

FCC PART 90

TEST REPORT

For

Shenzhen Excera Technology Co., Ltd.

3rd Floor, Jiada R&D Building, No.5 Songpingshan Road, Hi-Tech Park North, Nanshan District, Shenzhen, China

FCC ID: 2AE6CEM8100VHF

Report Type:		Product Type:	
Original Report		Digital Mobile Radio	
Test Engineer:	Rocky Kang	Rocky	Kang
Report Number:		0D	
report rumber.	<u> </u>	ob	
Report Date:	2016-03-01		
Reviewed By:	Jimmy Xiao RF Engineer	Jimmy	xiao
Prepared By:	6/F, the 3rd Phase	20018 20008	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	6
FCC §1.1307 (b) (1) & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	7
APPLICABLE STANDARD	7
FCC §2.1046 & §90.205 - RF OUTPUT POWER	8
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	8
TEST DATA	8
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	10
APPLICABLE STANDARD	10
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	
FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	16
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE TEST DATA	
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	30
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS.	

Report No.: RSZ160201010-00D

Bay Area Compliance Laboratories Corp. (Shenzhen)

TEST PROCEDURE	30
TEST DATA	30
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	32
APPLICABLE STANDARD	32
TEST EQUIPMENT LIST AND DETAILS	32
TEST PROCEDURE	
TEST DATA	

Report No.: RSZ160201010-00D

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Shenzhen Excera Technology Co., Ltd.'s product, model number: EM8100 VHF (FCC ID: 2AE6CEM8100VHF) or the "EUT" in this report was a Digital Mobile Radio, which was measured approximately: 190 mm (L) × 174 mm (W) × 60 mm (H), rated with input voltage: DC 13.6V from DC power supply.

Report No.: RSZ160201010-00D

*All measurement and test data in this report was gathered from production sample serial number: 1601343 (Assigned by Shenzhen BACL). The EUT supplied by the applicant was received on 2016-02-01.

Objective

This test report is prepared on behalf of *Shenzhen Excera Technology Co., Ltd.* in accordance with Part 2 and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS & DSS submissions with FCC ID: 2AE6CEM8100VHF.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 – Private Land Mobile Radio Service

Applicable Standards: TIA-603-D.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.81 dB for 30MHz-1GHz.and 4.88 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC PART 90 Page 4 of 35

SYSTEM TEST CONFIGURATION

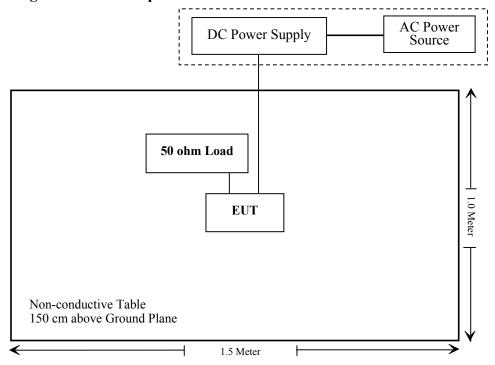
Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
N/A	50 ohm Load	N/A	N/A
NINGBOJIUYUAN.INC	DC Power Supply	MOS	N/A

Report No.: RSZ160201010-00D

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Un-detachable DC Power Cable	1.0	DC Power Supply	EUT

Block Diagram of Test Setup

FCC PART 90 Page 5 of 35

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307(b), §2.1091	Maximum Permissible exposure (MPE)	Compliance
§2.1046;§90.205	RF Output Power	Compliance
§2.1047;§90.207	Modulation Characteristic	Compliance
§2.1049;§90.209; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051;§90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Report No.: RSZ160201010-00D

FCC PART 90 Page 6 of 35

FCC §1.1307 (b) (1) & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RSZ160201010-00D

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(A) Limits for Occupational/Controlled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
0.3-3.0	614	1.63	*100	6			
3.0-30	1842/f	4.89/f	*900/f²	6			
30–300	61.4	0.163	1.0	6			
300–1500	/	/	f/300	6			
1500-100,000	/	/	5.0	6			

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S= power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency (MHz)	Antenna Gain		Conc	Furn-up 50% Onducted Turn-up Conducted		Evaluation Distance	Power Density	MPE Limit (mW/cm²)
(WIIIZ)	(dBi)	(numeric)	(dBm)	(mW)	Power (mW)	(cm)	(mW/cm ²)	(mw/cm)
173.97	2.00	1.58	47.5	56234.1	28117.05	100	0.35	1.00

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 100 cm from nearby persons.

The EUT is a PTT device, so the duty cycle is 50%.

Result: Compliance

FCC PART 90 Page 7 of 35

FCC §2.1046 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RSZ160201010-00D

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
HP Agilent	RF Communication test set	8920A	3325U00859	2015-06-03	2016-06-02
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
JFW	30dB Attenuator	50FH-030-100 RF	170006716507	2015-06-12	2016-06-12

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21 ℃	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Rocky Kang on 2016-02-17.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC PART 90 Page 8 of 35

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	Output Power (dBm)	Output Power (W)	Result
			High	47.10	51.29	Pass
	12.5	136.025	Middle	44.58	28.71	Pass
			Low	37.76	5.97	Pass
			High	47.14	51.76	Pass
Analog	12.5	155.025	Middle	44.57	28.64	Pass
			Low	37.73	5.93	Pass
		173.97	High	47.22	52.72	Pass
	12.5		Middle	44.61	28.91	Pass
			Low	37.76	5.97	Pass
			High	46.98	49.89	Pass
	12.5	136.025	Middle	44.49	28.12	Pass
			Low	37.70	5.89	Pass
Digital		155.025	High	47.08	51.05	Pass
	12.5		Middle	44.51	28.25	Pass
			Low	37.67	5.85	Pass
			High	47.09	51.17	Pass
	12.5	173.97	Middle	44.44	27.80	Pass
			Low	37.66	5.83	Pass

Report No.: RSZ160201010-00D

Note: The rated high power is 45W. The limit of the high output power is 36W-54W. The rated middle power is 25W. The limit of the high output power is 20W-30W. The rated low power is 5W. The limit of the low output power is 4W-6W.

FCC PART 90 Page 9 of 35

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047and §90.207:

(a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.

Report No.: RSZ160201010-00D

(b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	RF Communication Test Set	8920A	3438A05201	2015-06-14	2016-06-13
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2015-06-09	2016-06-09
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
JFW	30dB Attenuator	50FH-030-100 RF	170006716507	2015-06-12	2016-06-12

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Test Method: TIA -603-D 2.2.3

Test Data

Environmental Conditions

Temperature:	21 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

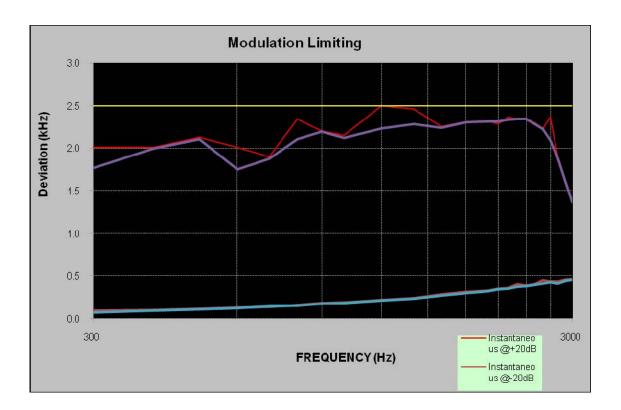
The testing was performed by Rocky Kang on 2016-02-17.

Test Mode: Transmitting

Result: Compliance.

FCC PART 90 Page 10 of 35

Analog Modulation:


MODULATION LIMITING

Report No.: RSZ160201010-00D

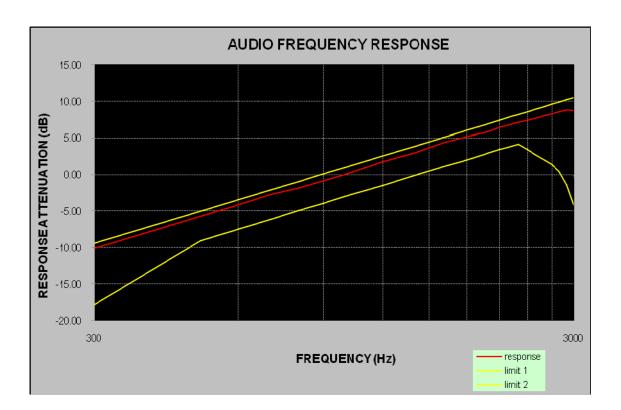
Carrier Frequency: 155.025 MHz, Channel Separation=12.5 kHz

	Instant	aneous	Steady		
Audio Frequency (Hz)	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	FCC Limit [kHz]
300	2.013	0.094	1.765	0.075	2.500
400	2.012	0.101	1.993	0.093	2.500
500	2.132	0.115	2.110	0.110	2.500
600	2.014	0.131	1.751	0.122	2.500
700	1.896	0.144	1.879	0.145	2.500
800	2.343	0.164	2.109	0.155	2.500
900	2.206	0.185	2.195	0.174	2.500
1000	2.154	0.190	2.121	0.182	2.500
1200	2.497	0.224	2.234	0.213	2.500
1400	2.463	0.245	2.285	0.238	2.500
1600	2.252	0.287	2.241	0.275	2.500
1800	2.316	0.315	2.308	0.303	2.500
2000	2.324	0.334	2.317	0.323	2.500
2100	2.283	0.353	2.312	0.348	2.500
2200	2.367	0.359	2.334	0.354	2.500
2300	2.346	0.403	2.343	0.375	2.500
2400	2.352	0.391	2.345	0.386	2.500
2500	2.297	0.404	2.282	0.398	2.500
2600	2.231	0.452	2.224	0.413	2.500
2700	2.367	0.433	2.094	0.428	2.500
2800	1.903	0.437	1.885	0.411	2.500
2900	1.625	0.456	1.612	0.446	2.500
3000	1.373	0.463	1.366	0.459	2.500

FCC PART 90 Page 11 of 35

Report No.: RSZ160201010-00D

FCC PART 90 Page 12 of 35

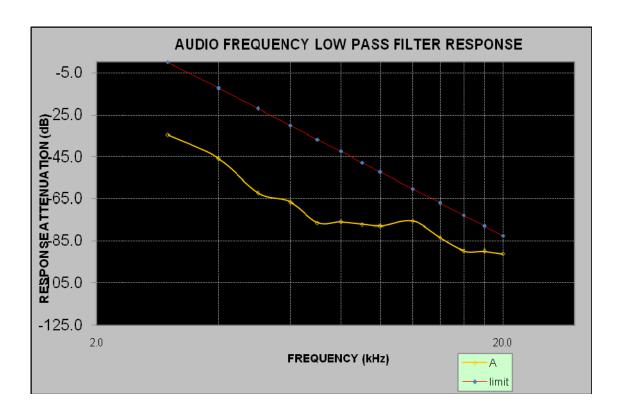

Audio Frequency Response

Report No.: RSZ160201010-00D

Carrier Frequency: 155.025 MHz, Channel Separation=12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-10.12
400	-7.62
500	-5.65
600	-4.07
700	-2.71
800	-1.83
900	-0.84
1000	0.00
1200	1.78
1400	3.02
1600	4.38
1800	5.18
2000	5.96
2100	6.43
2200	6.78
2300	7.20
2400	7.44
2500	7.69
2600	8.03
2700	8.33
2800	8.60
2900	8.84
3000	8.76

FCC PART 90 Page 13 of 35


Report No.: RSZ160201010-00D

FCC PART 90 Page 14 of 35

Carrier Frequency: 155.025 MHz, Channel Separation=12.5 kHz

Report No.: RSZ160201010-00D

Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)
1.0	0.0	/
3.0	-34.5	0.0
4.0	-45.9	-12.5
5.0	-62.3	-22.2
6.0	-66.5	-30.1
7.0	-76.5	-36.8
8.0	-76.1	-42.6
9.0	-77.2	-47.7
10.0	-77.9	-52.3
12.0	-75.6	-60.2
14.0	-83.5	-66.9
16.0	-89.7	-72.7
18.0	-89.9	-77.8
20.0	-91.1	-82.5

FCC PART 90 Page 15 of 35

FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RSZ160201010-00D

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

FCC PART 90 Page 16 of 35

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
НР	RF Communication Test Set	8920A	3325U00859	2015-06-03	2016-06-03
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
JFW			170006716507	2015-06-12	2016-06-12

Report No.: RSZ160201010-00D

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Data

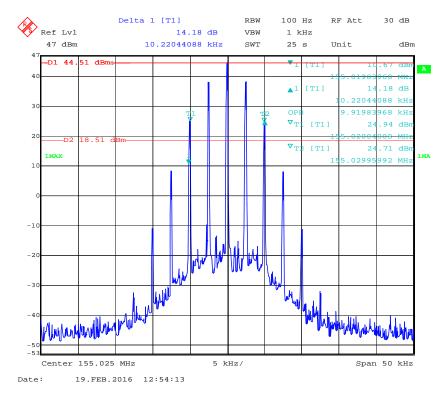
Environmental Conditions

Temperature:	20~23 ℃
Relative Humidity:	48~50 %
ATM Pressure:	100.0~101.0 kPa

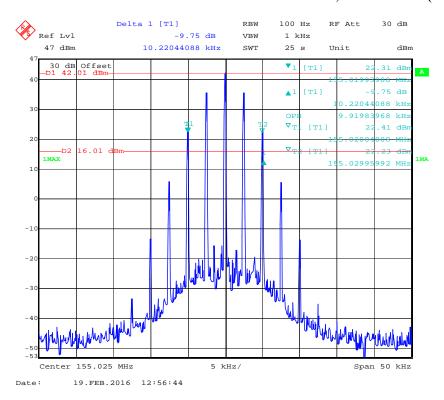
The testing was performed by Rocky Kang on 2016-02-17 and 2016-02-19.

Test Mode: Transmitting

Modulation	Frequency (MHz)	Channel space (kHz)	Power Level	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)
				9.92	10.22
Analog	155.025	12.5	Middle	9.92	10.22
			Low	9.92	10.22
			High	7.62	10.02
Digital	155.025	12.5	Middle	7.21	9.52
			Low	7.41	9.52

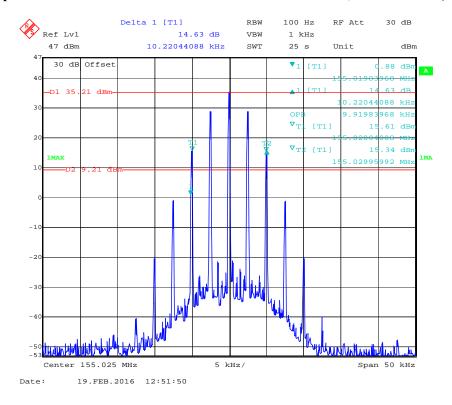

FCC PART 90 Page 17 of 35

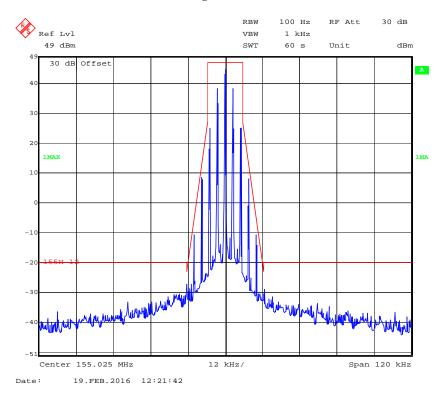
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).


Analog Modulation:

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.025 MHz (High Power)

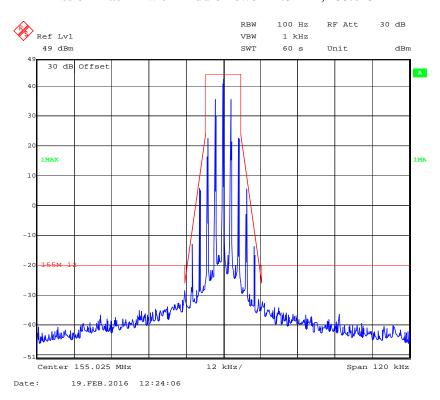
Report No.: RSZ160201010-00D

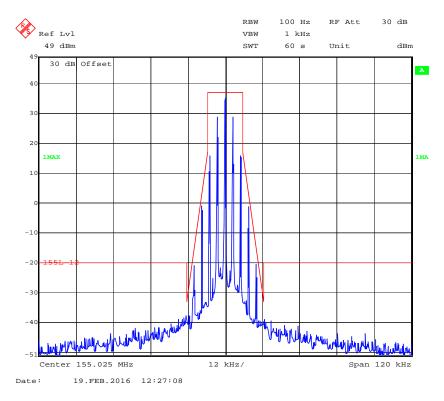

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.025 MHz (Middle Power)


FCC PART 90 Page 18 of 35

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.025 MHz (Low Power)

Report No.: RSZ160201010-00D

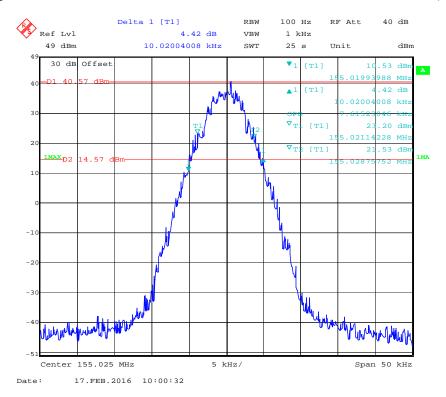

Emission Mask D with High Power 12.5 kHz, 155.025 MHz


FCC PART 90 Page 19 of 35

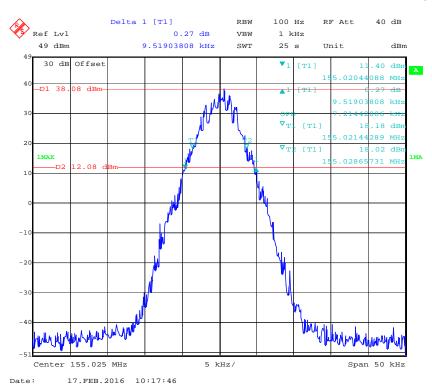
Emission Mask D with Middle Power 12.5 kHz, 155.025 MHz

Report No.: RSZ160201010-00D

Emission Mask D with Low Power 12.5 kHz, 155.025 MHz

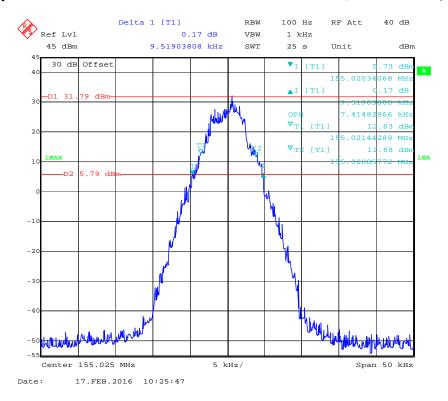


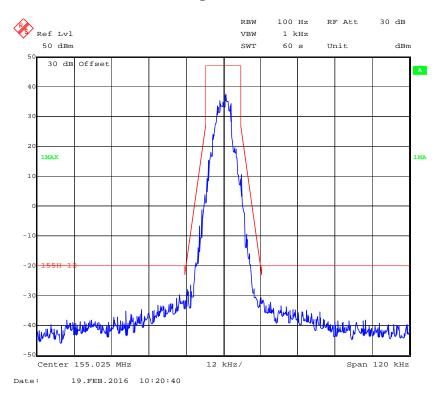
FCC PART 90 Page 20 of 35


Digital Modulation:

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.025 MHz (High Power)

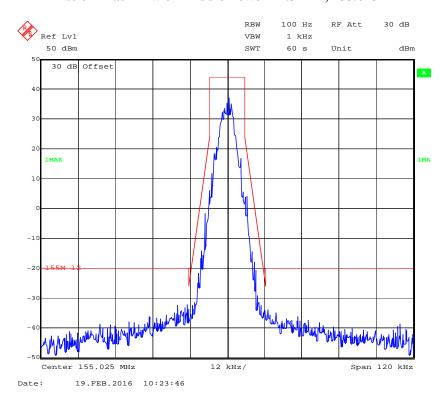
Report No.: RSZ160201010-00D

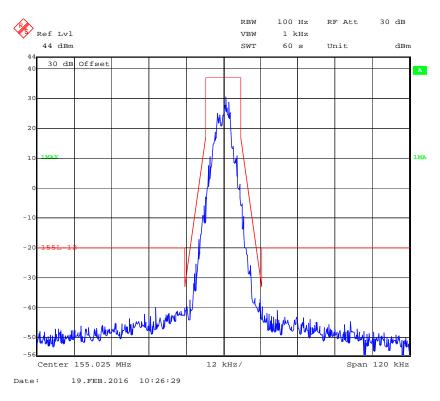

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.025 MHz (Middle Power)


FCC PART 90 Page 21 of 35

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.025 MHz (Low Power)

Report No.: RSZ160201010-00D


Emission Mask D with High Power 12.5 kHz, 155.025 MHz


FCC PART 90 Page 22 of 35

Emission Mask D with Middle Power 12.5 kHz, 155.025 MHz

Report No.: RSZ160201010-00D

Emission Mask D with Low Power 12.5 kHz, 155.025 MHz

FCC PART 90 Page 23 of 35

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RSZ160201010-00D

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
- 2)On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- 4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

FCC PART 90 Page 24 of 35

Test Equipment List and Details

Manufacturer	Manufacturer Description		Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
JFW	30dB Attenuator	50FH-030- 100 RF	1700067165 07	2015-06-12	2016-06-12

Report No.: RSZ160201010-00D

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

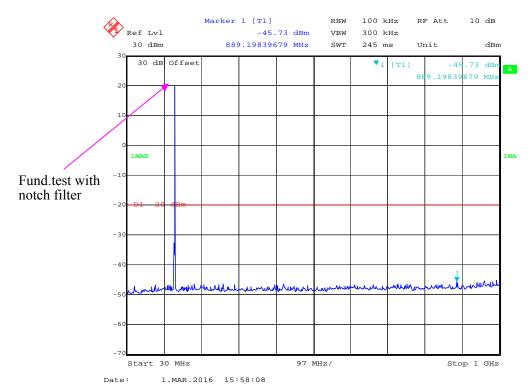
Environmental Conditions

Temperature:	21~25 °C
Relative Humidity:	48~54 %
ATM Pressure:	100.0~101.0 kPa

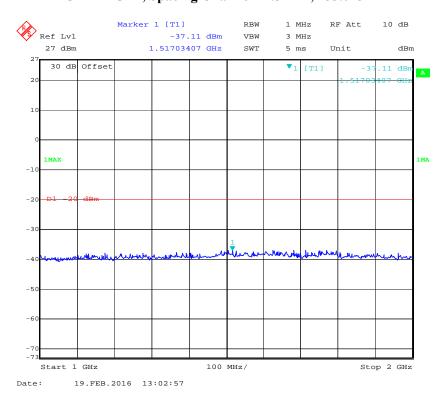
The testing was performed by Rocky Kang on 2016-02-19 and 2016-03-01.

Test Mode: Transmitting

Please refer to the following plots.


FCC PART 90 Page 25 of 35

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).


Analog Modulation:

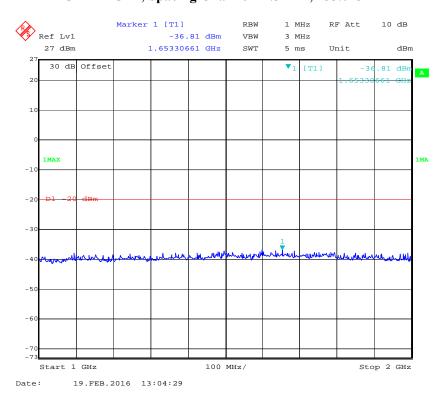
30 MHz – 1 GHz, Spacing Channel 12.5 kHz, 155.025 MHz

Report No.: RSZ160201010-00D

1 GHz - 2GHz, Spacing Channel 12.5 kHz, 155.025 MHz



FCC PART 90 Page 26 of 35


Digital Modulation:

30 MHz – 1 GHz, Spacing Channel 12.5 kHz, 155.025 MHz

Report No.: RSZ160201010-00D

1 GHz - 2GHz, Spacing Channel 12.5 kHz, 155.025 MHz

FCC PART 90 Page 27 of 35

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Report No.: RSZ160201010-00D

Applicable Standard

FCC §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-11-03	2016-11-03
HP	Amplifier	HP8447E	1937A01046	2015-05-06	2016-05-05
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Sunol Sciences	Horn Antenna	DRH-118	A052304	2015-12-01	2018-11-30
HP	Synthesized Sweeper	HP 8341B	2624A00116	2015-07-02	2016-07-01
Mini	Amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-22
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $50+10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

FCC PART 90 Page 28 of 35

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Rocky Kang on 2016-02-19.

Test Mode: Transmitting

30 MHz – 2 GHz:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FCC I	Part 90
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Analog	Modulati	on 155.02	5MHz, Cl	hannel Spa	acing 12.5k	Hz		
310.05	37.17	107	2.3	Н	-59.8	0.36	0	-60.16	-20	40.16
310.05	31.56	328	1.3	V	-65.4	0.36	0	-65.76	-20	45.76
1550.25	46.05	339	2.1	Н	-62.8	1.30	6.70	-57.40	-20	37.40
1550.25	45.11	336	1.0	V	-63.2	1.30	6.70	-57.80	-20	37.80
		Digital	Modulatio	on 155.02	5MHz, Cl	nannel Spa	cing 12.5 k	Hz		
310.05	32.53	358	1.1	Н	-64.5	0.36	0	-64.86	-20	44.86
310.05	30.79	299	1.7	V	-66.2	0.36	0	-66.56	-20	46.56
1550.25	46.21	178	2.5	Н	-62.6	1.30	6.70	-57.20	-20	37.20
1550.25	45.51	230	1.3	V	-62.8	1.30	6.70	-57.40	-20	37.40

Report No.: RSZ160201010-00D

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

FCC PART 90 Page 29 of 35

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2013-05-09	2016-05-08
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2015-11-01	2016-10-31
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
JFW	30dB Attenuator	50FH-030-100 RF	170006716507	2015-06-12	2016-06-12
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR

Report No.: RSZ160201010-00D

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Rocky Kang on 2016-02-19.

Test Mode: Transmitting

FCC PART 90 Page 30 of 35

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

For Analog Modulation

Reference Frequency: 155.025 MHz, Limit: ±5.0 ppm, 12.5 kHz				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)	
	Frequency Stability	versus Input Temper	rature	
50	13.6	155.024975	-0.161	
40	13.6	155.024975	-0.161	
30	13.6	155.024973	-0.174	
20	13.6	155.024979	-0.135	
10	13.6	155.024973	-0.174	
0	13.6	155.024974	-0.168	
-10	13.6	155.024974	-0.168	
-20	13.6	155.024974	-0.168	
-30	13.6	155.024980	-0.129	
Frequency Stability versus Input Voltage				
20	11.56	155.024976	-0.155	

Report No.: RSZ160201010-00D

For Digital Modulation

Reference Frequency: 155.025 MHz, Limit: ±5.0 ppm, 12.5 kHz				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)	
	Frequency Stability	versus Input Temper	ature	
50	13.6	155.024975	-0.161	
40	13.6	155.024978	-0.142	
30	13.6	155.024973	-0.174	
20	13.6	155.024977	-0.148	
10	13.6	155.024980	-0.129	
0	13.6	155.024979	-0.135	
-10	13.6	155.024974	-0.168	
-20	13.6	155.024973	-0.174	
-30	13.6	155.024972	-0.181	
Frequency Stability versus Input Voltage				
20	11.56	155.024987	-0.084	

FCC PART 90 Page 31 of 35

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

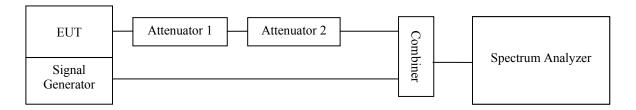
Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
НР	RF Communication Test Set	8920A	3325U00859	2015-06-03	2016-06-02
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
JFW	30dB Attenuator	50FH-030-100 RF	170006716507	2015-06-12	2016-06-12

Report No.: RSZ160201010-00D

Test Procedure


- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t₁ and t₂.

FCC PART 90 Page 32 of 35

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

Report No.: RSZ160201010-00D

Test Data

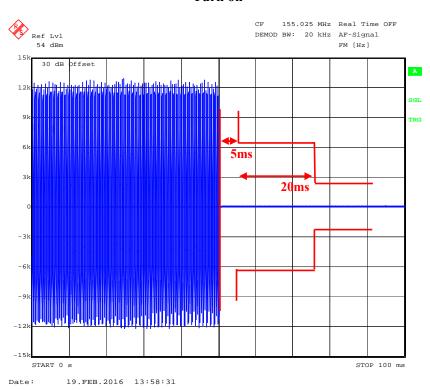
Environmental Conditions

Temperature:	23 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Rocky Kang on 2016-02-19.

Test Mode: Transmitting

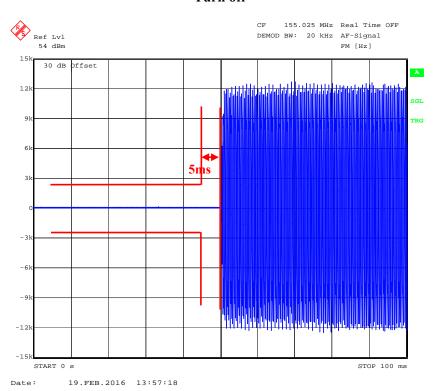
Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	5 (t1)	<+/-12.5 kHz	
12.5	20(t2)	<+/-6.25 kHz	Pass
	5 (t3)	<+/-12.5 kHz	


Please refer to the following plots.

FCC PART 90 Page 33 of 35

Channel Spacing 12.5 kHz

Turn on


Report No.: RSZ160201010-00D

FCC PART 90 Page 34 of 35

Turn off

Report No.: RSZ160201010-00D

***** END OF REPORT *****

FCC PART 90 Page 35 of 35