FCC Partial Test Report FCC ID : MXF-L1000 Equipment : Luma Home Model No. : WRTQ-329ACN Brand Name : Gemtek Applicant : Gemtek Technology Co., Ltd. Address : No. 15-1 Zhonghua Road, Hsinchu Industrial Park, Hukou, Hsinchu, Taiwan, 30352. Standard : 47 CFR FCC Part 15.407 Received Date : Mar. 18, 2016 Tested Date : Sep. 12 ~ Sep. 13, 2016 We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory. Reviewed by: Approved by: Along Cher // Assistant Manager Gary Chang / Manager Testing Laboratory Report No.: FR632301-01-1AN Page: 1 of 23 # **Table of Contents** | 1 | GENERAL DESCRIPTION | 5 | |-----|--|----| | 1.1 | Information | 5 | | 1.2 | Local Support Equipment List | | | 1.3 | Test Setup Chart | 8 | | 1.4 | The Equipment List | g | | 1.5 | Testing Applied Standards | 10 | | 1.6 | Measurement Uncertainty | 10 | | 2 | TEST CONFIGURATION | 11 | | 2.1 | Testing Condition | 11 | | 2.2 | The Worst Test Modes and Channel Details | 11 | | 3 | TRANSMITTER TEST RESULTS | 12 | | 3.1 | Transmitter Radiated and Band Edge Emissions | 12 | | 4 | TEST LABORATORY INFORMATION | 23 | # **Release Record** | Report No. | Version | Description | Issued Date | |-----------------|---------|---------------|---------------| | FR632301-01-1AN | Rev. 01 | Initial issue | Nov. 11, 2016 | Report No.: FR632301-01-1AN Page: 3 of 23 # **Summary of Test Results** | FCC Rules | Test Items | Measured | Result | |-----------|--------------------|-----------------------------|--------| | 15.407(b) | Radiated Emissions | [dBuV/m at 3m]: 5150.00MHz | Paga | | 15.209 | nadiated Emissions | 52.75 (Margin -1.25dB) - AV | Pass | Report No.: FR632301-01-1AN Page: 4 of 23 # 1 General Description #### 1.1 Information This report is issued as a supplement report to the original project no. FR632301AN. The device has modifications as below - 1. Size and location of conductive foam is changed. - 2. Height of Shielding case is changed - 3. Adding 5250~5350 / 5470 ~ 5725 MHz band by software setting ### 1.1.1 Specification of the Equipment under Test (EUT) | RF General Information | | | | | | | | |--------------------------|---------------------|-----------------|-------------------|---------------------------------------|--------------------|--|--| | Frequency
Range (MHz) | IEEE Std.
802.11 | Ch. Freq. (MHz) | Channel
Number | Transmit
Chains (N _{TX}) | Data Rate /
MCS | | | | 5150-5250 | а | 5180-5240 | 36-48 [4] | 2 | 6-54 Mbps | | | | 5150-5250 | n (HT20) | 5180-5240 | 36-48 [4] | 2 | MCS 0-15 | | | | 5150-5250 | n (HT40) | 5190-5230 | 38-46 [2] | 2 | MCS 0-15 | | | | 5150-5250 | ac (VHT20) | 5180-5240 | 36-48 [4] | 2 | MCS 0-9 | | | | 5150-5250 | ac (VHT40) | 5190-5230 | 38-46 [2] | 2 | MCS 0-9 | | | | 5150-5250 | ac (VHT80) | 5210 | 42 [1] | 2 | MCS 0-9 | | | Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation. | RF General Information | | | | | | | | |--------------------------|---------------------|-----------------|-------------------|---------------------------------------|--------------------|--|--| | Frequency
Range (MHz) | IEEE Std.
802.11 | Ch. Freq. (MHz) | Channel
Number | Transmit
Chains (N _{TX}) | Data Rate /
MCS | | | | 5725-5850 | а | 5745-5825 | 149-165 [5] | 2 | 6-54 Mbps | | | | 5725-5850 | n (HT20) | 5745-5825 | 149-165 [5] | 2 | MCS 0-15 | | | | 5725-5850 | n (HT40) | 5755-5795 | 151-159 [2] | 2 | MCS 0-15 | | | | 5725-5850 | ac (VHT20) | 5745-5825 | 149-165 [5] | 2 | MCS 0-9 | | | | 5725-5850 | ac (VHT40) | 5755-5795 | 151-159 [2] | 2 | MCS 0-9 | | | | 5725-5850 | ac (VHT80) | 5775 | 155 [1] | 2 | MCS 0-9 | | | Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation. Report No.: FR632301-01-1AN Page: 5 of 23 ### 1.1.2 Antenna Details | Ant. No. | Time | Operating | Connector | | | |----------|------|-------------|-----------|-----------|-----------| | | Туре | 2400~2483.5 | 5150~5250 | 5725~5850 | Connector | | 1 | PIFA | 3 | 4.5 | 5.5 | IPEX | # 1.1.3 Power Supply Type of Equipment under Test (EUT) | Power Supply Type | 12Vdc from AC adapter | |-------------------|-----------------------| |-------------------|-----------------------| #### 1.1.4 Accessories | | Accessories | | | | | | |-----|-------------|--|--|--|--|--| | No. | Equipment | Description | | | | | | 1 | Adapter | Brand: Luma
Model: LWONCA-US1215
I/P: 100-240Vac, 50-60Hz, 0.5A Max
O/P: 12Vdc, 1.5A
Power line: 1.55m non-shielded without core | | | | | | 2 | RJ45 cable | Brand: EKSON
Model: ZP01-C254
1m non-shielded w/o core | | | | | | 3 | RJ45 cable | Brand: Ricolink
Model: 21A16030101
1m non-shielded w/o core | | | | | Report No.: FR632301-01-1AN Page: 6 of 23 ## 1.1.5 Channel List | For Frequency band 5150-5250 MHz | | | | | | |----------------------------------|------------------------|--------|----------------|--|--| | 802.11 a / H | HT20 / VHT20 | HT40 / | VHT40 | | | | Channel | Channel Frequency(MHz) | | Frequency(MHz) | | | | 36 | 5180 | 38 | 5190 | | | | 40 | 5200 | 46 | 5230 | | | | 44 | 5220 | VH | T80 | | | | 48 | 5240 | 42 | 5210 | | | | For Frequency band 5725~5850 MHz | | | | | | |----------------------------------|------------------------|--------|----------------|--|--| | 802.11 a / H | T20 / VHT20 | HT40 / | VHT40 | | | | Channel | Channel Frequency(MHz) | | Frequency(MHz) | | | | 149 | 5745 | 151 | 5755 | | | | 153 | 5765 | 159 | 5795 | | | | 157 | 5785 | VH | T80 | | | | 161 | 5805 | 155 | 5775 | | | | 165 | 5825 | | | | | Report No.: FR632301-01-1AN Page: 7 of 23 # 1.2 Local Support Equipment List | | Support Equipment List | | | | | | | |--|------------------------|----------|----------------|-----|---|--|--| | No. Equipment Brand Model FCC ID Signal cable / Length | | | | | | | | | 1 | Notebook | DELL | Latitude E6430 | DoC | RJ45, 10m non-shielded. | | | | 2 | Notebook | DELL | Latitude E6430 | DoC | RJ45, 10m non-shielded.
RJ45, 1m non-shielded. | | | | 3 | USB Dongle | Kingston | DTSE9 | | | | | # 1.3 Test Setup Chart Report No.: FR632301-01-1AN Page: 8 of 23 # 1.4 The Equipment List | Test Item | Radiated Emission | | | | | | | | | |---|----------------------------|--------------------------|------------------|---------------|---------------|--|--|--|--| | Test Site | 966 chamber1 / (03CH01-WS) | | | | | | | | | | Tested Date | Sep. 12 ~ Sep. 13, 2 | Sep. 12 ~ Sep. 13, 2016 | | | | | | | | | Instrument | Manufacturer | | | | | | | | | | Spectrum Analyzer | R&S | FSV40 | 101498 | Dec. 13, 2015 | Dec. 12, 2016 | | | | | | Receiver | R&S | ESR3 | 101658 | Nov. 04, 2015 | Nov. 03, 2016 | | | | | | Bilog Antenna | SCHWARZBECK | VULB9168 | VULB9168-522 | Aug. 04, 2016 | Aug. 03, 2017 | | | | | | Horn Antenna
1G-18G | SCHWARZBECK | BBHA 9120 D | BBHA 9120 D 1096 | Dec. 16, 2015 | Dec. 15, 2016 | | | | | | Horn Antenna
18G-40G | SCHWARZBECK | BBHA 9170 | BBHA 9170517 | Nov. 04, 2015 | Nov. 03, 2016 | | | | | | Loop Antenna | R&S | HFH2-Z2 | 100330 | Nov. 16, 2015 | Nov. 15, 2016 | | | | | | Preamplifier | EMC | EMC02325 | 980225 | Aug. 05, 2016 | Aug. 04, 2017 | | | | | | Preamplifier | Agilent | 83017A | MY39501308 | Oct. 02, 2015 | Oct. 01, 2016 | | | | | | Preamplifier | EMC | EMC184045B | 980192 | Aug. 24, 2016 | Aug. 23, 2017 | | | | | | RF Cable | HUBER+SUHNER | SUCOFLEX104 | MY16014/4 | Dec. 10, 2015 | Dec. 09, 2016 | | | | | | RF Cable | HUBER+SUHNER | SUCOFLEX104 | MY16019/4 | Dec. 10, 2015 | Dec. 09, 2016 | | | | | | RF Cable | HUBER+SUHNER | SUCOFLEX104 | MY16139/4 | Dec. 10, 2015 | Dec. 09, 2016 | | | | | | LF cable 1M | EMC | EMCCFD400-NM-NM-100
0 | 16052 | Dec. 10, 2015 | Dec. 09, 2016 | | | | | | LF cable 3M | Woken | CFD400NL-LW | CFD400NL-001 | Dec. 10, 2015 | Dec. 09, 2016 | | | | | | LF cable 10M | Woken | CFD400NL-LW | CFD400NL-002 | Dec. 10, 2015 | Dec. 09, 2016 | | | | | | Measurement Software AUDIX e3 6.120210g NA NA | | | | | | | | | | | Note: Calibration Inte | erval of instruments list | ted above is one year. | · | · | · | | | | | Report No.: FR632301-01-1AN Page: 9 of 23 # 1.5 Testing Applied Standards According to the specification of EUT, the EUT must comply with following standards and KDB documents. 47 CFR FCC Part 15.407 ANSI C63.10-2013 FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03 FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 412172 D01 Determining ERP and EIRP v01r01 # 1.6 Measurement Uncertainty ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) | Measurement Uncertainty | | | |--------------------------|-------------|--| | Parameters | Uncertainty | | | Radiated emission ≤ 1GHz | ±3.66 dB | | | Radiated emission > 1GHz | ±5.63 dB | | Report No.: FR632301-01-1AN Page: 10 of 23 # 2 Test Configuration # 2.1 Testing Condition | Test Item | Test Site | Ambient Condition | Tested By | |--------------------|-----------|-------------------|---------------------------| | Radiated Emissions | 03CH01-WS | 21-24°C / 61-62% | Vincent Yeh
Felix Sung | ➤ FCC site registration No.: 181692➤ IC site registration No.: 10807A-1 #### 2.2 The Worst Test Modes and Channel Details | For Frequency band 5150-5250 MHz | | | | | |----------------------------------|--------------------|-------------------------|---------------------------|-----------------------| | Test item | Modulation
Mode | Test Frequency
(MHz) | Data Rate
(Mbps) / MCS | Test
Configuration | | Radiated Emissions ≤1GHz | 11a | 5180 | 6 Mbps | | | Radiated Emissions >1GHz | 11a | 5180 | 6 Mbps | | #### Note: - 1) The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report. - 2) 2 RJ45 cables, EKSON and Ricolink, had been pretested and found that **EKSON** was the worst case and was selected for final testing. | For Frequency band 5725-5850 MHz | | | | | |----------------------------------|--------------------|-------------------------|---------------------------|-----------------------| | Test item | Modulation
Mode | Test Frequency
(MHz) | Data Rate
(Mbps) / MCS | Test
Configuration | | Radiated Emissions ≤1GHz | VHT20 | 5785 | MCS 0 | | | Radiated Emissions >1GHz | VHT20 | 5785 | MCS 0 | | #### Note: - 1) The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report. - 2 RJ45 cables, EKSON and Ricolink, had been pretested and found that EKSON was the worst case and was selected for final testing. Report No.: FR632301-01-1AN Page: 11 of 23 # 3 Transmitter Test Results # 3.1 Transmitter Radiated and Band Edge Emissions ### 3.1.1 Limit of Transmitter Radiated and Band Edge Emissions | Restricted Band Emissions Limit | | | | |---------------------------------|-----------------------|-------------------------|----------------------| | Frequency Range (MHz) | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) | | 0.009~0.490 | 2400/F(kHz) | 48.5 - 13.8 | 300 | | 0.490~1.705 | 24000/F(kHz) | 33.8 - 23 | 30 | | 1.705~30.0 | 30 | 29 | 30 | | 30~88 | 100 | 40 | 3 | | 88~216 | 150 | 43.5 | 3 | | 216~960 | 200 | 46 | 3 | | Above 960 | 500 | 54 | 3 | #### Note 1: Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:** Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade. | Un-restricted band emissions above 1GHz Limit | | | |---|--|--| | Operating Band | Limit | | | 5.15 - 5.25 GHz | e.i.r.p27 dBm [68.2 dBuV/m@3m] | | | 5.725 - 5.850 GHz | 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. | | | | 15.407(b)(4)(ii) ,compliance with the emission limits in § 15.247(d) Shall be at least 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power,. Attenuation below the general limits specified in §15.209(a) is not required. In addition,radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see § 15.205(c)) | | Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Report No.: FR632301-01-1AN Page: 12 of 23 #### 3.1.2 Test Procedures - 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m - 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m. - 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. #### Note: - 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz. - 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz. - 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz. Report No.: FR632301-01-1AN Page: 13 of 23 ## 3.1.3 Test Setup Report No.: FR632301-01-1AN Page: 14 of 23 ### 3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz) Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit. Report No.: FR632301-01-1AN Page: 15 of 23 *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit. Report No.: FR632301-01-1AN Page: 16 of 23 *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit. Report No.: FR632301-01-1AN Page: 17 of 23 *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit. Report No.: FR632301-01-1AN Page: 18 of 23 ### 3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m). Report No.: FR632301-01-1AN Page: 19 of 23 *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Report No.: FR632301-01-1AN Page: 20 of 23 *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Report No.: FR632301-01-1AN Page: 21 of 23 *Factor includes antenna factor, cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Report No.: FR632301-01-1AN Page: 22 of 23 # 4 Test laboratory information Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business. International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff. Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw. Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. If you have any suggestion, please feel free to contact us as below information Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw <u>==END</u>== Report No.: FR632301-01-1AN Page: 23 of 23