u>								
	20.00 dBm			RBW 100 kH					(.)
Att SGL Count	30 dB 3000/3000	SWT 1	L8.9 μs 👄	VBW 300 kH	z Mode	Auto FFT			
●1Pk Max	5500,5000								
					N	1[1]			-7.99 dBm
10 dBm						1	1	2.401	49650 GHz
10 0.011									
0 dBm									
			M1						
-10 dBm					\sim	\leftarrow			
							<u> </u>		
-20 dBm								\sim	
-30 dBm									
Se abiii									
-40 dBm-									
-50 dBm						-	-		
-60 dBm									
-70 dBm									
, o abiii									
CF 2.402 G									
][Spuriou	s NVN	1001 T BLE 21) Read MHz An	t1 Emis		n 3.0 MHz]
-)[T BLE 21	M 2402] Proc MHz An	t1 Emis		n 3.0 MHz)
Ref Level Att	Tx. 5	Offset 2	2.38 dB 👄		M 2402				
Ref Level Att SGL Count	Tx. 5	Offset 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402				
Ref Level Att SGL Count	Tx. 5	Offset 2	2.38 dB 👄	T BLE 21 RBW 100 kH	VI 2402 ^z Mode	Auto Sweep			
Ref Level Att SGL Count	Tx. 5	Offset 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402	Auto Sweep		sion	-9.67 dBm 2.3970 GHz
Ref Level Att SGL Count 1Pk Max	Tx. 5	Offset 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402	Auto Sweep		sion	-9.67 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm M1	Tx. 5	Offset 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	Tx. 5	Offset 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. 5	Offset 2 SWT 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. 5	Offset 2 SWT 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. 5	Offset 2 SWT 2	2.38 dB 👄	T BLE 21 RBW 100 kH	M 2402	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm
Mathematical Count Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. 5 20.00 dBm 30 dB 10/10	Offset 2 SWT 3	2.38 dB 👄	T BLE 21 RBW 100 kH	VI 2402 ² Mode	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Mathematical SGL Count 10 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	Tx. 5	Offset 2 SWT 2	2.38 dB	T BLE 21 RBW 100 kH VBW 300 kH	VI 2402 ² Mode	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Mathematical SGL Count 10 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	Tx. 3 20.00 dBm 30 dB 10/10	Offset 2 SWT 3	2.38 dB	T BLE 21 RBW 100 kH VBW 300 kH	VI 2402 ² Mode	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Mathematical SGL Count 10 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	Tx. 3 20.00 dBm 30 dB 10/10	Offset 2 SWT 3	2.38 dB	T BLE 21 RBW 100 kH VBW 300 kH	VI 2402 ² Mode	Auto Sweep		sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Mathematical SGL Count 10 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	Tx. 3 20.00 dBm 30 dB 10/10	Offset 2 SWT 3	2.38 dB	T BLE 21	V 2402	Auto Sweep			-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Mathematical SGL Count 10 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	Tx. 3 20.00 dBm 30 dB 10/10	Offset 2 SWT 3	2.38 dB	T BLE 21 RBW 100 kH VBW 300 kH	V 2402	Auto Sweep			-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Att SGL Count SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 30.0 Marker	Tx. 3 20.00 dBm 30 dB 10/10	Offset 2 SWT 2 dBm	2.38 dB 265 ms	T BLE 21 RBW 100 kH VBW 300 kH	V 2402	Auto Sweep	l L L L L L L L L L L L L L L L L L L L		-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Ref Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm Type M1	Tx. 5 20.00 dBm 30 dB 10/10 D1 -27.992	dBm X-value 2.38	2.38 dB 265 ms	T BLE 21 RBW 100 kH VBW 300 kH 	M 2402	Auto Sweep	l L L L L L L L L L L L L L L L L L L L	sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Marker Type	Tx. : 20.00 dBm 30 dB 10/10 D1 -27.992 M3 MHz I Trc	Offset 2 SWT 2 dBm dBm 	2.38 dB 265 ms	T BLE 21 RBW 100 kH VBW 300 kH	VI 2402	Auto Sweep	l L L L L L L L L L L L L L L L L L L L	sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Ref Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 30.0 Marker Type M1 M2 M3 M4	Tx. 5 20.00 dBm 30 dB 10/10 D1 -27.992	Offset 2 SWT 2 dBm dBm x-value 2.3 16.73 4.63 7.0	2.38 dB 265 ms 265 ms	T BLE 21 RBW 100 kH VBW 300 kH 	M 2402	Auto Sweep	l L L L L L L L L L L L L L L L L L L L	sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz
Mef Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 30.0 Marker Type M1 M2 M3	Tx. 5 20.00 dBm 30 dB 10/10 D1 -27.992	Offset 2 SWT 2 dBm dBm x-value 2.3 16.73 4.63 7.0	2.38 dB 265 ms 265 ms	T BLE 21 RBW 100 kH VBW 300 kH U U U U U U U U U U U U U	M 2402	Auto Sweep	l L L L L L L L L L L L L L L L L L L L	sion	-9.67 dBm 2.3970 GHz 51.08 dBm 5.7326 GHz

