FCC SAR TEST REPORT APPLICANT : Greater Goods,LLC EQUIPMENT : GG LTE-M Scale 0025 Brand Name : Greater Goods Model Name : GG LTE-M Scale 0025 FCC ID : 2ADUL-0025 **STANDARD** : FCC 47 CFR PART 2 (2.1093) We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full. ricond ricong Reviewed by: Hank Huang / Supervisor Johnny Chen Approved by: Johnny Chen / Manager Report No.: FA1D2034-01 ### Sporton International Inc. (Shenzhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China Sporton International Inc. (Shenzhen) TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 1 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ## **Table of Contents** | 1. | Statement of Compliance | 4 | |----|---|----| | 2. | Administration Data | 5 | | | Guidance Applied | | | 4. | Equipment Under Test (EUT) Information | 6 | | | 4.1 General Information | | | | 4.2 General LTE SAR Test and Reporting Considerations | 7 | | 5. | RF Exposure Limits | 9 | | | 5.1 Uncontrolled Environment | 9 | | | 5.2 Controlled Environment | | | 6. | Specific Absorption Rate (SAR) | | | | 6.1 Introduction | 10 | | | 6.2 SAR Definition | 10 | | 7. | System Description and Setup | | | | 7.1 E-Field Probe | | | | 7.2 Data Acquisition Electronics (DAE) | 12 | | | 7.3 Phantom | 13 | | | 7.4 Device Holder | 14 | | 8. | Measurement Procedures | 15 | | | 8.1 Spatial Peak SAR Evaluation | 15 | | | 8.2 Power Reference Measurement | 16 | | | 8.3 Area Scan | 16 | | | 8.4 Zoom Scan | | | | 8.5 Volume Scan Procedures | | | | 8.6 Power Drift Monitoring | 17 | | 9. | Test Equipment List | 18 | | 10 | System Verification | 19 | | | 10.1 Tissue Simulating Liquids | | | | 10.2 Tissue Verification | | | | 10.3 System Performance Check Results | 20 | | 11 | . RF Exposure Positions | | | | 11.1 Extremity Exposure | | | | Conducted RF Output Power (Unit: dBm) | | | 13 | Antenna Location | 23 | | 14 | . SAR Test Results | | | | 14.1 Extremity 10g SAR | | | | . Uncertainty Assessment | | | | References | 26 | | | ppendix A. Plots of System Performance Check | | | | ppendix B. Plots of High SAR Measurement | | | | ppendix C. DASY Calibration Certificate | | | Αį | ppendix D. Test Setup Photos | | | Αį | ppendix E. Conducted RF Output Power Table | | FCC ID: 2ADUL-0025 ## History of this test report | Report No. | Version | Description | Issued Date | |-------------|---------|-------------------------|---------------| | FA1D2034-01 | 01 | Initial issue of report | Feb. 28, 2022 | TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 3 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ### 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Greater Goods,LLC, GG LTE-M Scale 0025**, **GG LTE-M Scale 0025**, are as follows. Report No. : FA1D2034-01 | Highest Standalone 10g SAR Summary | | | | | | | | | |------------------------------------|---------|-----------|---|--|--|--|--|--| | Equipment Class | Frequ | ency Band | Extremity 10g SAR
(W/kg)
(Separation 0mm) | | | | | | | | | Band 12 | 0.37 | | | | | | | Licensed | LTE | Band 4 | 1.18 | | | | | | | | | Band 2 | 0.45 | | | | | | | Date of T | esting: | 2022/ | 1/6~2022/1/8 | | | | | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4.0 W/kg for Extremity 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications Sporton International Inc. (Shenzhen) Page 4 of 26 TEL: +86-755-86379589 / FAX: +86-755-86379595 Issued Date: Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 ### 2. Administration Data Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01. | | Testing Laboratory | | | | | | | | | |--------------------|--|--|--------|--|--|--|--|--|--| | Test Firm | Sporton International Inc | Sporton International Inc. (Shenzhen) | | | | | | | | | Test Site Location | People's Republic of Ch
TEL: +86-755-86379589 | 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055
People's Republic of China
TEL: +86-755-86379589
FAX: +86-755-86379595 | | | | | | | | | Table Office No. | Sporton Site No. | FCC Test Firm Registration No. | | | | | | | | | Test Site No. | SAR04-SZ | CN1256 | 421272 | | | | | | | | | Applicant | |--------------|---| | Company Name | Greater Goods,LLC | | Address | 4427 Chouteau Ave., St. Louis MO 63110, United States | | Manufacturer | | | | | |--------------|---|--|--|--| | Company Name | Greater Goods,LLC | | | | | Address | 4427 Chouteau Ave., St. Louis MO 63110, United States | | | | ## 3. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - · FCC 47 CFR Part 2 (2.1093) - · ANSI/IEEE C95.1-1992 - · IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 Sporton International Inc. (Shenzhen) TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 5 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ## 4. Equipment Under Test (EUT) Information ### 4.1 General Information | Product Feature & Specification | | | | | |--|--|--|--|--| | Equipment Name | GG LTE-M Scale 0025 | | | | | Brand Name | Greater Goods | | | | | Model Name GG LTE-M Scale 0025 | | | | | | FCC ID | 2ADUL-0025 | | | | | IMEI Code | 016073000006287 | | | | | Wireless Technology and Frequency Range | LTE Band 2: 1850 MHz ~ 1910 MHz
LTE Band 4: 1710 MHz ~ 1755 MHz
LTE Band 12: 699 MHz ~ 716 MHz | | | | | Mode LTE: QPSK, 16QAM | | | | | | HW Version | Rev1 | | | | | SW Version | A02 | | | | | EUT Stage Identical Prototype | | | | | | Remark: 1. This device has no voice function. | | | | | TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 6 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ## 4.2 General LTE SAR Test and Reporting Considerations | Summariz | ed necessary ite | ms addres | sed in KC | DB 94122 | 5 D05 v02 | r05 | | | |---|---|--|----------------------------------|--
---|------------------------------------|---|---| | FCC ID | 2ADUL-0025 | | | | | | | | | Equipment Name | GG LTE-M Scale 0025 | | | | | | | | | Operating Frequency Range of each LTE transmission band | LTE Band 2: 1850 MHz ~ 1910 MHz
LTE Band 4: 1710 MHz ~ 1755 MHz
LTE Band 12: 699 MHz ~ 716 MHz | | | | | | | | | Channel Bandwidth | LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz
LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz
LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz | | | | | | | | | uplink modulations used | QPSK / 16QAM | | | | | | | | | LTE release | R13, Cat M1 | | | | | | | | | CA support | No. | | | | | | | | | LTE Voice / Data requirements | Data only | | | | | | | | | | Table 6.2.3E-1: Maximum Power Reduction (MPR) for Power Class 3 Modulation Channel bandwidth / Transmission bandwidth (N _{RB}) MF | | | | | | | | | | Table 6 | Nerver and Control of the | Access of the same | ************************************** | CONTRACTOR OF THE PARTY | STORY OF THE PROPERTY. | and the same of | MPR (dB) | | ITE MPR permanently built-in by design | 5-34 (C.M. 1964) | Nerver and Control of the | Access of the same | ************************************** | CONTRACTOR OF THE PARTY | STORY OF THE PROPERTY. | and the same of | | | LTE MPR permanently built-in by design | 5-34 (C.M. 1964) | Cha | nnel bandy | width / Tra | nsmission
10 | bandwidth (| (N _{RB}) | | | LTE MPR permanently built-in by design | Modulation QPSK QPSK | Cha
1.4
MHz
>2
>5 | 3.0
MHz
>2
>5 | width / Tra
5
MHz
>1 | nsmission
10
MHz
>4 | bandwidth (| (N _{RB}) | MPR (dB) ≤ 1 ≤ 2 | | LTE MPR permanently built-in by design | Modulation QPSK QPSK 16 QAM | Cha
1.4
MHz
>2
>5
≤2 | 3.0
MHz
>2
>5
≤ 2 | width / Tra
5
MHz
>1
-
>1 | nsmission
10
MHz
>4
-
>3 | bandwidth (
15
MHz
-
- | (N _{RB})
20
MHz
-
- | MPR (dB) ≤ 1 ≤ 2 ≤ 1 | | LTE MPR permanently built-in by design LTE A-MPR | Modulation QPSK QPSK | Cha 1.4 MHz >2 >5 ≤2 >2 on simulate | 3.0 MHz >2 >5 ≤ 2 >2 or configur | width / Tra 5 MHz >1 - >1 >3 ration, Ne | nsmission 10 MHz >4 - >3 >5 twork Setti | bandwidth (15 MHz | NRB) 20 MHz set to NS | MPR (dB) ≤1 ≤2 ≤1 ≤2 ≤1 ≤2 01 to disable | TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 7 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ## SPORTON LAB. FCC SAR Test Report | REPORT No.: FA1D2034-01 | | | | | | | | | | | | | | |--------------------------|---|----------------|------------|--------------------------|---------|---------------|---------------------------|------------------|----------------------------|------------------|----------------|------------------|----------------| | | Transmission (H, M, L) channel numbers and frequencies in each LTE band | | | | | | | | | | | | | | | LTE Band 2 | | | | | | | | | | | | | | | Bandwidth | h 1.4 MHz | z Bandwid | th 3 MHz Bandw | | dwidth 5 MHz | Bandwic | Bandwidth 10 MHz | | Bandwidth 15 MHz | | Bandwidth 20 MHz | | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. | # Freq. (MHz) | Ch. # | Fre
(Mh | | Ch. # | Freq.
(MHz) | Ch. | Freq.
(MHz) | | Г | 18607 | 1850.7 | 18615 | 1851.5 | 1862 | 25 1852.5 | 18650 | 18 | 55 | 18675 | 1857.5 | 1870 | 0 1860 | | М | 18900 | 1880 | 18900 | 1880 | 1890 | 00 1880 | 18900 | 188 | 80 | 18900 | 1880 | 1890 | 0 1880 | | Η | 19193 | 1909.3 | 19185 | 1908.5 | 1917 | 75 1907.5 | 19150 | 190 | 05 | 19125 | 1902.5 | 1910 | 0 1900 | | | | | | | | LTE | Band 4 | | | | | | | | | Bandwidth 1.4 MHz Bandw | | z Bandwid | th 3 MHz Bandwidth 5 MHz | | Bandwid | Bandwidth 10 MHz Bandwidt | | lth 15 MHz Bandwidth 20 MH | | width 20 MHz | | | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. | # Freq. (MHz) | | Fre
(Mh | | Ch. # | Freq.
(MHz) | Ch. | Freq.
(MHz) | | Г | 19957 | 1710.7 | 19965 | 1711.5 | 1997 | 75 1712.5 | 20000 | 17 | 15 | 20025 | 1717.5 | 2005 | 0 1720 | | М | 20175 | 1732.5 | 20175 | 1732.5 | 2017 | 75 1732.5 | 20175 | 173 | 2.5 | 20175 | 1732.5 | 2017 | 5 1732.5 | | Τ | 20393 | 1754.3 | 20385 | 1753.5 | 2037 | 75 1752.5 | 20350 | 17 | 50 | 20325 | 1747.5 | 2030 | 0 1745 | | | | | | | | LTE I | Band 12 | | | | | | | | | Ban | dwidth 1.4 | 4 MHz | Bar | ndwidth | n 3 MHz | Ва | andwidt | th 5 N | ИHz | Bar | dwidth | 10 MHz | | | Ch. # | F | req. (MHz) | Ch. # | | Freq. (MHz | Ch. | # | Fre | eq. (MHz) | Ch. # | | Freq. (MHz) | | L | 23017 | 7 | 699.7 | 23025 | 5 | 700.5 | 2303 | 5 | | 701.5 | 23060 |) | 704 | | М | 23095 | 5 | 707.5 | 23095 | 5 | 707.5 | 2309 | 5 | | 707.5 | 23095 | 5 | 707.5 | | H 23173 715.3 23165 714. | | 714.5 | 2315 | 5 | | 713.5 | 23130 |) | 711 | | | | | TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 8 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ### 5. RF Exposure Limits #### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA1D2034-01 ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. Page 9 of 26 Issued Date : Feb. 28, 2022 TEL: +86-755-86379589 / FAX: +86-755-86379595 Form version: 200414 FCC ID: 2ADUL-0025 ### 6. Specific Absorption Rate (SAR) #### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general,
occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. #### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. Sporton International Inc. (Shenzhen) TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Form version: 200414 ### 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA1D2034-01 Page 11 of 26 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps. - The phantom, the device holder and other accessories according to the targeted measurement. Issued Date : Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 ### 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Frequency | 10 MHz - >6 GHz
Linearity: ±0.2 dB (30 MHz - 6 GHz) | | Directivity | ±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g – >100 mW/g
Linearity: ±0.2 dB (noise: typically <1 μW/g) | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | Report No.: FA1D2034-01 ### 7.2 <u>Data Acquisition Electronics (DAE)</u> The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Photo of DAE **Sporton International Inc. (Shenzhen)**TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 12 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ### 7.3 Phantom #### <SAM Twin Phantom> | NOTAIN I WILL I HUILDING | | | |--------------------------|---|-----| | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|--| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. Sporton International Inc. (Shenzhen) TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 13 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 #### 7.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA1D2034-01 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones #### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops Page 14 of 26 Sporton International Inc. (Shenzhen) Issued Date \pm Feb. 28, 2022 TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Form version: 200414 ### 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA1D2034-01 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e)
Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g Sporton International Inc. (Shenzhen) Page 15 of 26 TEL: +86-755-86379589 / FAX: +86-755-86379595 Issued Date: Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 #### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. #### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$ | When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test | on, is smaller than the above, must be \leq the corresponding device with at least one | **Sporton International Inc. (Shenzhen)**TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|---|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid $\Delta z_{Zoom}(n>1)$: between subsequent points | | ≤ 1.5·∆z | Zoom(n-1) | | Minimum zoom scan volume x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. Page 17 of 26 Sporton International Inc. (Shenzhen) TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Issued Date : Feb. 28, 2022 Form version: 200414 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ### 9. Test Equipment List | Manufacturan | Name of Emilianant | Turne (Mandal | Carial Number | Calib | ration | |---------------|-------------------------------|---------------|---------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 750MHz System Validation Kit | D750V3 | 1087 | Mar. 27, 2019 | Mar. 24, 2022 | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1090 | Mar. 27, 2019 | Mar. 25, 2022 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d170 | Mar. 26, 2019 | Mar. 24, 2022 | | SPEAG | Data Acquisition Electronics | DAE4 | 1386 | Jan. 13, 2021 | Jan. 12, 2022 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3819 | Apr. 30, 2021 | Apr. 29, 2022 | | SPEAG | ELI Phantom | QD OVA 001 BB | 1113 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Anritsu | Radio communication analyzer | MT8821C | 6201588577 | Apr. 08, 2021 | Apr. 07, 2022 | | Agilent | Network Analyzer | E5071C | MY46523671 | Oct. 15, 2021 | Oct. 14, 2022 | | Speag | Dielectric Assessment KIT | DAK-3.5 | 1138 | Jun. 09, 2021 | Jun. 08, 2022 | | Agilent | Signal Generator | N5181A | MY50145381 | Dec. 28, 2021 | Dec. 27, 2022 | | Anritsu | Power Sensor | MA2411B | 1306099 | Sep. 29, 2021 | Sep. 28, 2022 | | Anritsu | Power Meter | ML2495A | 1349001 | Sep. 29, 2021 | Sep. 28, 2022 | | R&S | Power Sensor | NRP50S | 101254 | Apr. 09, 2021 | Apr. 08, 2022 | | R&S | Power Sensor | NRP8S | 109228 | Apr. 09, 2021 | Apr. 08, 2022 | | R&S | Spectrum Analyzer | FSP7 | 100818 | Jul. 14, 2021 | Jul. 13, 2022 | | TES | Hygrometer | 1310 | 200505600 | Jul. 17, 2021 | Jul. 16, 2022 | | Anymetre | Thermo-Hygrometer | JR593 | 2020062101 | Jul. 17, 2021 | Jul. 16, 2022 | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | AR | Amplifier | 5S1G4 | 0333096 | No | te 1 | | mini-circuits | Amplifier | ZVE-3W-83+ | 599201528 | Note 1 | | | ARRA | Power Divider | A3200-2 | N/A | Note 1 | | | ET Industries | Dual Directional Coupler | C-058-10 | N/A | Note 1 | | | Weinschel | Attenuator 1 | 3M-10 | N/A | No | te 1 | | Weinschel | Attenuator 2 | 3M-20 | N/A | Note 1 | | #### Note: - 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. - 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole. **Sporton International Inc. (Shenzhen)**TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 18 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ### 10. System Verification ### 10.1 Tissue Simulating Liquids For the measurement of the field distribution inside the
SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. Fig 10.1 Photo of Liquid Height for Body SAR TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 19 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ### 10.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. | | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | | | |---------------------------------------|--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--|--|--| | | For Head | | | | | | | | | | | | | 750 41.1 57.0 0.2 1.4 0.2 0 0.89 41.9 | | | | | | | | | | | | | | 1 | 800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|----------------------|------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|----------| | 750 | Head | 22.4 | 0.894 | 41.019 | 0.89 | 41.90 | 0.45 | -2.10 | ±5 | 2022/1/7 | | 1750 | Head | 22.5 | 1.375 | 41.541 | 1.37 | 40.10 | 0.36 | 3.59 | ±5 | 2022/1/6 | | 1900 | Head | 22.4 | 1.440 | 40.038 | 1.40 | 40.00 | 2.86 | 0.09 | ±5 | 2022/1/8 | ### 10.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
10g SAR
(W/kg) | Targeted
10g SAR
(W/kg) | Normalized
10g SAR
(W/kg) | Deviation
(%) | |----------|--------------------|----------------|------------------------|---------------|--------------|------------|-------------------------------|-------------------------------|---------------------------------|------------------| | 2022/1/7 | 750 | Head | 250 | 1087 | 3819 | 1386 | 1.43 | 5.65 | 5.72 | 1.24 | | 2022/1/6 | 1750 | Head | 250 | 1090 | 3819 | 1386 | 5.07 | 19.20 | 20.28 | 5.63 | | 2022/1/8 | 1900 | Head | 250 | 5d170 | 3819 | 1386 | 5.17 | 20.30 | 20.68 | 1.87 | Report No.: FA1D2034-01 Fig 10.3.1 System Performance Check Setup Fig 10.3.2 Setup Photo Sporton International Inc. (Shenzhen) TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 20 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ### 11. RF Exposure Positions ### 11.1 Extremity Exposure Devices that are designed or intended for use on extremities, or mainly operated in extremity only exposure conditions, i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When extremity SAR testing is required, a flat phantom must be used if the exposure condition is more conservative than the actual use conditions Report No.: FA1D2034-01 #### <EUT Setup Photos> Please refer to Appendix D for the test setup photos. Sporton International Inc. (Shenzhen) Page 21 of 26 TEL: +86-755-86379589 / FAX: +86-755-86379595 Issued Date: Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 ### 12. Conducted RF Output Power (Unit: dBm) The detailed conducted power table can refer to Appendix E. #### <LTE Conducted Power> #### **General Note:** Anritsu MT8821C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. Report No.: FA1D2034-01 - 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 8. For LTE B4 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. Sporton International Inc. (Shenzhen) Page 22 of 26 TEL: +86-755-86379589 / FAX: +86-755-86379595 Issued Date: Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 ### 13. Antenna Location TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page 23 of 26 Issued Date : Feb. 28, 2022 Form version: 200414 ### 14. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA1D2034-01 - b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Per KDB 865664 D01v01r04, if the extremity repeated SAR is necessary, the same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. #### LTE Note: - 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 6. For LTE B4 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of
overlapping channels should be selected for testing. #### 14.1 Extremity 10g SAR #### <FDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | | Tune-up
Scaling
Factor | | Measured
10g SAR
(W/kg) | | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|-------|------------------------------|-------|-------------------------------|-------| | | LTE Band 12 | 10M | QPSK | 1 | 0 | Front | 0 | 23095 | 707.5 | 23.08 | 24.50 | 1.387 | 0.06 | 0.211 | 0.293 | | 01 | LTE Band 12 | 10M | QPSK | 3 | 3 | Front | 0 | 23095 | 707.5 | 22.89 | 24.50 | 1.449 | 0.01 | 0.254 | 0.368 | | | LTE Band 4 | 20M | QPSK | 1 | 0 | Front | 0 | 20175 | 1732.5 | 23.29 | 24.50 | 1.321 | -0.12 | 0.812 | 1.073 | | 02 | LTE Band 4 | 20M | QPSK | 3 | 0 | Front | 0 | 20175 | 1732.5 | 23.22 | 24.50 | 1.343 | 0.05 | 0.878 | 1.179 | | | LTE Band 2 | 20M | QPSK | 1 | 0 | Front | 0 | 18700 | 1860 | 23.30 | 24.50 | 1.318 | 0.16 | 0.316 | 0.417 | | 03 | LTE Band 2 | 20M | QPSK | 3 | 0 | Front | 0 | 18700 | 1860 | 23.29 | 24.50 | 1.321 | -0.02 | 0.337 | 0.445 | Test Engineer: Kevin Xu, David Dai, Bin He Sporton International Inc. (Shenzhen) Page 24 of 26 TEL: +86-755-86379589 / FAX: +86-755-86379595 Issued Date: Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 ### 15. Uncertainty Assessment Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report. Report No.: FA1D2034-01 Sporton International Inc. (Shenzhen) Page 25 of 26 TEL: +86-755-86379589 / FAX: +86-755-86379595 Issued Date: Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 ### 16. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No.: FA1D2034-01 - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. - [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 Sporton International Inc. (Shenzhen) Page 26 of 26 TEL: +86-755-86379589 / FAX: +86-755-86379595 Issued Date: Feb. 28, 2022 FCC ID: 2ADUL-0025 Form version: 200414 ## Appendix A. Plots of System Performance Check The plots are shown as follows. **Sporton International Inc. (Shenzhen)**TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page: A1 of A1 Issued Date: Feb. 28, 2022 Form version: 200414 ### System Check_Head_750MHz #### **DUT: D750V3-SN:1087** Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1 Medium: HSL_750_220107 Medium parameters used: f = 750 MHz; $\sigma = 0.894$ S/m; $\epsilon_r = 41.019$; $\rho = 1000$ kg/m³ Date: 2022/1/7 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.4 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.79, 9.79, 9.79); Calibrated: 2021/4/30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1386; Calibrated: 2021/1/13 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1113 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.85 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.63 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.35 W/kg SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.43 W/kg SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.86 W/kg ### System Check_Head_1750MHz #### **DUT: D1750V2-SN:1090** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL 1750 220106 Medium parameters used: f = 1750 MHz; $\sigma = 1.375$ S/m; $\varepsilon_r = 41.541$; Date: 2022/1/6 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.53, 8.53, 8.53); Calibrated: 2021/4/30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1386; Calibrated: 2021/1/13 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1113 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) **Pin=250mW/Area Scan (61x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.7 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 101.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (measured) = 13.8 W/kg ### System Check_Head_1900MHz #### DUT: D1900V2-SN:5d170 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900_220108 Medium parameters used: f = 1900 MHz; $\sigma = 1.44$ S/m; $\epsilon_r = 40.038$; ρ Date: 2022/1/8 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.4 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.24, 8.24, 8.24); Calibrated: 2021/4/30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1386; Calibrated: 2021/1/13 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1113 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.0 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 101.6 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 14.6 W/kg ## Appendix B. Plots of SAR Measurement The plots are shown as follows. **Sporton International Inc. (Shenzhen)**TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page: B1 of B1 Issued Date: Feb. 28, 2022 Form version: 200414 ### 01 LTE Band12 10M QPSK 3RB 3Offest Front 0mm Ch23095 Communication System: UID 0, Generic LTE (0); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL_750_220107 Medium parameters used: f = 707.5 MHz; $\sigma = 0.872$ S/m; $\epsilon_r = 41.948$; $\rho = 1000$ kg/m³ Date: 2022/1/7 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.4 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.79, 9.79, 9.79); Calibrated: 2021/4/30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1386; Calibrated: 2021/1/13 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1113 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) Ch23095/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.553 W/kg Ch23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.4430 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.607 W/kg SAR(1 g) = 0.390 W/kg; SAR(10 g) = 0.254 W/kg Maximum value of SAR (measured) = 0.521 W/kg ### 02 LTE Band 4 20M QPSK 3RB 0Offest Front 0mm Ch20175 Communication System: UID 0, Generic LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750_220106 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.358$ S/m; $\varepsilon_r = 41.634$; $\rho = 1000$ kg/m³ Date: 2022/1/6 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.53, 8.53, 8.53); Calibrated: 2021/4/30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1386; Calibrated: 2021/1/13 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1113 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) **Ch20175/Area Scan (71x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.81 W/kg Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.61 W/kg SAR(1 g) = 1.55 W/kg; SAR(10 g) = 0.878 W/kgMaximum value of SAR (measured) = 2.23 W/kg ### 03 LTE Band 2 20M QPSK 3RB 0Offest Front 0mm Ch18700 Communication System: UID 0, Generic LTE (0); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: HSL 1900 220108 Medium parameters used: f = 1860 MHz; $\sigma = 1.399$ S/m; $\varepsilon_r = 40.219$; Date: 2022/1/8 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.4 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(8.24, 8.24, 8.24); Calibrated: 2021/4/30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1386; Calibrated: 2021/1/13 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1113 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) **Ch18700/Area Scan (71x61x1):**
Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.32 W/kg Ch18700/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.846 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.589 W/kg; SAR(10 g) = 0.337 W/kg Maximum value of SAR (measured) = 0.853 W/kg 0 dB = 0.853 W/kg ## Appendix C. DASY Calibration Certificate The DASY calibration certificates are shown as follows. Sporton International Inc. (Shenzhen) TEL: +86-755-86379589 / FAX: +86-755-86379595 FCC ID: 2ADUL-0025 Page: C1 of C1 Issued Date: Feb. 28, 2022 Form version: 200414 # CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60081 ### CALIBRATION CERTIFICATE Object D750V3 - SN: 1087 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | |-------------------------|------------|--|-----------------------|--|--| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | | | | | | | Calibrated by: Zhao Jing Function Signature Reviewed by: Name SAR Test Engineer Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60081 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz # Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 43.0 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.36 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.65 W/kg ± 18.7 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.9 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.58 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.75 W/kg ±18.7 % (k=2) | # Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.4Ω- 2.59jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.3dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.6Ω- 3.86jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.7dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 0.898 ns | | |----------------------------------|----------|--| | W150000 | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z19-60081 Page 4 of 8 # **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1087 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.903 S/m; ϵ_r = 43.01; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.05 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.00 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (measured) = 2.72 W/kg 0 dB = 2.72 W/kg = 4.35 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial:
D750V3 - SN: 1087 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.935$ S/m; $\varepsilon_r = 56.85$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.08 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.75 W/kg 0 dB = 2.75 W/kg = 4.39 dBW/kg # Impedance Measurement Plot for Body TSL # D750V3, Serial No. 1087 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | D750 | V3 – serial no. 1 | 1087 | | | |-------------|-------------|-------------|-------------------|-------------|-----------|-------------| | | | 750MHz Head | | | | | | Date of | Return-Loss | | Real | | Imaginary | | | Measurement | (dB) | Delta (%) | Impedance | Delta (ohm) | Impedance | Delta (ohm) | | Weasurement | (ив) | | (ohm) | | (ohm) | | | 2019.3.27 | -29.3 | | 52.4 | | -2.6 | | | 2020.3.26 | -30.2 | -0.03 | 49.5 | 2.88 | -3.0 | 0.44 | | 2021.3.25 | -30.2 | -0.03 | 50.8 | 1.58 | -3.0 | 0.40 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # Dipole Verification Data> D750V3, serial no. 1087 # 750MHz - Head----2020.3.26 #### 750MHz - Head----2021.3.25 In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl:achinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60084 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1090 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz # Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) *C | 41.3 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 41100 | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mha/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 1.45 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | Page 1 | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.89 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 18.7 % (k=2) | # Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.5Ω- 2.34 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 29,2 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 43.9Ω- 2.19 jΩ | | | |--------------------------------------|----------------|--|--| | Return Loss | - 23.2 dB | | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.085 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered
connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60084 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 41.27$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.03 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg Certificate No: Z19-60084 Page 5 of 8 # Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.com # DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.449$ S/m; $\varepsilon_r = 54.97$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.13 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.89 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg Certificate No: Z19-60084 Page 7 of 8 # Impedance Measurement Plot for Body TSL # D1750V2, Serial No. 1090 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | 1750V2 – serial no. 1090 | | | | | | | |--------------------------|---------------------|-----------|----------------------------|-------------|---------------------------|----------------| | | 1750 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2019.3.27 | -29.2 | | 47.5 | | -2.3 | | | 2020.3.26 | -29.8 | -0.02 | 51.2 | -3.66 | -3.0 | 0.7 | | 2021.3.26 | -29.4 | -0.01 | 45.7 | 1.79 | -2.7 | 0.4 | <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # Dipole Verification Data> D1750V2, serial no. 1090 ## 1750MHz - Head----2020.3.26 # 1750MHz - Head----2021.3.26 In Collaboration with # CALIBRATION LABORATORY CALIBRATION **CNAS L0570** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60085 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d170 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 26, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) to and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60085 Page 1 of 8 lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52,10,2,1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) *C | 40.5 ± 6 % | 1.44 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | M++1 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 9.90 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 39.0 W/kg ± 18.8 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | | SAR measured | 250 mW input power | 5.12 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 18.7 % (k=2) | | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53,3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.56 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | |
---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.28 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 18.7 % (k=2) | # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7Ω+ 6.73jΩ | | | |--------------------------------------|---------------|--|--| | Return Loss | - 23.3dB | | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.8Ω+ 6.72jΩ | | | |--------------------------------------|---------------|--|--| | Return Loss | - 22.8dB | | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1,066 ns | |------------------------------------|-----------| | Electrical Delay (offe diffection) | T,UDD FIS | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z19-60085 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.441 \text{ S/m}$; $\varepsilon_r = 40.48$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 1/31/2019 Date: 03.26,2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.54 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.12 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ S/m; $\varepsilon_r = 54.52$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.48 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dBW/kg Certificate No: Z19-60085 Page 7 of 8 # Impedance Measurement Plot for Body TSL # D1900V2, Serial No. 5d170 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | 1900V2 – serial no. 5d170 | | | | | | | |---------------------------|---------------------|-----------|----------------------------|-------------|---------------------------|----------------| | | | 1900 Head | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2019.3.26 | -23.3 | | 47.8 | | 6.7 | | | 2020.3.25 | -22.3 | 0.02 | 49.2 | -1.4 | 7.4 | -0.7 | | 2021.3.25 | -21.9 | 0.04 | 45.5 | 2.3 | 6.8 | -0.1 | <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # Dipole Verification Data> D1900V2, serial no. 5d170 # 1900MHz - Head----2020.3.25 ## 1900MHz - Head----2021.3.25