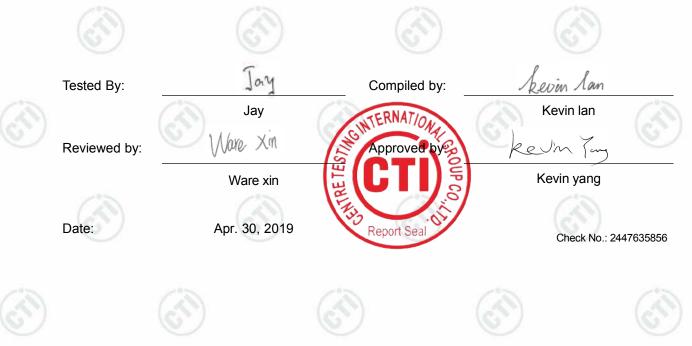


Report No. : EED32K00216401


TEST REPORT

- led table lamp ŝ,
- Ottlite
- M2A
- N/A
 - EED32K00216401
- : 2AI7B-M2A1
- : Apr. 30, 2019
- : 47 CFR Part 15 Subpart C
- : PASS

Prepared for: OttliteTechnologies Inc. 220 West 7th Avenue, STE 100 Tampa, FL 33602 USA

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report No. : EED32K00216401

2 Version

Page 2 of 81

Version No.	Date	Description
00	Apr. 30, 2019	Original
60	S) (d	

Page 3 of 81

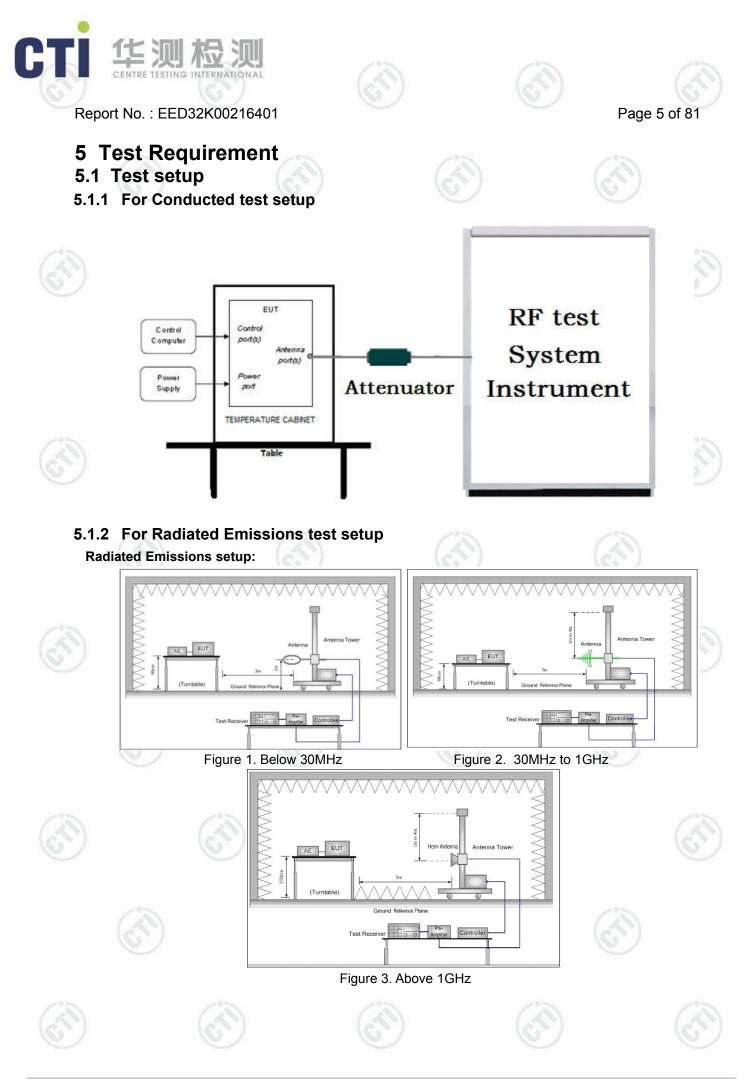
3 Test Summary

rest ourmany		2°2		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Pomark:		So 1	10.0	

Remark:

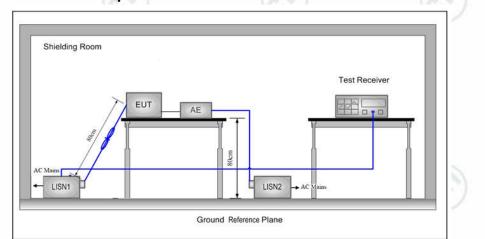
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.


Report No. : EED32K00216401

)

4 Content		
1 COVER PAGE		1
2 VERSION		2
3 TEST SUMMARY	•••••	3
4 CONTENT	••••••	
5 TEST REQUIREMENT		
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION.		5
6 GENERAL INFORMATION		
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 		7 7 8 8 8 8 8 8 8
7 EQUIPMENT LIST		10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	••••••	12
Appendix A): 20dB Occupied Bandwidth. Appendix B): Carrier Frequency Separation. Appendix C): Dwell Time. Appendix D): Hopping Channel Number. Appendix E): Conducted Peak Output Power.		
Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions	<u></u>	
Appendix H): Pseudorandom Frequency Hopping Sequence Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated)		
Appendix L): Radiated Spurious Emissions PHOTOGRAPHS OF TEST SETUP		64
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		66



5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:	e la		 Image: A start of the start of
Temperature:	22°C		
Humidity:	57 % RH		
Atmospheric Pressure:	1010mbar		0
	23	A 3	

5.3 Test Condition

Test Mode	Тх		RF Channel				
rest Mode		Low(L)	Middle(M)	High(H)			
GFSK/π/4DQPSK/		Channel 1	Channel 40	Channel79			
8DPSK(DH1,DH3, DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz			
TX mode: The EUT transmitted the continuous signal at the specific channel(s).							

Test mode:

Pre

Mode 🔰		GFSK	
packets	1-DH1	1-DH3	1-DH5
ower(dBm)	-4.567	-3.992	-3.728
2	12	· · ·	12
Mode	(25)	π/4DQPSK	(\mathcal{S})
packets	2-DH1	2-DH3	2-DH5
ower(dBm)	-4.456	-3.870	-3.741
Mode		8DPSK	
packets	3-DH1	3-DH3	3-DH5
ower(dBm)	-4.782	-4.425	-3.738

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Report No. : EED32K00216401

General Information 6

6.1 Client Information

Applicant:	OttliteTechnologies Inc.
Address of Applicant:	220 West 7th Avenue, STE 100 Tampa, FL 33602 USA
Manufacturer:	Shenzhen Feihe Electronics Co., Ltd
Address of Manufacturer:	3/F, Bldg 3, Hongfa Innovative Park, Jiuwei, Bao'an district, Shenzhen, China
Factory:	Shenzhen Feihe Electronics Co., Ltd
Address of Factory:	3/F, Bldg 3, Hongfa Innovative Park, Jiuwei, Bao'an district, Shenzhen, China

6.2 General Description of EUT

Product N	ame:	led table	lamp	U		J		
Model No	.(EUT):	M2A						
Trade ma	rk:	Ottlite						
EUT Supp application	oorts Radios n:	Bluetooth	Bluetooth 2.1+EDR, 2402-2480MHz					
Power Su	pply:	Adapter:	Model: TY1200200A1mn Adapter: Input: AC 100-240V, 50/60Hz, 0.8A Output: 12.0V2.0A					
AC/DC A	DAPTER:	185cm(U	85cm(Unshielded)					
AUX in Li	ne:	83.5cm(s	hielded)	0		C		
Sample R	eceived Date:	Aug. 09,	Aug. 09, 2018					
Sample te	ested Date:	Aug. 09,	2018 to Dec. 2	8, 2018				
3 Prod	uct Specif	fication s	ubjective	to this s	tandard		12	
Operation	Frequency:	2402MHz	2402MHz~2480MHz					
Bluetooth	Version:	2.1+EDR	2.1+EDR					
Modulatio	n Technique:	Frequenc	Frequency Hopping Spread Spectrum(FHSS)					
Modulatio	n Type:	GFSK, π	/4DQPSK, 8DF	PSK	S.	13	X.	
Number o	f Channel:	79)	(0))	6)	
Hopping (Channel Type:	Adaptive	Frequency Ho	pping syster	ns			
Hardware	Version:	V1.0(mar	nufacturer decl	are)				
Firmware	version:	V3.2(mar	nufacturer decl	are)	13		13	
Test Powe	er Grade:	2(manufa	acturer declare)	(5))	6	
Test Softw	vare of EUT:	Eclipse M	lars.1 Release	(manufactur	er declare)		C	
Antenna T	Гуре:	Printed A	ntenna					
Antenna (Gain:	0dBi		12		25		
Test Volta	ige:	AC 120V	, 60Hz	(8)		(5)		
Operation	Frequency ea	ch of channe	í i	C		S		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
			2423MHz		2443MHz			

Page 8 of 81

3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	15	

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Asso	ciated equipment	Manufacture	model	serial number	Supplied by	Certification
AE1	Cement load(2.5Ω)	NA	NA	NA 🕤	СТІ	NA
AE2	Phone	Apple	A1367	TTF20120027	CTI	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

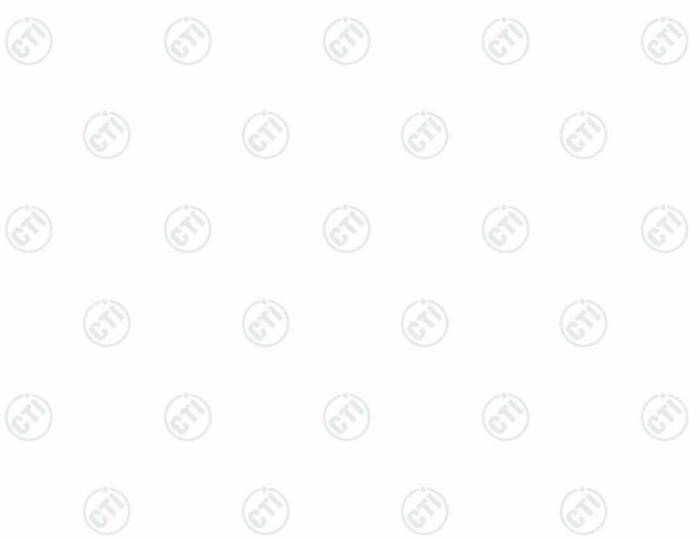
None.

6.7 Abnormalities from Standard Conditions

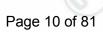
None.

6.8 Other Information Requested by the Customer

None.



Page 9 of 81


6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
2	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Report No. : EED32K00216401

Equipment List 7

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-10-2018	01-09-2019		
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019		
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019		

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy		
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019		
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019		
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019		

Page 11 of 81

	3N	Semi/full-anechoid	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	06-05-2018	06-04-2019
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002	(01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	<u></u>	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002	<u> </u>	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001		01-10-2018	01-09-2019

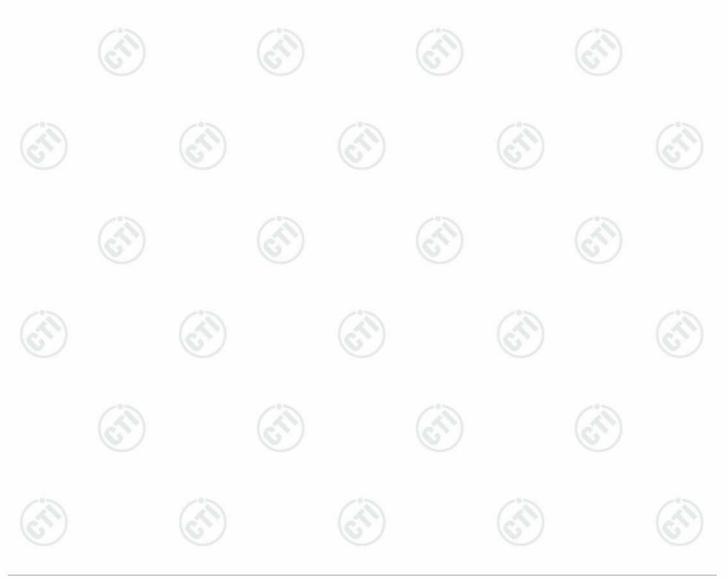
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B
Part15C Section 15.: (a)(1)	247 ANSI 63.10	Dwell Time	PASS	Appendix C
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G
Part15C Section 15.3 (a)(1)	247 ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)



Appendix A): 20dB Occupied Bandwidth

Test Result

12	Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
6	GFSK	LCH	0.9782	0.91162	PASS	G
	GFSK	MCH	0.9840	0.92233	PASS	
	GFSK	НСН	0.9879	0.92689	PASS	_
	π/4DQPSK	LCH	1.120	1.0765	PASS	Duala
	π/4DQPSK	МСН	1.121	1.0782	PASS	Peak
	π/4DQPSK	НСН	1.119	1.0801	PASS	detector
20	8DPSK	LCH	1.081	1.0881	PASS	100
2	8DPSK	MCH	1.081	1.0895	PASS	
C	8DPSK	НСН	1.084	1.0912	PASS	S

Page 13 of 81

Page 14 of 81

Test Graph

Page 15 of 81



Page 16 of 81

Page 17 of 81

Appendix B): Carrier Frequency Separation

Result	Table	S) (2S)	(20)
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.978	PASS
GFSK	МСН	0.942	PASS
GFSK	НСН	0.958	PASS
π/4DQPS	SK LCH	0.952	PASS
π/4DQPS	бк мсн	1.000	PASS
π/4DQPS	вк нсн	0.938	PASS
8DPSK	LCH	0.980	PASS
8DPSK	К МСН	0.986	PASS
8DPSK	к нсн	1.048	PASS

Page 18 of 81

Test Graph



Page 19 of 81

Page 20 of 81

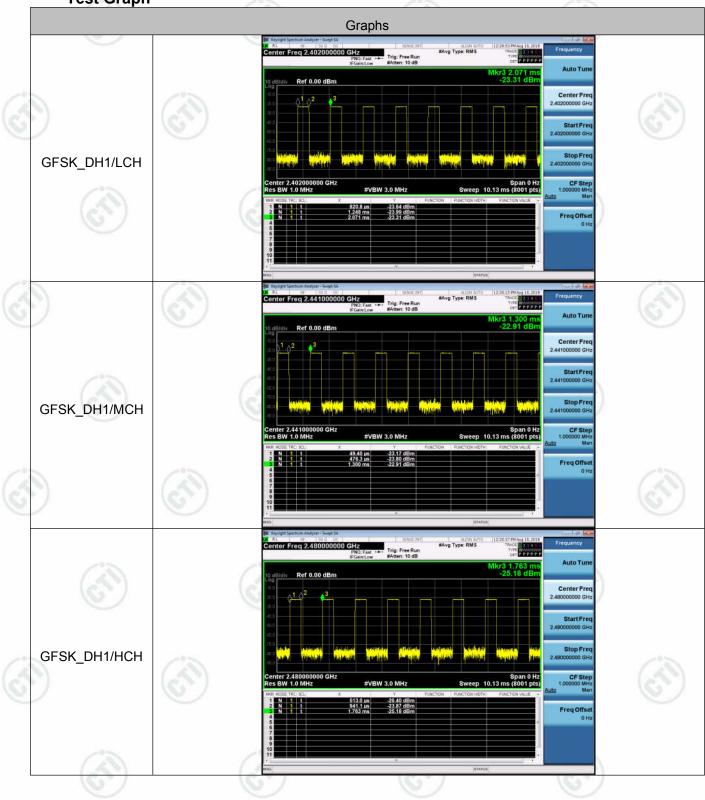
Report No. : EED32K00216401

Appendix C): Dwell Time

	Resu	It Table		(\mathcal{A})			(\mathcal{S})	
	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
-3	GFSK	DH1	LCH	0.42687	320	0.137	0.34	PASS
S	GFSK	DH1	мсн	0.426867	320	0.137	0.34	PASS
~	GFSK	DH1	нсн	0.428133	320	0.137	0.34	PASS
	GFSK	DH3	LCH	1.69987	160	0.272	0.68	PASS
	GFSK	DH3	МСН	1.70113	160	0.272	0.68	PASS
	GFSK	DH3	нсн	1.7024	160	0.272	0.68	PASS
	GFSK	DH5	LCH	2.9348	106.7	0.313	0.78	PASS
	GFSK	DH5	МСН	2.9348	106.7	0.313	0.78	PASS
2	GFSK	DH5	НСН	2.9256	106.7	0.312	0.78	PASS

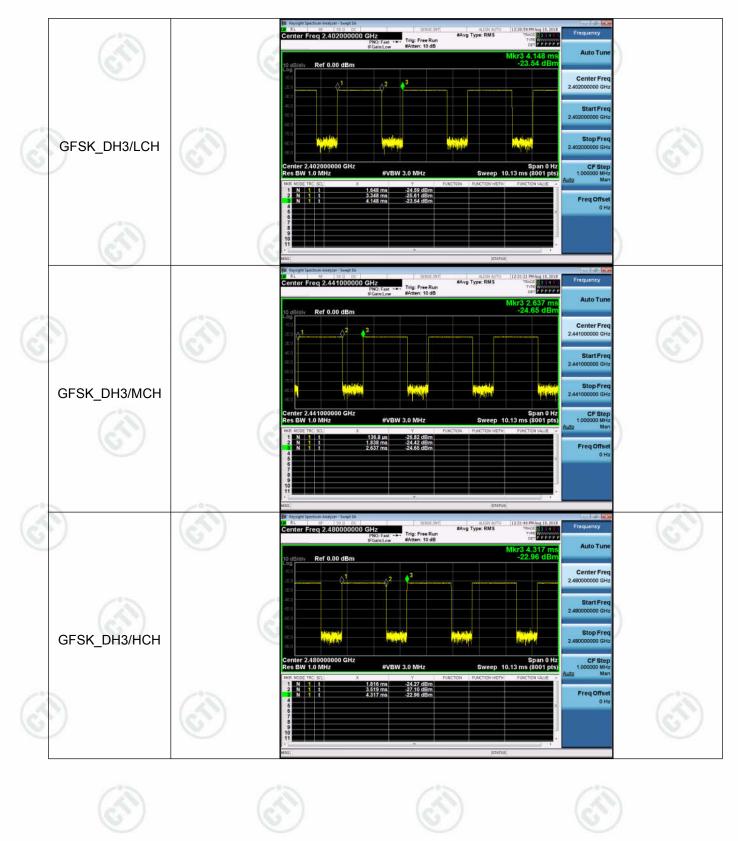
Page 21 of 81

)

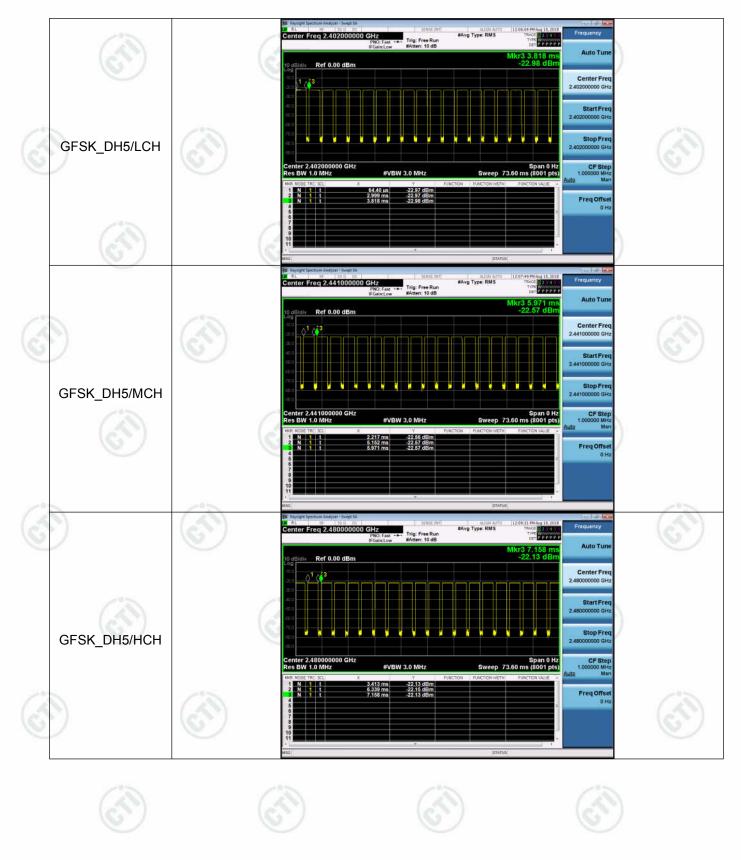


Page 22 of 81

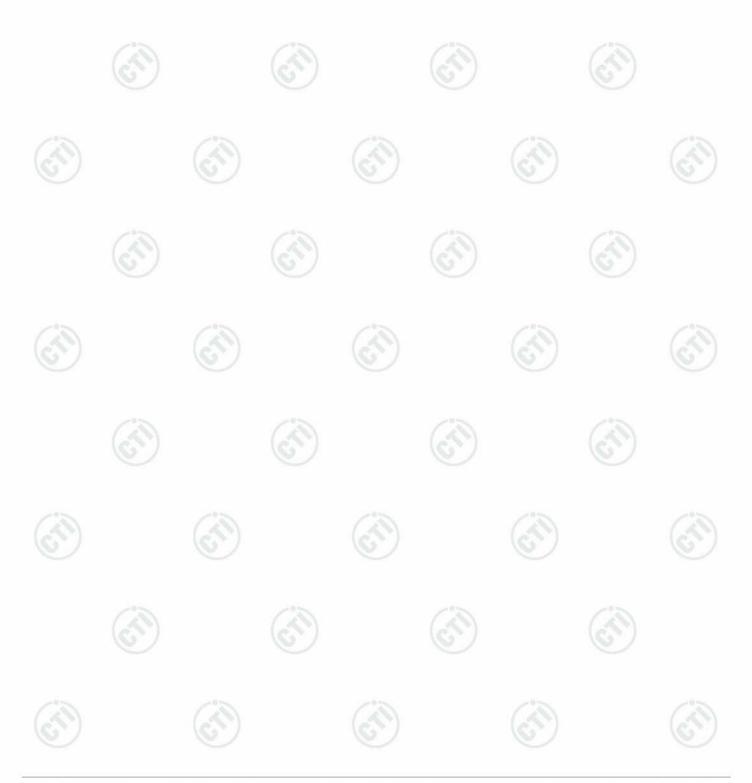
Test Graph



Page 23 of 81



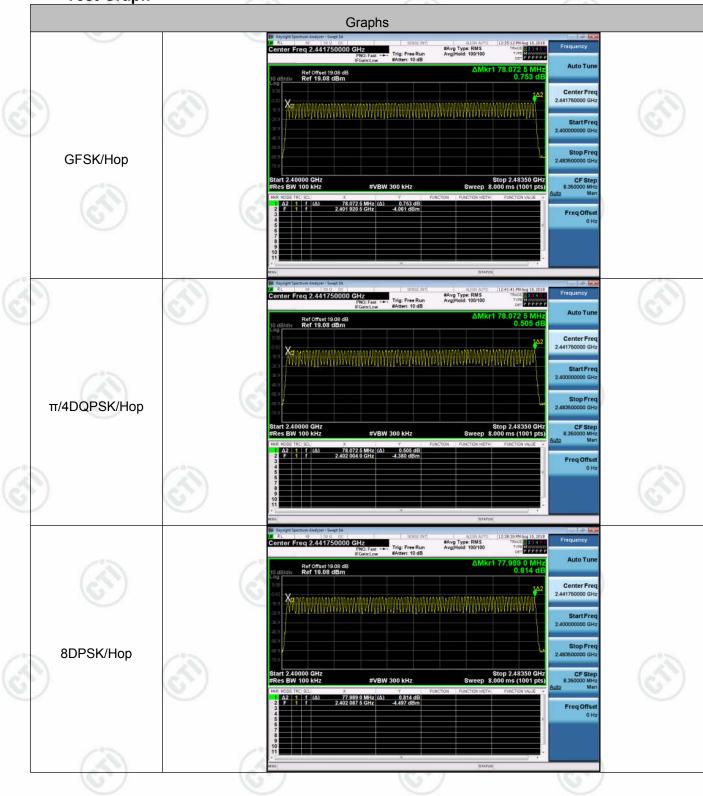
Page 24 of 81



Report No. : EED32K00216401

Appendix D): Hopping Channel Number

Result Table							
Mode	Channel.	Number of Hopping Channel	Verdict				
GFSK	Нор	79	PASS				
π/4DQPSK	Нор	79	PASS				
8DPSK	Нор	79	PASS				



Page 26 of 81

Test Graph

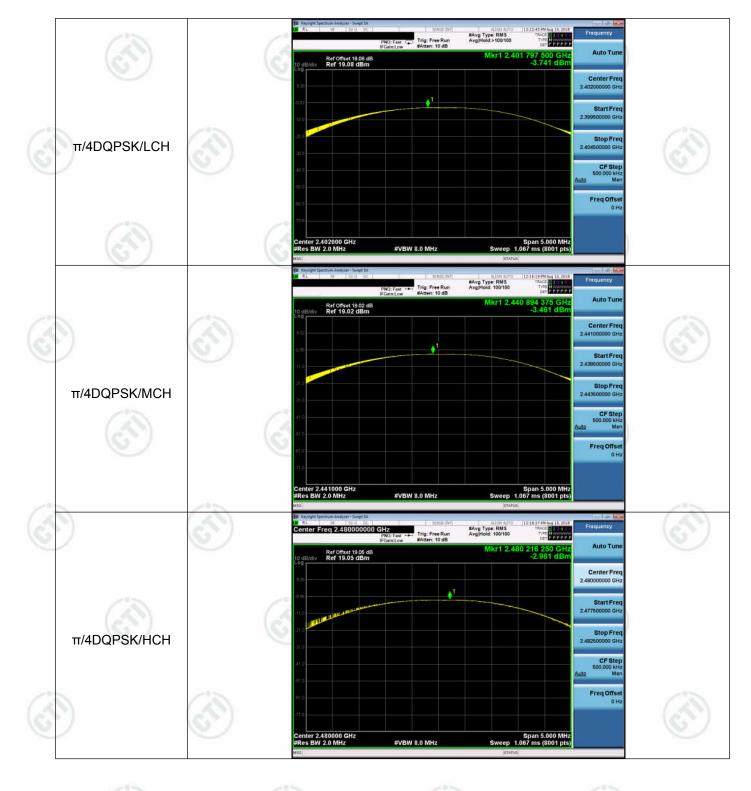
Page 27 of 81

Appendix E): Conducted Peak Output Power

	Result Table	(25)		(35)
	Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
	GFSK	LCH	-3.728	PASS
-	GFSK	МСН	-3.442	PASS
39)	GFSK	НСН	-2.995	PASS
\sim	π/4DQPSK	LCH	-3.741	PASS
	π/4DQPSK	МСН	-3.461	PASS
	π/4DQPSK	нсн	-2.981	PASS
	8DPSK	LCH 🕥	-3.738	PASS
	8DPSK	MCH	-3.456	PASS
	8DPSK	НСН	-2.938	PASS

Page 28 of 81

Test Graph



Page 29 of 81

Page 30 of 81

Page 31 of 81

Appendix F): Band-edge for RF Conducted Emissions

	Result T	able	(25)		(2)	(é	\leq	
(S	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
N.	050%		0.400	-3.974	Off	-60.863	-23.97	PASS
	GFSK	LCH	2402	-4.039	On	-60.053	-24.04	PASS
	GFSK HO		2422	-3.306	Off	-60.184	-23.31	PASS
		HCH	2480	-3.141	On	-60.458	-23.14	PASS
			0.400	-3.939	Off	-60.199	-23.94	PASS
	π/4DQPSK	LCH	2402	-4.026	On	-60.302	-24.03	PASS
12			0400	-3.165	Off	-51.673	-23.17	PASS
6	π/4DQPSK	HCH	2480	-3.259	On	-60.050	-23.26	PASS
			0400	-3.926	Off	-59.639	-23.93	PASS
	8DPSK	LCH	2402	-4.059	On	-60.095	-24.06	PASS
	ODDOK		2400	-3.143	Off	-48.786	-23.14	PASS
	8DPSK	HCH	2480	-3.205	On	-59.757	-23.21	PASS

Page 32 of 81

Test Graph

Page 33 of 81

Page 34 of 81

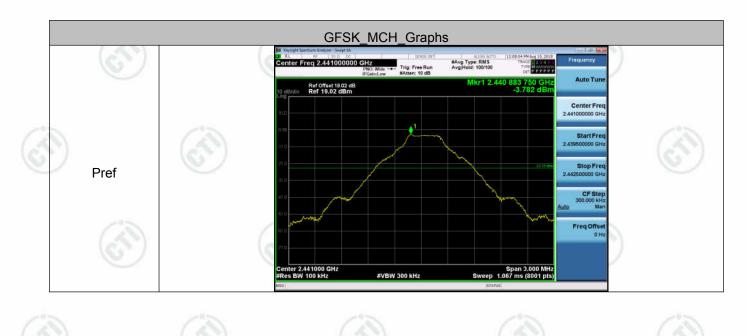
Page 35 of 81

Page 36 of 81

Report No. : EED32K00216401

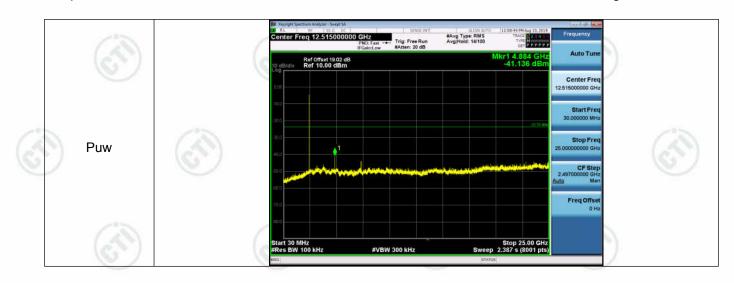
Appendix G): RF Conducted Spurious Emissions

Result Tab	le 🔝			<u>()</u>
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-4.047	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	-3.782	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	-3.311	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-4.032	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	-3.743	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	-3.28	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-4.046	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-3.755	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	-3.277	<limit< td=""><td>PASS</td></limit<>	PASS



Page 37 of 81

Test Graph

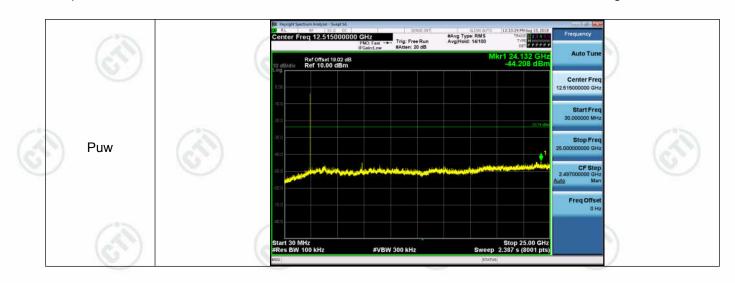


Page 38 of 81

Span 3.000 MH; 1.067 ms (8001 pts

Page 39 of 81

#VBW 300 kHz


2.441000 GHz

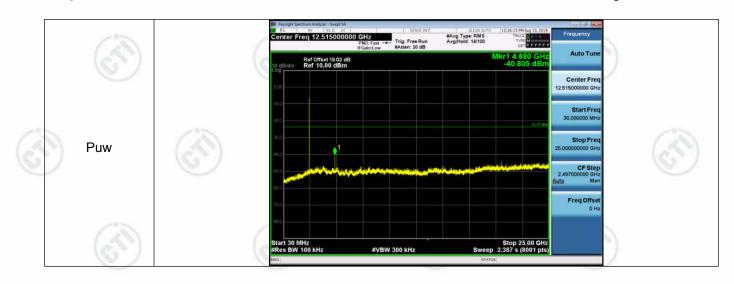
Page 40 of 81

Freq Offe

Span 3.000 MH eep 1.067 ms (8001 pts

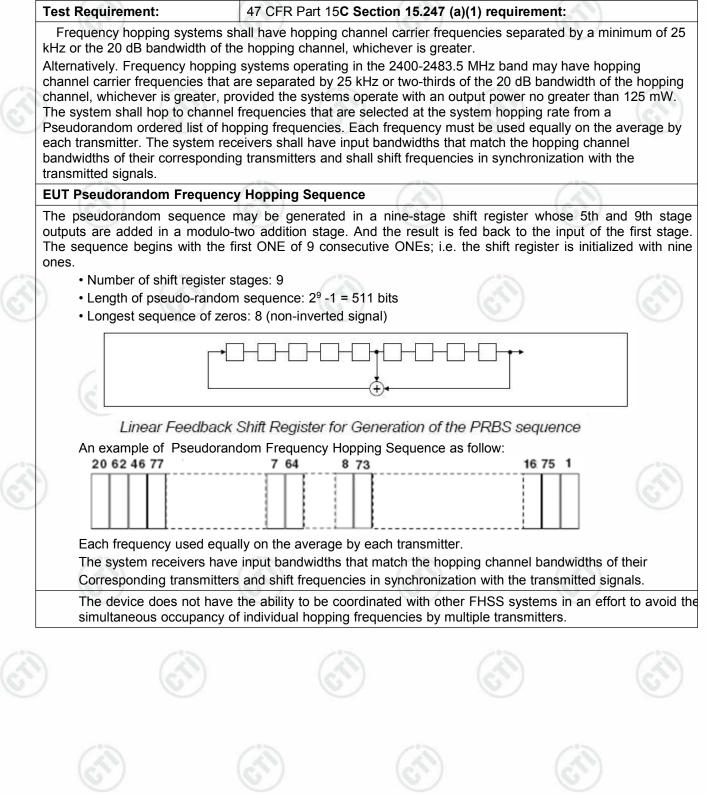
Page 41 of 81

#VBW 300 kHz


2.441000 GHz

Ì

Page 42 of 81



Page 43 of 81

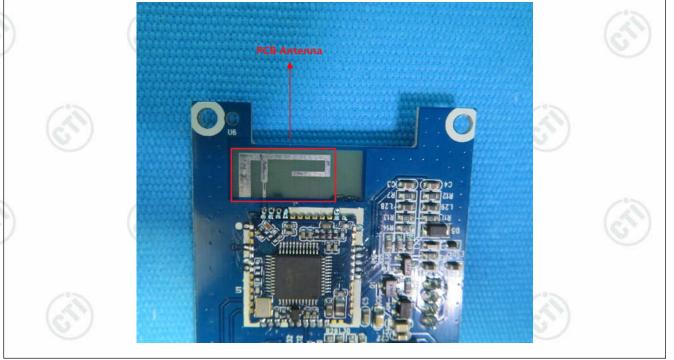
Appendix H): Pseudorandom Frequency Hopping Sequence

Page 44 of 81

Report No. : EED32K00216401

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

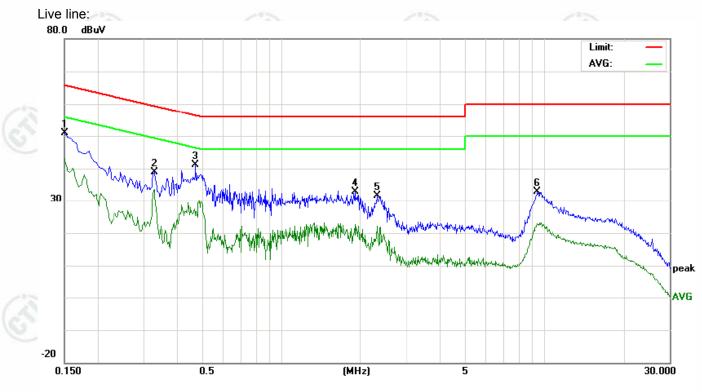
The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 45 of 81

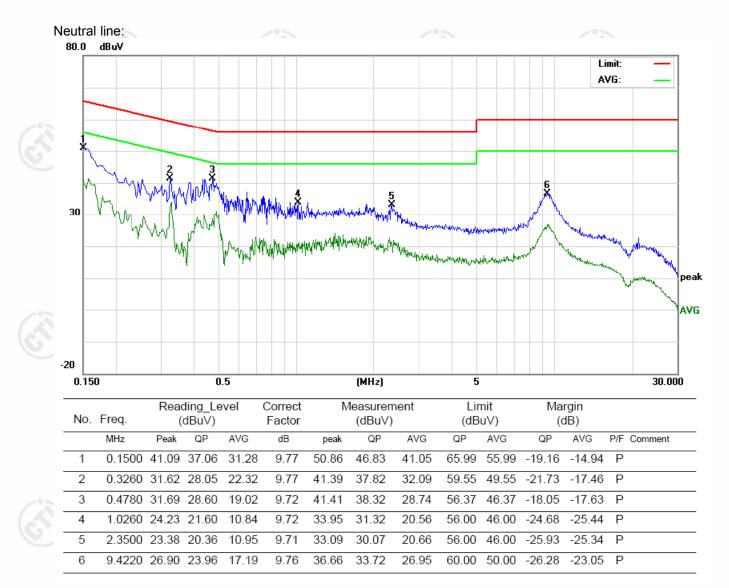
Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz		
0	1)The mains terminal disturbar	nce voltage test was c	onducted in a shield	ded room.
	 The EUT was connected to Stabilization Network) which power cables of all other universe which was bonded to the g for the unit being measure multiple power cables to a se exceeded. 	h provides a 50Ω/50 nits of the EUT were round reference plane d. A multiple socket o	$\mu H + 5\Omega$ linear imp connected to a sec in the same way a butlet strip was use	edance. T cond LISN s the LISN d to conne
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		•
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	e vertical ground reference to the horizontal ground the boundary of the up or LISNs mounted or etween the closest po	rence plane. The ve bund reference plar init under test and n top of the grour ints of the LISN 1 a	ertical ground ne. The LIS bonded to nd referent and the EL
	5) In order to find the maximum of the interface cables must conducted measurement.			
Limit:	(C)	(C)	(GT)	
		Limit (c	lBμV)	
	Frequency range (MHz)	Quasi-peak	Average	
N /	0.15-0.5	66 to 56*	56 to 46*	13
·) (a	0.5-5	56	46	
	5-30	60	50	
	 * The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is applied 	Ū		e range 0.

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

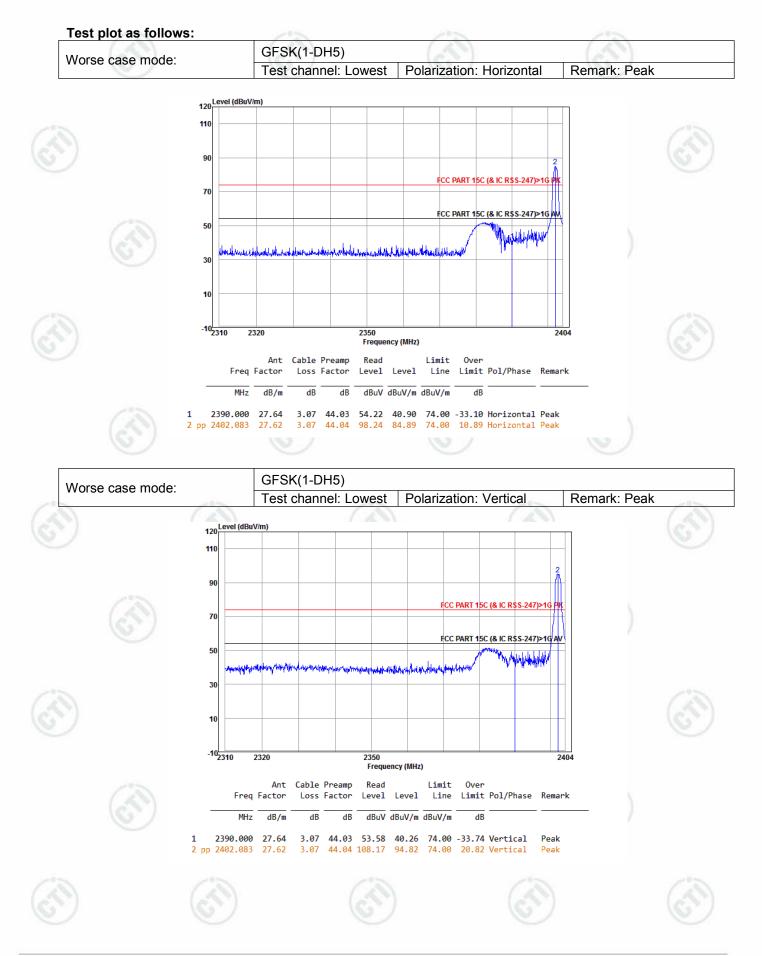
Page 46 of 81


No.	Freq.		ding_Le dBuV)	vel	Correct Factor	Μ	leasuren (dBu∀)		Lin (dB			rgin 1B)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	41.11	37.05	33.26	9.77	50.88	46.82	43.03	65.99	55.99	-19.17	-12.96	Ρ	
2	0.3300	29.11	26.89	23.95	9.77	38.88	36.66	33.72	59.45	49.45	-22.79	-15.73	Ρ	
3	0.4740	31.32	28.15	15.70	9.72	41.04	37.87	25.42	56.44	46.44	-18.57	-21.02	Ρ	
4	1.9100	23.19	20.63	12.95	9.72	32.91	30.35	22.67	56.00	46.00	-25.65	-23.33	Ρ	
5	2.3140	21.83	18.05	12.38	9.71	31.54	27.76	22.09	56.00	46.00	-28.24	-23.91	Ρ	
6	9.4100	23.04	20.63	13.13	9.76	32.80	30.39	22.89	60.00	50.00	-29.61	-27.11	Ρ	

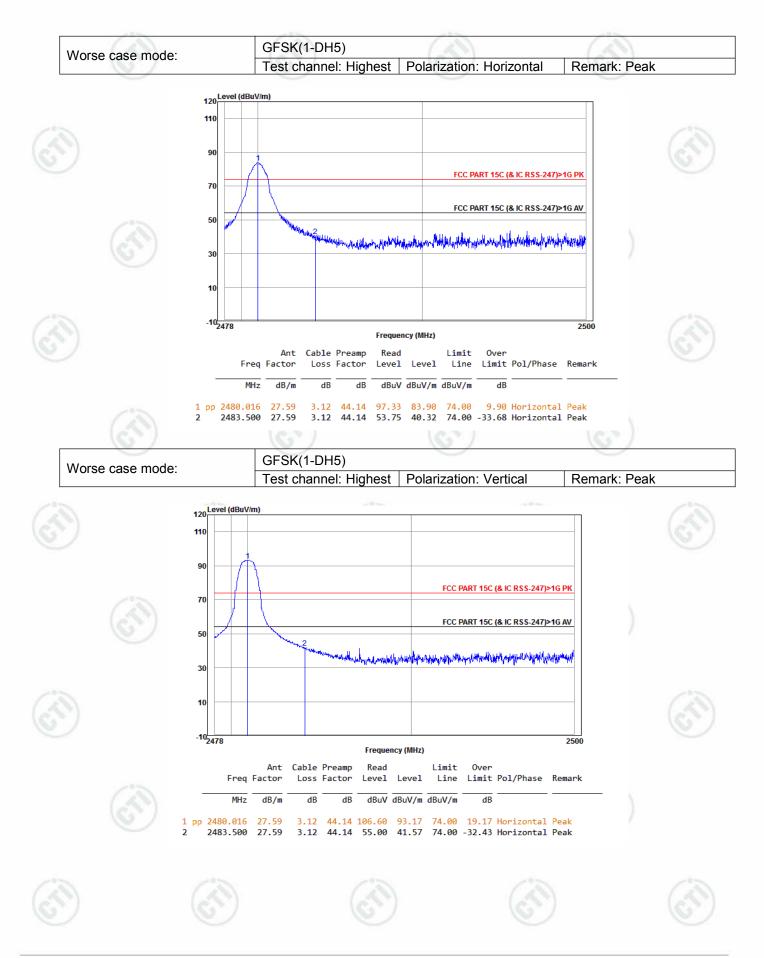
Page 47 of 81

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

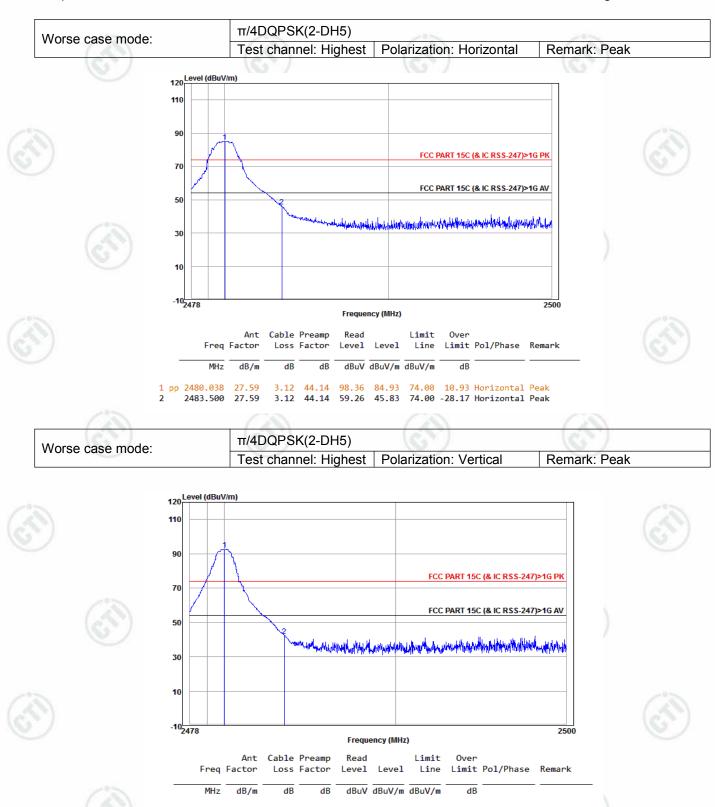

Appendix K): Restricted bands around fundamental frequency (Radiated)

(Raulaleu)	(25)	(EN)		<u>()</u>	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	-0
	Above TGHZ	Peak	1MHz	10Hz	Average	1
Test Procedure:	Below 1GHz test procedu	ure as below:	6			6
	 a. The EUT was placed of at a 3 meter semi-anex determine the position b. The EUT was set 3 meters are was mounted on the toto. c. The antenna height is determine the maximu polarizations of the antipolarizations of the antipolarizations of the antipolarization of th	on the top of a ro choic camber. The of the highest ra- eters away from the poor of a variable-he- varied from one m value of the fiel tenna are set to the mission, the EUT I to heights from 0 degrees to 360 em was set to Pe um Hold Mode. The heights from 0 degrees to 360 em was set to Pe um Hold Mode. The heights from 0 degrees to 360 em was set to Pe um Hold Mode. The heights from the distance is 1	the table way idiation. the interfer leight anter meter to for eld strengti make the r was arran 1 meter to 0 degrees t ak Detect ted band of easure any t. Repeat the s, change fir form table meter and	as rotated 3 ence-recei nna tower. bur meters h. Both hor neasureme ged to its 4 meters to find the Function a closest to th y emissions for each po rom Semi- table is 1.5	360 degrees to iving antenna, above the gro rizontal and ve ent. worst case an and the rotata maximum rea- ind Specified he transmit s in the restric ower and mod Anechoic Cha to 1.5 5 meter).	o wh ouncertic d th ble ding cted
	h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	ments are perfor d found the X ax	rmed in X, is positioni	Y, Z axis p ing which i	oositioning for it is worse cas	
Limit:	Frequency	Limit (dBµV/	′m @3m)	Rei	mark	
				Ouasi-ne	eak Value	
	30MHz-88MHz	40.0)	Quuoi p	our value	
	30MHz-88MHz 88MHz-216MHz	40.0	· · · · · · · · · · · · · · · · · · ·	-	eak Value	
			5	Quasi-pe		
	88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	88MHz-216MHz 216MHz-960MHz	43.5 46.0	5	Quasi-pe Quasi-pe Quasi-pe	eak Value eak Value	

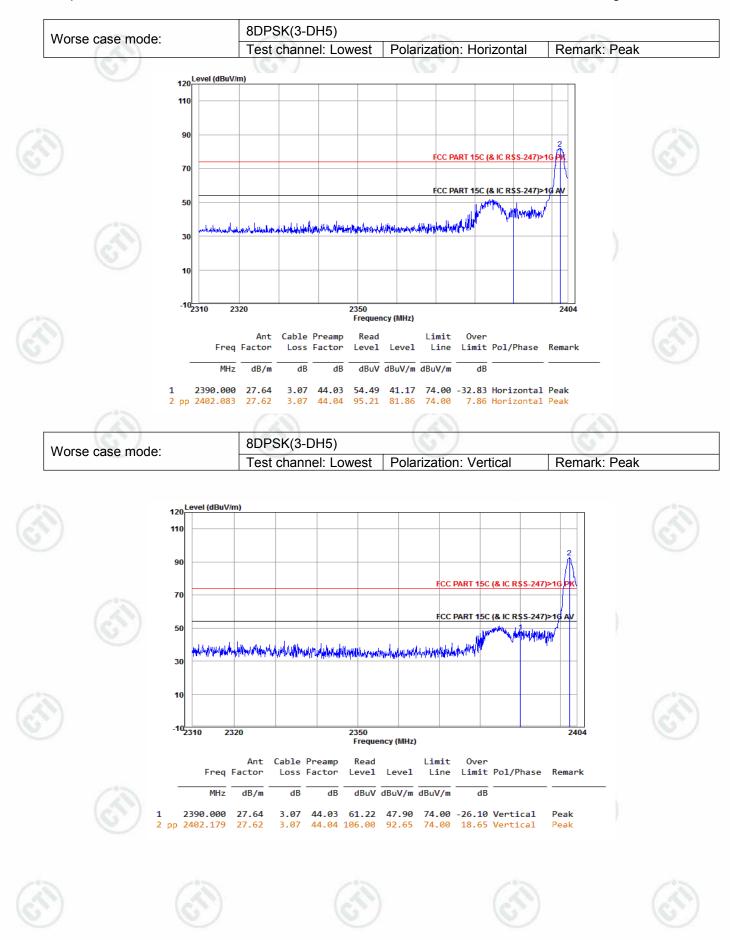


Page 51 of 81

π/4DQPSK(2-DH5) Worse case mode: Test channel: Lowest Polarization: Horizontal Remark: Peak 120 Level (dBuV/m) 110 90 FCC PART 15C (& IC R\$S-247)>10 70 FCC PART 15C (& IC R\$S-247)>16 AV 50 MANNAN And the Alas and the Alas and the Alas and the المتعاسلية فبالمالية فالماجم والطرقان 30 10 -10<mark>_____</mark>2310 2320 2350 2404 Frequency (MHz) Ant Cable Preamp Read Limit **Over** Limit Pol/Phase Remark Freq Factor Loss Factor Level Level Line MHz dB/m dB dB dBuV dBuV/m dBuV/m dB 2390.000 27.64 3.07 44.03 57.34 44.02 74.00 -29.98 Horizontal Peak 1 2 pp 2402.083 27.62 3.07 44.04 95.41 82.06 74.00 8.06 Horizontal Peak π/4DQPSK(2-DH5) Worse case mode: Polarization: Vertical Remark: Peak Test channel: Lowest 120 Level (dBuV/m) 110 90 CC PART 15C (& IC R\$S-247)>10 70 FCC PART 15C (& IC R\$S-247)>10 AV 50 had the alternative and the second state of the second second state and the address of the the 30 10 -102310 2320 2350 2404 Frequency (MHz) Ant Cable Preamp Read Limit **Over** Limit Pol/Phase Remark Freq Factor Loss Factor Level Level Line dB/m dBuV dBuV/m dBuV/m MHz dB dB dB 2390.000 27.64 3.07 44.03 59.09 45.77 74.00 -28.23 Vertical Peak 1 27.62 44.04 106.68 93.34 74.00 19.34 Vertical pp 2402.275 3.08 Peak

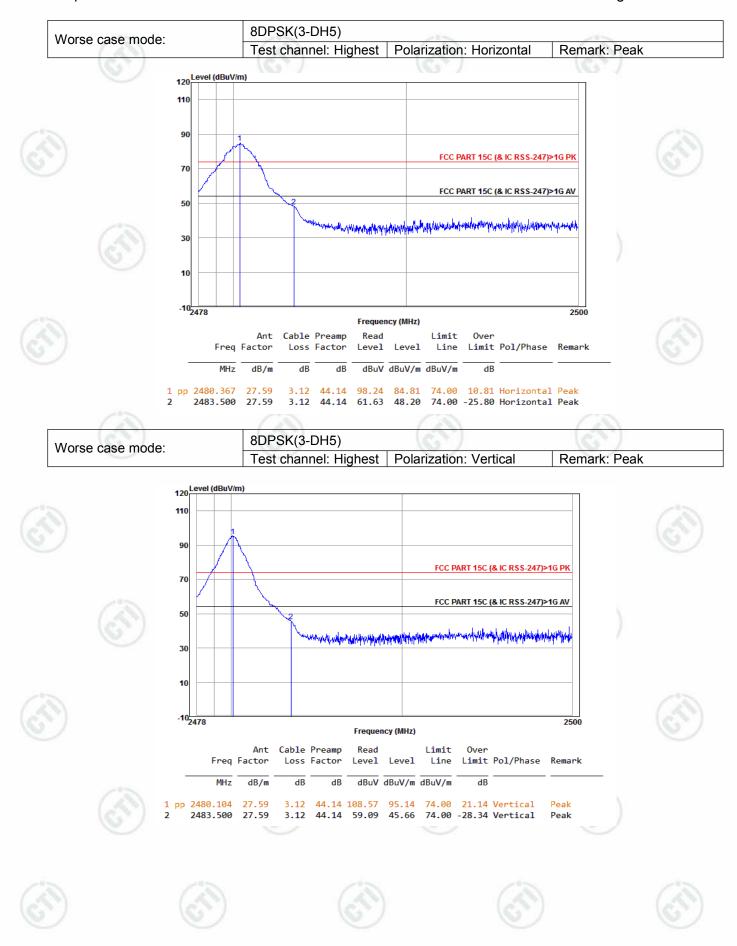


Page 52 of 81



Page 53 of 81

Report No. : EED32K00216401



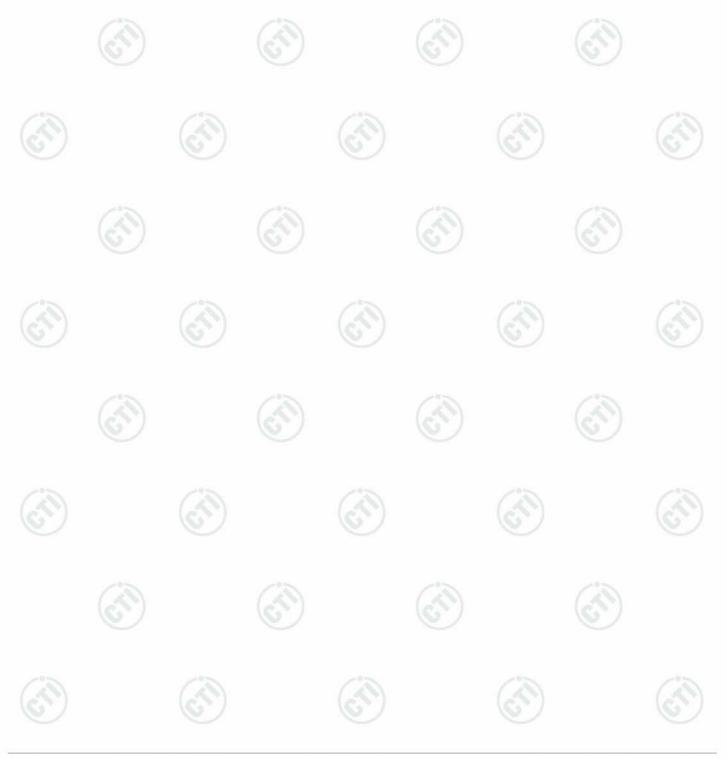
Page 54 of 81

Report No. : EED32K00216401

Page 55 of 81

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of π /4DQPSK modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.


2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix L): Radiated Spurious Emissions

Receiver Setup:		63	10		(1)	_
G.	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
N	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	12
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	67)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	\sim
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(35)		Peak	1MHz	3MHz	Peak	
\bigcirc	Above 1GHz	Peak	1MHz	10Hz	Average]

Test Procedure:

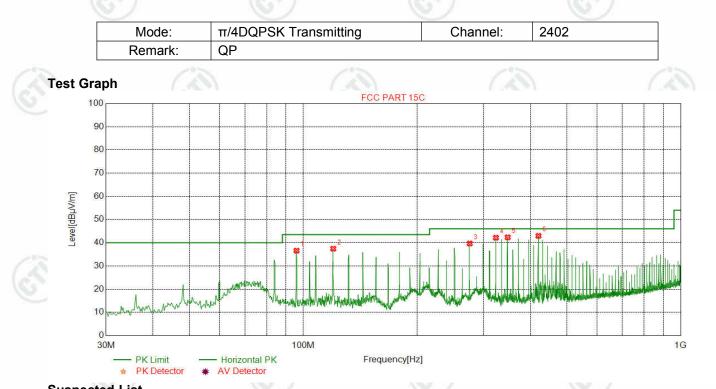
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be
- stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

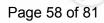
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

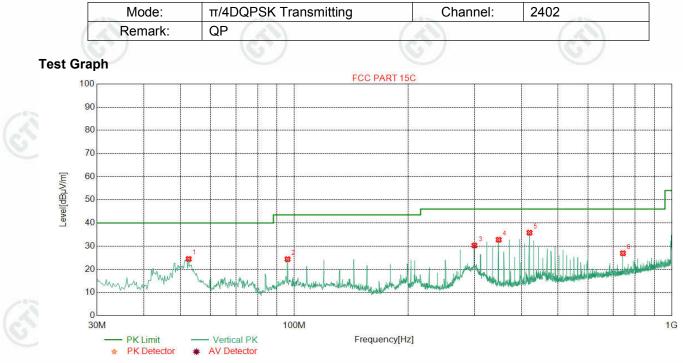
j. Repeat above procedures until all frequencies measured was complete.

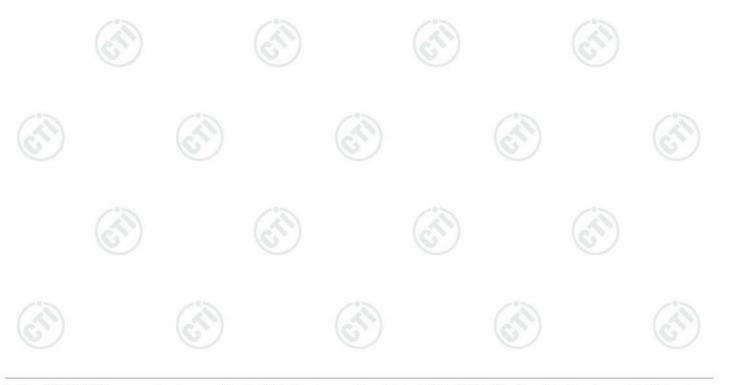

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark		
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
0.490MHz-1.705MHz	24000/F(kHz)	-		30	103
1.705MHz-30MHz	30	- (<u> </u>	30	(3
30MHz-88MHz	100	40.0	Quasi-peak	3	V
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	
emissions is 20dE applicable to the	B above the maximu equipment under te	um permittee st. This pea	d average emi	ission limit	1
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Note: 15.35(b), Unless emissions is 20df applicable to the	Frequency(microvolt/meter)0.009MHz-0.490MHz2400/F(kHz)0.490MHz-1.705MHz24000/F(kHz)1.705MHz-30MHz3030MHz-88MHz10088MHz-216MHz150216MHz-960MHz200960MHz-1GHz500Above 1GHz500Note: 15.35(b), Unless otherwise specified emissions is 20dB above the maximu applicable to the equipment under terminal	Frequency (microvolt/meter) (dBμV/m) 0.009MHz-0.490MHz 2400/F(kHz) - 0.490MHz-1.705MHz 24000/F(kHz) - 1.705MHz-30MHz 30 - 30MHz-88MHz 100 40.0 88MHz-216MHz 150 43.5 216MHz-960MHz 200 46.0 960MHz-1GHz 500 54.0 Above 1GHz 500 54.0 Note: 15.35(b), Unless otherwise specified, the limit or emissions is 20dB above the maximum permitted	Frequency(microvolt/meter)(dBµV/m)Remark0.009MHz-0.490MHz2400/F(kHz)0.490MHz-1.705MHz24000/F(kHz)1.705MHz-30MHz3030MHz-88MHz10040.0Quasi-peak88MHz-216MHz15043.5Quasi-peak216MHz-960MHz20046.0Quasi-peak960MHz-1GHz50054.0Quasi-peakAbove 1GHz50054.0AverageNote: 15.35(b), Unless otherwise specified, the limit on peak radio fr emissions is 20dB above the maximum permitted average emi applicable to the equipment under test. This peak limit applies	Frequency(microvolt/meter)(dBµV/m)Remarkdistance (distance)0.009MHz-0.490MHz2400/F(kHz)3000.490MHz-1.705MHz24000/F(kHz)3001.705MHz-30MHz303030MHz-88MHz10040.0Quasi-peak388MHz-216MHz15043.5Quasi-peak3216MHz-960MHz20046.0Quasi-peak3960MHz-1GHz50054.0Quasi-peak3Above 1GHz50054.0Average3Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz




	Susp	Dected List									
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
64	1	95.9732	10.36	1.13	-32.08	57.18	36.59	43.50	6.91	Pass	Horizontal
S	2	120.0340	9.19	1.30	-32.06	59.01	37.44	43.50	6.06	Pass	Horizontal
	3	276.0412	12.72	1.98	-31.91	56.90	39.69	46.00	6.31	Pass	Horizontal
	4	323.9688	13.73	2.14	-31.81	58.10	42.16	46.00	3.84	Pass	Horizontal
	5	348.0296	14.26	2.22	-31.86	57.70	42.32	46.00	3.68	Pass	Horizontal
	6	420.0180	15.72	2.45	-31.84	56.65	42.98	46.00	3.02	Pass	Horizontal
				0	1					6	



Suspected List

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.5085	12.80	0.82	-32.10	42.95	24.47	40.00	15.53	Pass	Vertical
	2	95.9732	10.36	1.13	-32.08	44.95	24.36	43.50	19.14	Pass	Vertical
	3	300.1020	13.20	2.06	-31.85	46.88	30.29	46.00	15.71	Pass	Vertical
2	4	348.0296	14.26	2.22	-31.86	48.14	32.76	46.00	13.24	Pass	Vertical
3	5	420.0180	15.72	2.45	-31.84	49.47	35.80	46.00	10.20	Pass	Vertical
-	6	742.5105	20.27	3.26	-32.11	35.50	26.92	46.00	19.08	Pass	Vertical

Transmitter Emission above 1GHz

Worse of	ase mode:	GFSK	Test channel: Lowest								
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark		
3018.5269	33.21	4.89	-36.77	46.47	47.80	74.00	26.20	Н	Peak		
4804.000	34.50	4.55	-36.15	49.75	52.65	74.00	21.35	Н	Peak		
4804.0000	34.50	4.55	-36.15	44.25	47.15	54.00	6.85	Н	Average		
5500.1500	35.00	5.16	-36.15	42.87	46.88	74.00	27.12	Н	Peak		
7206.000	36.31	5.81	-36.43	50.72	56.41	74.00	17.59	Н	Peak		
7206.0000	36.31	5.81	-36.43	43.96	49.66	54.00	4.34	Н	Average		
8157.2907	36.46	6.41	-36.48	44.34	50.73	74.00	23.27	Н	Peak		
9608.000	37.64	6.63	-36.79	42.05	49.53	74.00	24.47	Н	Peak		
1196.0392	28.10	2.66	-37.65	52.40	45.51	74.00	28.49	V	Peak		
3021.4521	33.21	4.89	-36.79	46.93	48.24	74.00	25.76	V	Peak		
4804.000	34.50	4.55	-36.15	46.24	49.14	74.00	24.86	V	Peak		
7206.000	36.31	5.81	-36.43	50.78	56.47	74.00	17.53	V	Peak		
7206.0000	36.31	5.81	-36.43	44.26	49.96	54.00	4.04	V	Average		
8253.8254	36.50	6.20	-36.60	44.58	50.68	74.00	23.32	V	Peak		
9608.000	37.64	6.63	-36.79	42.46	49.94	74.00	24.06	V	Peak		

Page 59 of 81

Worse c	ase mode:	GFSK	Test channel: Middle								
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark		
2906.3813	33.05	4.38	-36.64	46.49	47.28	74.00	26.72	Н	Peak		
4882.000	34.50	4.81	-36.10	51.13	54.34	74.00	19.66	Н	Peak		
4882.0000	34.50	4.81	-36.10	43.25	46.46	54.00	7.54	Н	Average		
6354.3354	35.87	5.45	-36.15	42.69	47.86	74.00	26.14	Н	Peak		
7323.000	36.42	5.85	-36.41	47.50	53.36	74.00	20.64	Н	Peak		
8376.6877	36.55	6.26	-36.46	43.95	50.30	74.00	23.70	Н	Peak		
7323.0000	36.42	5.85	-36.41	41.81	47.68	54.00	6.32	Н	Average		
9764.000	37.71	6.71	-36.83	42.01	49.60	74.00	24.40	Н	Peak		
3345.1845	33.34	4.53	-36.72	46.06	47.21	74.00	26.79	V	Peak		
4882.000	34.50	4.81	-36.10	46.25	49.46	74.00	24.54	V	Peak		
6355.3105	35.87	5.44	-36.15	43.50	48.66	74.00	25.34	V	Peak		
7323.000	36.42	5.85	-36.41	46.47	52.33	74.00	21.67	V	Peak		
7323.0000	36.42	5.85	-36.41	39.74	45.61	54.00	8.39	V	Average		
7679.4929	36.53	6.21	-36.46	44.00	50.28	74.00	23.72	V	Peak		
9764.000	37.71	6.71	-36.83	42.30	49.89	74.00	24.11	V	Peak		
	Freq. [MHz] 2906.3813 4882.000 4882.000 6354.3354 7323.000 8376.6877 7323.000 9764.000 3345.1845 4882.000 6355.3105 7323.000 7323.000 7323.000 7323.000	Freq. [MHz] Ant Factor [dB] 2906.3813 33.05 4882.000 34.50 4882.000 34.50 4882.000 34.50 6354.3354 35.87 7323.000 36.42 8376.6877 36.55 7323.000 36.42 9764.000 37.71 3345.1845 33.34 4882.000 34.50 6355.3105 35.87 7323.000 36.42 9764.000 37.71 3345.1845 33.34 4882.000 34.50 6355.3105 35.87 7323.000 36.42 7323.000 36.42 7323.000 36.42 7323.000 36.42 7323.000 36.42 7679.4929 36.53	Freq. [MHz] Factor [dB] loss [dB] 2906.3813 33.05 4.38 4882.000 34.50 4.81 4882.000 34.50 4.81 6354.3354 35.87 5.45 7323.000 36.42 5.85 8376.6877 36.55 6.26 7323.000 36.42 5.85 9764.000 37.71 6.71 3345.1845 33.34 4.53 4882.000 34.50 4.81 6355.3105 35.87 5.44 7323.000 36.42 5.85 7323.000 36.42 5.85 7323.000 36.42 5.85 7323.000 36.42 5.85 7323.000 36.42 5.85 7323.000 36.42 5.85 7323.000 36.42 5.85 7323.0000 36.42 5.85 7679.4929 36.53 6.21	Freq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]2906.381333.054.38-36.644882.00034.504.81-36.104882.00034.504.81-36.104882.00034.504.81-36.106354.335435.875.45-36.157323.00036.425.85-36.418376.687736.556.26-36.467323.00036.425.85-36.419764.00037.716.71-36.833345.184533.344.53-36.724882.00034.504.81-36.106355.310535.875.44-36.157323.00036.425.85-36.417323.00036.425.85-36.417323.00036.425.85-36.417323.00036.425.85-36.417323.00036.425.85-36.417679.492936.536.21-36.46	$\begin{array}{ c c c c c c c } \hline Freq. \\ [MHz] & Ant \\ Factor \\ [dB] & [dB] \\ [dB] & [dB] \\ [dB]$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Freq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Reading [dB μ V]Level [dB μ V/m]Limit [dB μ V/m]2906.381333.054.38-36.6446.4947.2874.004882.00034.504.81-36.1051.1354.3474.004882.00034.504.81-36.1043.2546.4654.006354.335435.875.45-36.1542.6947.8674.007323.00036.425.85-36.4147.5053.3674.008376.687736.556.26-36.4643.9550.3074.007323.00036.425.85-36.4141.8147.6854.009764.00037.716.71-36.8342.0149.6074.003345.184533.344.53-36.7246.0647.2174.004882.00034.504.81-36.1046.2549.4674.003355.184535.875.44-36.1543.5048.6674.003345.184535.875.44-36.1543.5048.6674.006355.310535.875.44-36.1543.5048.6674.007323.00036.425.85-36.4139.7445.6154.007323.00036.425.85-36.4139.7445.6154.007323.00036.425.85-36.4139.7445.6154.007323.00036.425.85-3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

Page 60 of 81

	Worse c	ase mode:	GFSK	Test channel: Highest								
	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark		
1	2193.4387	31.97	3.65	-36.53	49.49	48.58	74.00	25.42	Н	Peak		
c'	4557.2307	34.50	4.79	-36.29	43.83	46.83	74.00	27.17	Н	Peak		
	4960.000	34.50	4.82	-36.20	49.63	52.75	74.00	21.25	Н	Peak		
	4960.0000	34.50	4.82	-36.20	42.60	45.71	54.00	8.29	Н	Average		
	5526.4776	35.04	5.16	-36.09	43.86	47.97	74.00	26.03	Н	Peak		
	7440.000	36.54	5.85	-36.34	44.71	50.76	74.00	23.24	Н	Peak		
	9920.000	37.77	6.79	-36.82	39.63	47.37	74.00	26.63	Н	Peak		
	1750.1500	30.05	3.23	-36.78	52.42	48.92	74.00	25.08	V	Peak		
	3875.6376	33.70	4.35	-36.14	44.39	46.30	74.00	27.70	V	Peak		
	4960.000	34.50	4.82	-36.20	47.63	50.75	74.00	23.25	V	Peak		
2	6513.2763	35.91	5.44	-36.20	43.44	48.59	74.00	25.41	V	Peak		
é	7440.000	36.54	5.85	-36.34	44.01	50.06	74.00	23.94	V	Peak		
2	9920.000	37.77	6.79	-36.82	41.34	49.08	74.00	24.92	V	Peak		

Worse case mode: π/4DQPSK Test channel: Lowest Ant Cable Pream Freq. Reading Level Limit Magin Factor loss gain Polarity Remark [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 2899.5799 33.04 74.00 Н 4.38 -36.62 47.39 48.19 25.81 Peak 4804.000 34.50 4.55 -36.15 46.21 49.11 74.00 24.89 Н Peak 6367.0117 35.87 5.41 -36.20 43.63 48.71 74.00 25.29 Peak Н 36.31 7206.000 5.81 -36.43 48.70 54.39 74.00 19.61 Н Peak -36.43 37.99 7206.0000 36.31 5.81 43.69 54.00 10.31 Н Average 8424.4674 36.57 6.36 50.77 74.00 Н Peak -36.33 44.17 23.23 37.64 6.63 74.00 Н Peak 9608.000 -36.79 41.60 49.08 24.92 V 3985.8236 33.79 4.33 -36.20 45.25 47.17 74.00 26.83 Peak 34.50 V 4804.000 4.55 -36.15 47.47 50.37 74.00 23.63 Peak 5876.5377 35.60 5.07 -36.13 43.38 47.92 74.00 26.08 V Peak 36.31 7206.000 5.81 -36.43 46.59 52.28 74.00 21.72 V Peak -36.43 34.85 V 7206.0000 36.31 5.81 40.55 54.00 13.45 Average V 36.55 8374.7375 6.25 -36.48 43.96 50.28 74.00 23.72 Peak 37.64 9608.000 6.63 -36.79 42.08 49.56 74.00 24.44 V Peak

Page 61 of 81

Report No. : EED32K00216401

	Worse case	e mode: π/4	IDQPSK		Test channel: Middle								
	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark			
	4367.0867	34.31	4.52	-36.32	44.34	46.85	74.00	27.15	Н	Peak			
	4882.0000	34.50	4.81	-36.10	46.91	50.12	74.00	23.88	Н	Peak			
Ċ.	5830.7081	35.53	5.04	-36.01	43.53	48.09	74.00	25.91	Н	Peak			
	7323.0000	36.42	5.85	-36.41	44.79	50.65	74.00	23.35	Н	Peak			
	8470.2970	36.59	6.44	-36.44	43.84	50.43	74.00	23.57	Н	Peak			
	9764.0000	37.71	6.71	-36.83	42.31	49.90	74.00	24.10	Н	Peak			
	3688.4188	33.55	4.26	-36.23	44.71	46.29	74.00	27.71	V	Peak			
	3993.6244	33.79	4.33	-36.23	45.87	47.76	74.00	26.24	V	Peak			
	4882.0000	34.50	4.81	-36.10	43.41	46.62	74.00	27.38	V	Peak			
	7323.0000	36.42	5.85	-36.41	44.00	49.86	74.00	24.14	V	Peak			
	8390.3390	36.56	6.30	-36.35	43.90	50.41	74.00	23.59	V	Peak			
	9764.0000	37.71	6.71	-36.83	42.38	49.97	74.00	24.03	V	Peak			
	N)	6			(63)		6.)		(62)			

Worse case	e mode: π/4	1DQPSK	Test channel: Highest						
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
1781.3563	30.26	3.29	-36.81	48.10	44.84	74.00	29.16	Н	Peak
3218.4218	33.29	4.58	-36.74	46.35	47.48	74.00	26.52	Н	Peak
4960.0000	34.50	4.82	-36.20	47.65	50.77	74.00	23.23	Н	Peak
7058.3558	36.16	5.71	-36.18	43.75	49.44	74.00	24.56	Н	Peak
7440.0000	36.54	5.85	-36.34	42.72	48.77	74.00	25.23	Н	Peak
9920.0000	37.77	6.79	-36.82	40.29	48.03	74.00	25.97	Н	Peak
1288.8578	28.19	2.73	-37.38	52.17	45.71	74.00	28.29	V	Peak
3000.9751	33.20	4.93	-36.71	45.50	46.92	74.00	27.08	V	Peak
4960.0000	34.50	4.82	-36.20	47.56	50.68	74.00	23.32	V	Peak
7440.0000	36.54	5.85	-36.34	40.19	46.24	74.00	27.76	V	Peak
8430.3180	36.57	6.37	-36.35	42.89	49.48	74.00	24.52	V	Peak
9920.0000	37.77	6.79	-36.82	39.32	47.06	74.00	26.94	V	Peak

Page 62 of 81

Worse ca	Test channel: Lowest								
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
1796.9594	30.36	3.31	-36.80	50.86	47.73	74.00	26.27	Н	Peak
4804.0000	34.50	4.55	-36.15	47.15	50.05	74.00	23.95	Н	Peak
6124.2124	35.82	5.26	-36.26	42.87	47.69	74.00	26.31	Н	Peak
7206.0000	36.31	5.81	-36.43	48.68	54.37	74.00	19.63	Н	Peak
7206.0000	36.31	5.82	-36.43	29.43	35.13	54.00	18.87	Н	Average
8300.6301	36.52	6.11	-36.57	44.51	50.57	74.00	23.43	Н	Peak
9608.0000	37.64	6.63	-36.79	41.99	49.47	74.00	24.53	Н	Peak
3597.7348	33.48	4.34	-36.57	45.38	46.63	74.00	27.37	V	Peak
4804.0000	34.50	4.55	-36.15	45.16	48.06	74.00	25.94	V	Peak
6450.8701	35.89	5.52	-36.26	43.03	48.18	74.00	25.82	V	Peak
7206.0000	36.31	5.81	-36.43	45.29	50.98	74.00	23.02	V	Peak
8550.2550	36.71	6.32	-36.32	43.82	50.53	74.00	23.47	V	Peak
9608.0000	37.64	6.63	-36.79	41.87	49.35	74.00	24.65	V	Peak

Worse ca	BDPSK	Test channel: Middle							
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
3228.1728	33.29	4.54	-36.76	45.62	46.69	74.00	27.31	Н	Peak
4186.6937	34.06	4.49	-36.31	44.05	46.29	74.00	27.71	Н	Peak
4882.0000	34.50	4.81	-36.10	47.52	50.73	74.00	23.27	Н	Peak
7323.0000	36.42	5.85	-36.41	43.93	49.79	74.00	24.21	Н	Peak
8482.9733	36.59	6.46	-36.44	43.26	49.87	74.00	24.13	Н	Peak
9764.0000	37.71	6.71	-36.83	41.88	49.47	74.00	24.53	Н	Peak
1923.3847	31.19	3.42	-36.80	50.63	48.44	74.00	25.56	V	Peak
4882.0000	34.50	4.81	-36.10	46.28	49.49	74.00	24.51	V	Peak
7323.0000	36.42	5.85	-36.41	44.55	50.41	74.00	23.59	V	Peak
7680.4680	36.53	6.22	-36.46	44.32	50.61	74.00	23.39	V	Peak
8491.7492	36.60	6.48	-36.45	44.33	50.96	74.00	23.04	V	Peak
9764.0000	37.71	6.71	-36.83	41.31	48.90	74.00	25.10	V	Peak

Page 63 of 81

Report No. : EED32K00216401

	Worse ca	BDPSK	Test channel: Highest							
	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
	3020.4770	33.21	4.89	-36.78	46.61	47.93	74.00	26.07	Н	Peak
	4960.0000	34.50	4.82	-36.20	47.49	50.61	74.00	23.39	Н	Peak
2	5800.4800	35.48	4.98	-36.02	43.74	48.18	74.00	25.82	Н	Peak
	7440.0000	36.54	5.85	-36.34	42.08	48.13	74.00	25.87	Н	Peak
	8488.8239	36.60	6.47	-36.45	44.13	50.75	74.00	23.25	Н	Peak
	9920.0000	37.77	6.79	-36.82	41.07	48.81	74.00	25.19	Н	Peak
	1594.1188	29.02	3.07	-37.00	52.36	47.45	74.00	26.55	V	Peak
	4960.0000	34.50	4.82	-36.20	49.39	52.51	74.00	21.49	V	Peak
	4960.0000	34.50	4.82	-36.21	31.26	34.37	54.00	19.63	V	Average
	5629.8380	35.21	5.02	-36.07	43.94	48.10	74.00	25.90	V	Peak
	7440.0000	36.54	5.85	-36.34	43.06	49.11	74.00	24.89	V	Peak
-	8871.0621	37.42	6.41	-36.51	43.23	50.55	74.00	23.45	V	Peak
	9920.0000	37.77	6.79	-36.82	40.52	48.26	74.00	25.74	V	Peak

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of π /4DQPSK modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.

2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

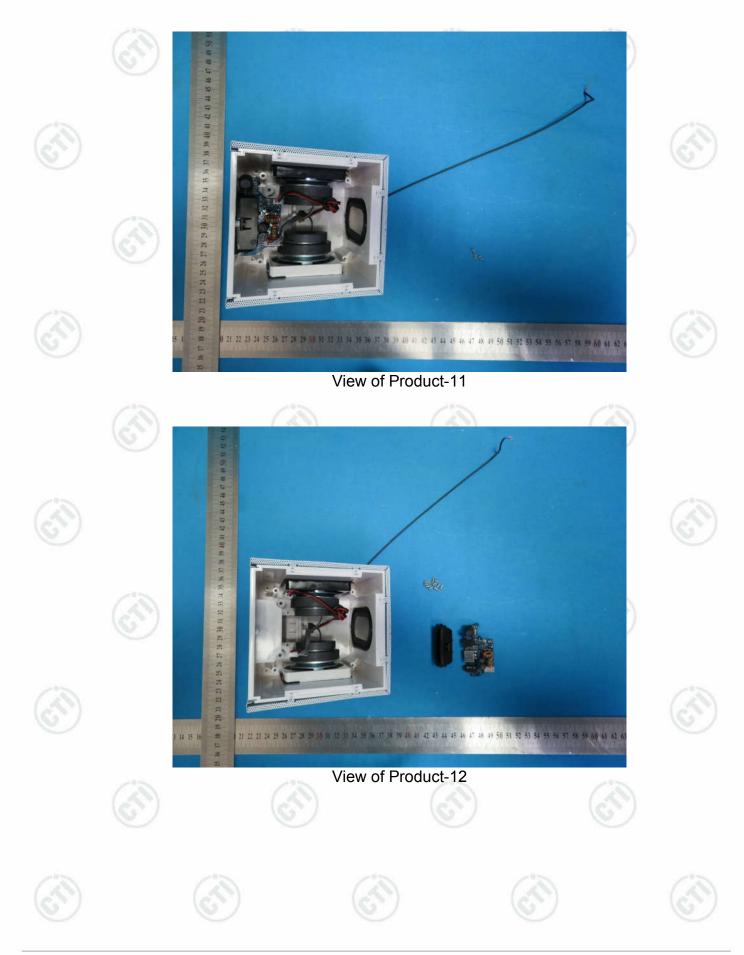
Page 64 of 81

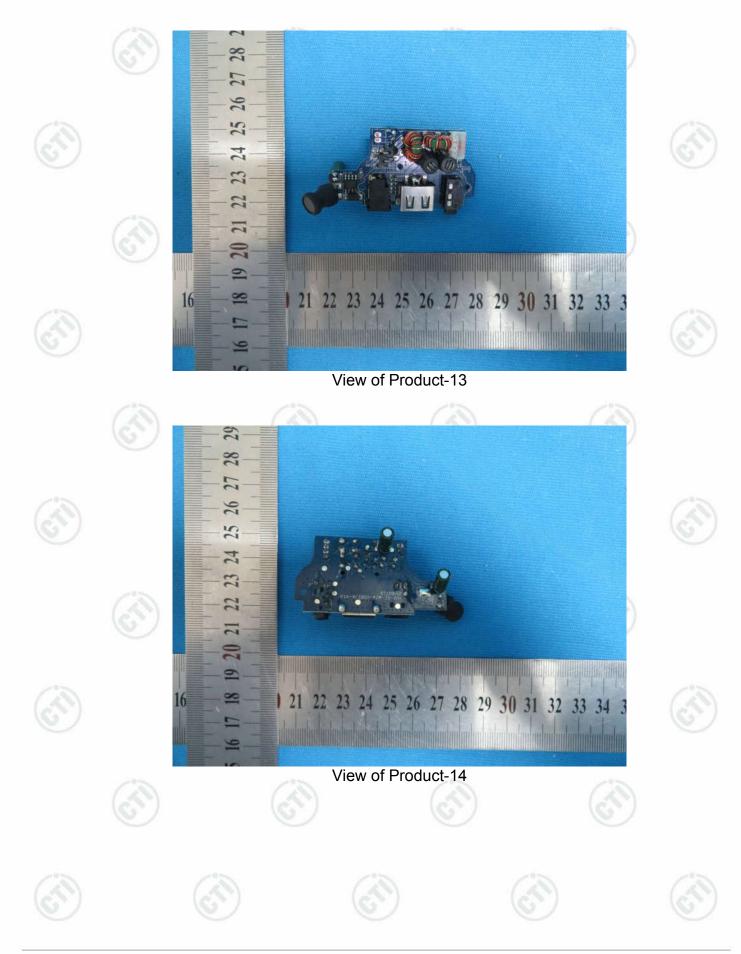
Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted emissions Test Setup

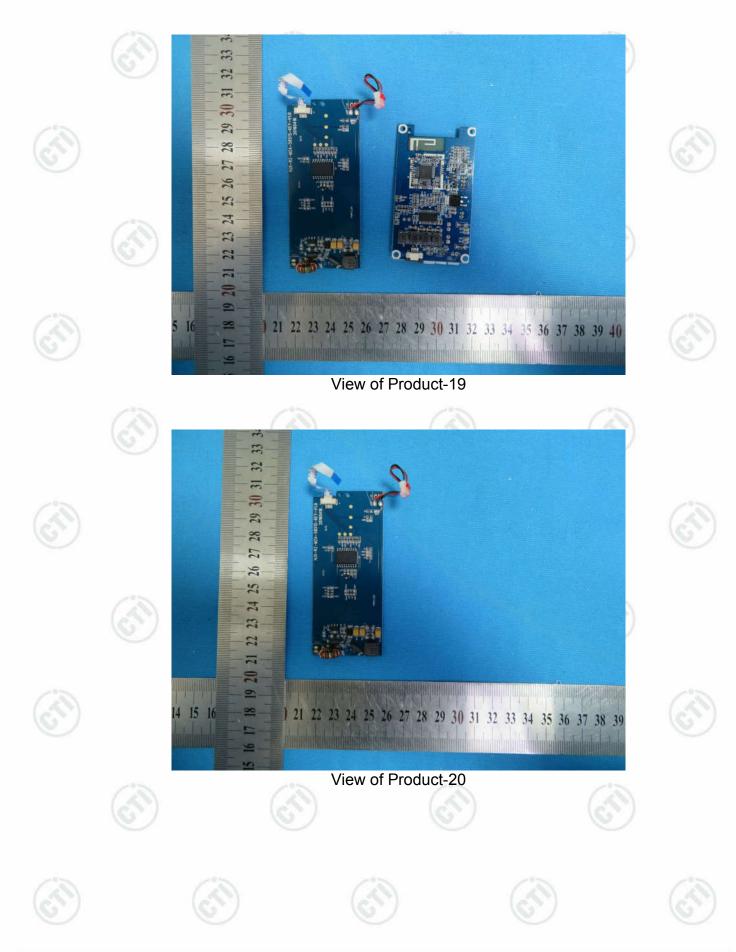


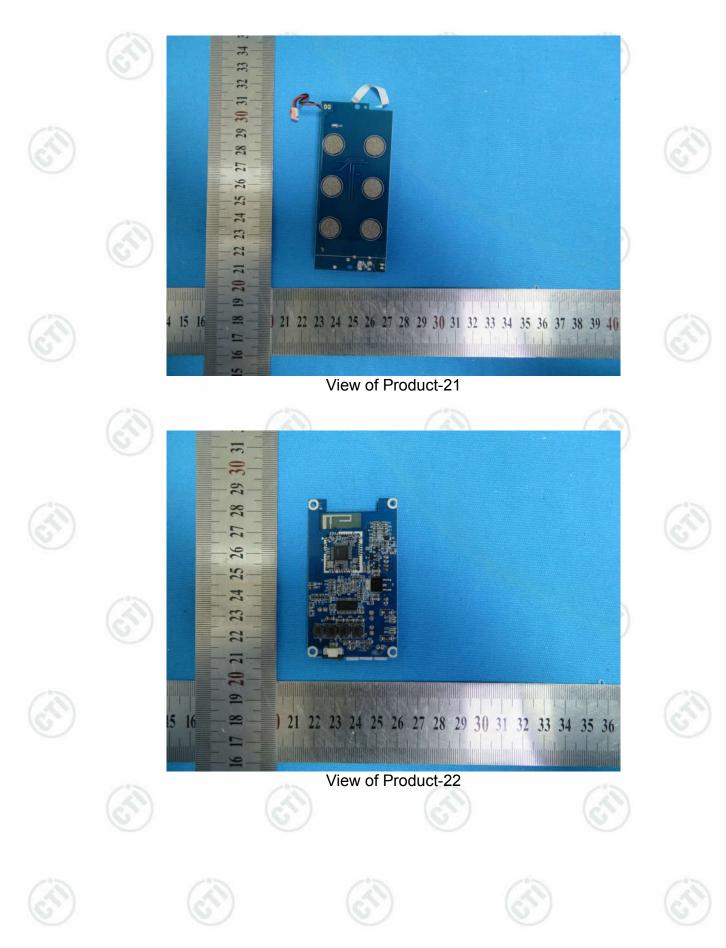












Page 77 of 81

Report No. : EED32K00216401

