

Test Report

Report No.
Date of issue
Applicant
Product
Model(s)
FCC ID

MTi250113007-0202E1 2

2025-02-17

HTX1

Chug. Inc

dongle

2

2AO23-HTX1

Shenzhen Microtest Co., Ltd.

Microtes Tel:0755-88850135-1439 Q/MTI-QP-12-FE038

Web: http://www.mtitest.cn Mobile: 131-4343-1439 (Wechat same number) Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Ver./Rev.: A1

E-mail: mti@51mti.com Page 1 of 56

Report No.: MTi250113007-0202E1

Microt

Table of contents

1	Gene	ral Description	4
	1.1	Description of the EUT	. 4
	1.2	Description of test modes	4
	1.3	Environmental Conditions	6
	1.4	Description of support units	6
	1.5	Measurement uncertainty	6
2 3		nary of Test Result Facilities and accreditations	8
	3.1	Test laboratory	8
4	List o	f test equipment	9
5		ation Results (Evaluation)	
	5.1	Antenna requirement	10
6	Padia	Spectrum Matter Test Results (RF)	11
0			
	6.1	20dB Bandwidth	
	6.2	Maximum Conducted Output Power	
	6.3	Channel Separation	15
	6.4	Number of Hopping Frequencies	17
	6.5	Dwell Time	19
	6.6	RF conducted spurious emissions and band edge measurement	21
	6.7	Band edge emissions (Radiated)	23
	6.8	Radiated emissions (below 1GHz)	26
	6.9	Radiated emissions (above 1GHz)	30
Pho Pho	otogra otogra	phs of the test setup phs of the EUT	34 35
Ap	pendix	A: 20dB Emission Bandwidth	37
		B: Maximum conducted output power	
		C: Carrier frequency separation	
		D: Time of occupancy E: Number of hopping channels	
		F: Band edge measurements	
		G: Conducted Spurious Emission	

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038Ver./Rev.: A1Page 2 of 56

Report No.: MTi250113007-0202E1

Test Result Certific	ation		(B) MICI-			
Applicant	Chug. Inc					
Applicant Address	7157 SHAD	7157 SHADY OAK RD EDEN PRAIRE MN 55344 UNITED STATES				
Manufacturer	Dongguan V	Dongguan Weiji intelligent Technology co.,Ltd				
Manufacturer Address	Building 1, No.15, Yanhe Road(N),Xiangxi, Shipai Town, Dongguan, Guangdong Sheng, China					
Product descriptio		est				
Product name	dongle	Otes				
Trademark	N/A	(B) Mic.				
Model name	HTX1		. est			
Series Model(s)	N/A s		NICTOR			
Standards	47 CFR Par	47 CFR Part 15.247				
Test Method	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013					
Testing Information	n	(B) Mic.	Microc			
Date of test	2025-01-16	to 2025-01-23				
Test result	Pass	-ost				
Prepared by:		Yanice.Xie	Yanice Xie 110			
Reviewed by:		David Lee	Yanice Xie Dowid. Cee Cov chen			
Approved b	y: e	Leon Chen	cov chen			
	Micio	MIC				

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaQ/MTI-QP-12-FE038Page 3 of 56

1 General Description

1.1 Description of the EUT

Product name:	dongle			
Model name:	HTX1			
Series Model(s):	N/A			
Model difference:	N/A			
Electrical rating:	Input:DC 5V			
Accessories:	N/A			
Hardware version:	V1.0			
Software version:	V1.0			
Test sample(s) number:	MTi250113007-02-R001			
RF specification				
Operating frequency range:	2402-2480MHz			
Channel number:	40			
Modulation type:	GFSK			
Antenna(s) type:	PCB Antenna			
Antenna(s) gain:	-2.36dBi			

1.2 Description of test modes

No.	Emission test modes	
Mode1	TX-GFSK	

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Test Channel List Operation Band: 2400-2483.5 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
1	2402	2440	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC v6.9.1 Test

For power setting, refer to below table.

Mode	2402MHz	2440MHz	2480MHz
1M	12	12	12

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description Model		Serial No.	Manufacturer			
Laptop e485		/	Lenovo			
Support cable list						
Description	Length (m)	From	То			
1 1		1	/			
I.5 Measurement uncertainty						
Measurement		Uncertainty				
Occupied channel band	dwidth	±3 %				
RF output power, condu	ucted	±1 dB				
Time		±1 %				
Unwanted Emissions, c	conducted	±1 dB				
Radiated spurious emis	sions (above 1GHz)	±5.3dB				

Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %
	·

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	20dB Bandwidth	47 CFR 15.247(a)(1)	Pass
3	Maximum Conducted Output Power	47 CFR 15.247(b)(1)	Pass
4	Channel Separation	47 CFR 15.247(a)(1)	Pass
5	Number of Hopping Frequencies	47 CFR 15.247(a)(1)(iii)	Pass
6	Dwell Time	47 CFR 15.247(a)(1)(iii)	Pass
7	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Band edge emissions (Radiated)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Conducted Emission at AC power line	47 CFR 15.207(a)	N/A

Notes:

1.N/A means not applicable.

2. Since the EUT power by DC supply, therefore AC power line conducted emissions test is not required.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due	
	Emissions in non-restricted frequency bands 20dB Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03- 20	2025-03- 19	
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2024-03- 21	2025-03- 20	
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03- 20	
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2024-03- 21	2025-03- 20	
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2024-03- 21	2025-03- 20	
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2024-03- 21	2025-03- 20	
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2024-03- 21	2025-03- 20	
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2024-03- 20	2025-03- 19	
9	DC Power Supply	Agilent	E3632A	MY400276 95	2024-03- 21	2025-03- 20	
	Er	nissions in frequend Band edge emi	cy bands (above ssions (Radiated	1GHz)			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19	
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06- 17	2025-06- 16	
3	Amplifier	Agilent	8449B	3008A0112 0	2024-03- 20	2025-03- 19	
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2024-03- 21	2025-03- 20	
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2024-03- 21	2025-03- 20	
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06- 17	2025-06- 16	
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03- 21	2025-03- 20	
	Emissions in frequency bands (below 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03- 20	2025-03- 19	
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06- 10	
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2025-03- 22	
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2024-03- 20	2025-03- 19	

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

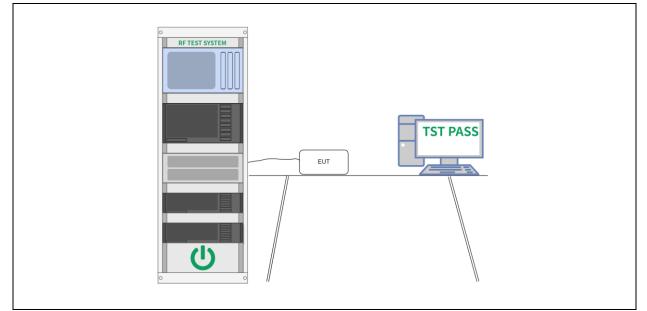
5.1.1 Conclusion:

The antenna of the EUT is permanently attached.	
The EUT complies with the requirement of FCC PART 15.203.	

6 Radio Spectrum Matter Test Results (RF)

6.1 20dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the t


Report No.: MTi250113007-0202E1

envelope of the spectral display, such that the marker is at or slightly
below the "-xx dB down amplitude" determined in step h). Reset the
marker-delta function and move the marker to the other side of the
emission until the delta marker amplitude is at the same level as the
reference marker amplitude. The marker-delta frequency reading at
this point is the specified emission bandwidth.
k) The occupied bandwidth shall be reported by providing plot(s) of the
measuring instrument display; the plot axes and the scale units per
division shall be clearly labeled. Tabular data may be reported in
addition to the plot(s).

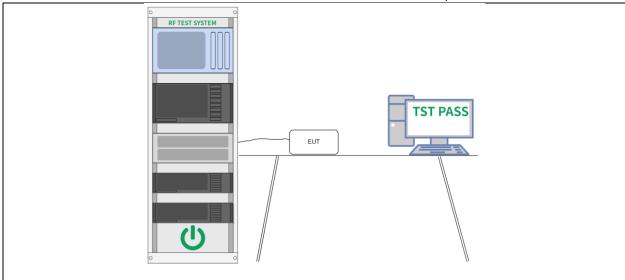
6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.9 °C		Humidity:	32 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mod		e1				
Final test mode: Mod		e1				

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

Please Refer to Appendix for Details.


6.2 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non- overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

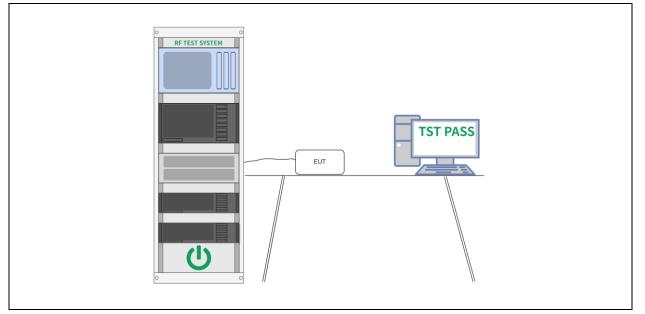
6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.9 °C		Humidity:	32 %	Atmospheric Pressure:	101 kPa
Pre test mode:	re test mode: Mod		e1			
Final test mode: Mod		e1				
6.2.2 Test Setup Diagram:						

Report No.: MTi250113007-0202E1

6.2.3 Test Data:

Please Refer to Appendix for Details.


6.3 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.9 °C		Humidity:	32 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mod		Mod	e1			
Final test mode: Mod		e1				

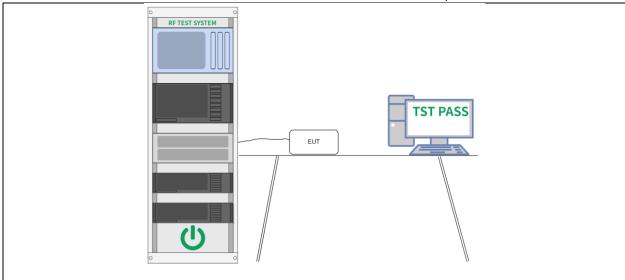
6.3.2 Test Setup Diagram:

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038Ver./Rev.: A1Page 15 of 56

6.3.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi250113007-0202E1


6.4 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

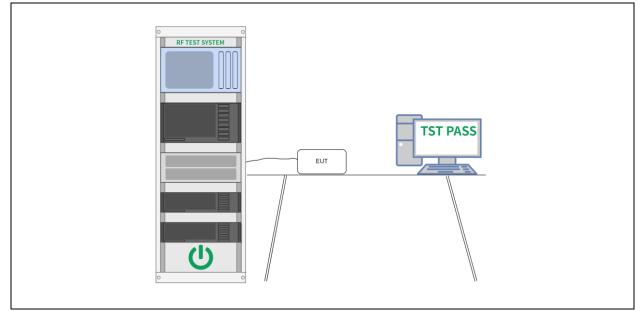
6.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.9 °C		Humidity:	32 %	Atmospheric Pressure:	101 kPa		
Pre test mode:		Mod	e1					
Final test mode	Mod	e1						
6.4.2 Test Setup Diagram:								

Report No.: MTi250113007-0202E1

6.4.3 Test Data:

Please Refer to Appendix for Details.


Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hops on the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation format, number of hops in the period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, n

6.5.1 E.U.T. Operation:

Operating Environment:									
Temperature:	С	Humidity:	32 %	Atmospheric Pressure:	101 kPa				
Pre test mode:	Mod	e1							
Final test mode:		Mod	e1						

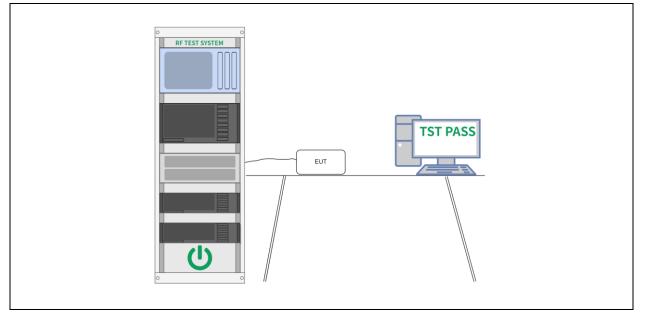
Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038Ver./Rev.: A1Page 19 of 56

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi250113007-0202E1


6.6 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.6.1 E.U.T. Operation:

Operating Environment:									
Temperature:	Temperature: 22.9 °C		Humidity:	32 %	Atmospheric Pressure:	101 kPa			
Pre test mode:	Mod	e1							
Final test mode: N		Mod	e1						

6.6.2 Test Setup Diagram:

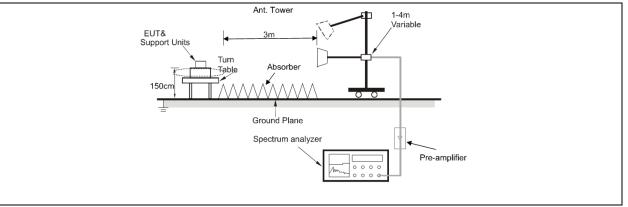
Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,China
Q/MTI-QP-12-FE038Ver./Rev.: A1Page 21 of 56

6.6.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi250113007-0202E1

6.7 Band edge emissions (Radiated)


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz) Field strength (microvolts/meter) distance (meters)							
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	 Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.2 In the emission table above, the tighter limit applies at the band edge. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 							
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.10 I7 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sec	tion 6.10.5.2						

6.7.1 E.U.T. Operation:

Operating Environment:									
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa			
Pre test mode:		Mod	e1						
Final test mode	Mode1								
Note:									
The amplitude of spurious amissions which are attenuated more than 20 dB below the limits									

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.7.2 Test Setup Diagram:

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,China
Ver./Rev.: A1Page 23 of 56

6.7.3 Test Data:

Report No.: MTi250113007-0202E1

Mode1 / Pc	Mode1 / Polarization: Horizontal / CH: L									
	No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		
	1	2310.000	47.47	-4.83	42.64	74.00	-31.36	peak		
	2	2310.000	37.67	-4.83	32.84	54.00	-21.16	AVG		
	3	2390.000	49.04	-4.31	44.73	74.00	-29.27	peak		
	4 *	2390.000	38.06	-4.31	33.75	54.00	-20.25	AVG		

Mode1 / Polarization: Vertical / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	48.29	-4.83	43.46	74.00	-30.54	peak
2		2310.000	37.75	-4.83	32.92	54.00	-21.08	AVG
3		2390.000	47.70	-4.31	43.39	74.00	-30.61	peak
4	*	2390.000	38.04	-4.31	33.73	54.00	-20.27	AVG

Report No.: MTi250113007-0202E1

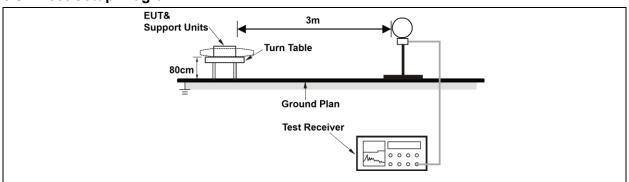
No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2483.500	48.42	-4.21	44.21	74.00	-29.79	peak
2 *	2483.500	38.97	-4.21	34.76	54.00	-19.24	AVG
3	2500.000	47.00	-4.10	42.90	74.00	-31.10	peak
4	2500.000	37.90	-4.10	33.80	54.00	-20.20	AVG

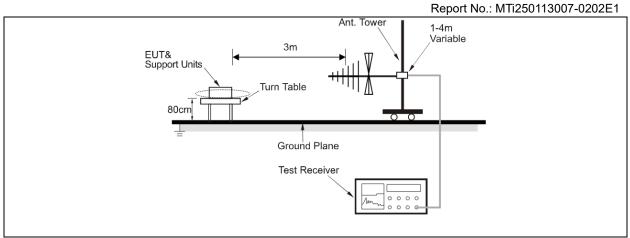
Mode1 / Polarization: Vertical / CH: H

MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB dB 1 2483.500 48.42 -4.21 44.21 74.00 -29.79	dBuV dB dBuV/m dBuV/m dB Deteo	or
1 2483.500 48.42 -4.21 44.21 74.00 -29.79		
	0 48.42 -4.21 44.21 74.00 -29.79 pea	k
2 * 2483.500 38.55 -4.21 34.34 54.00 -19.66	0 38.55 -4.21 34.34 54.00 -19.66 AV	3
3 2500.000 47.59 -4.10 43.49 74.00 -30.51	0 47.59 -4.10 43.49 74.00 -30.51 pea	k
4 2500.000 37.76 -4.10 33.66 54.00 -20.34	0 37.76 -4.10 33.66 54.00 -20.34 AV	3

6.8 Radiated emissions (below 1GHz)

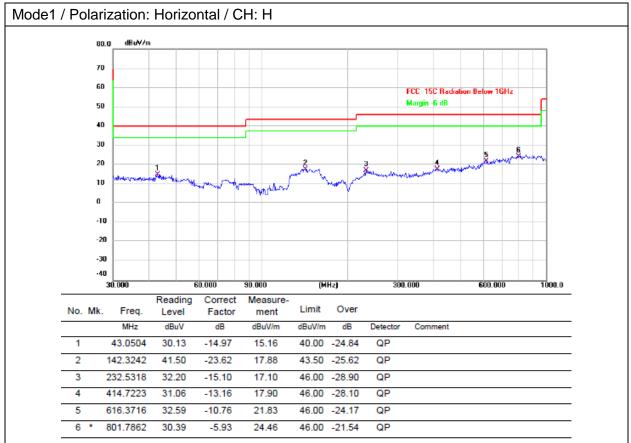
Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470- 806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.24 In the emission table above, the tighter limit applies at the band edge The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for th frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.6.4 17 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sec	tion 6.6.4						

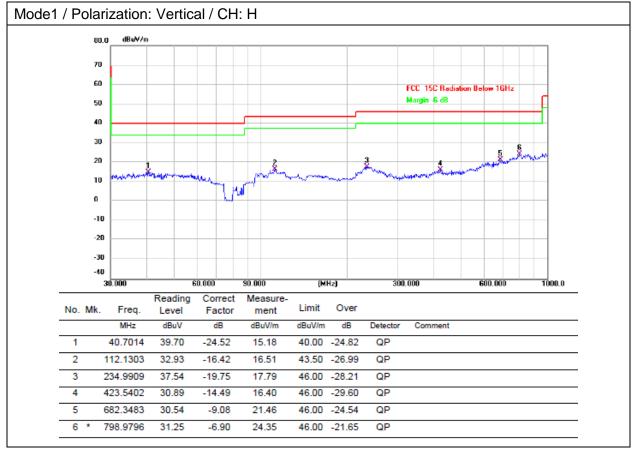

6.8.1 E.U.T. Operation:


Operating Envi	ronmei	nt:				
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1			
Final test mode	e:	Mod	e1			
Note:						
The amplitude	of spur	ious e	emissions wh	hich are atte	nuated more than 20 dB b	elow the limits

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

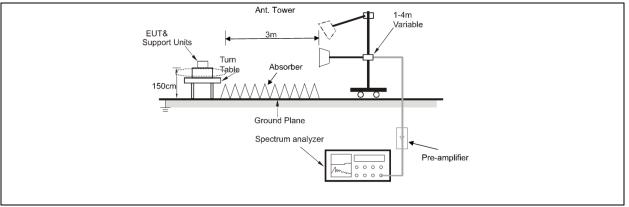

6.8.2 Test Setup Diagram:



Report No.: MTi250113007-0202E1

6.8.3 Test Data:

Report No.: MTi250113007-0202E1


6.9 Radiated emissions (above 1GHz)

Test Requirement:	defined in § 15.205(a),	nissions which fall in the rest must also comply with the ra 209(a)(see § 15.205(c)).`	-
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op the frequency bands 54 806 MHz. However, op permitted under other s In the emission table al The emission limits sho measurements employ frequency bands 9–90 Radiated emission limit	n paragraph (g), fundamenta erating under this section sh I-72 MHz, 76-88 MHz, 174-2 eration within these frequence ections of this part, e.g., §§ pove, the tighter limit applies own in the above table are bai ing a CISPR quasi-peak dete kHz, 110–490 kHz and abov is in these three bands are b ing an average detector.	all not be located in 216 MHz or 470- cy bands is 15.231 and 15.241. at the band edges. ased on ector except for the e 1000 MHz.
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.6.4 17 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	tion 6.6.4	

6.9.1 E.U.T. Operation:

Operating Envi	ironmeı	nt:				
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mod	e1			
Final test mode	e:	Mod	e1			
are attenuated	more t	han 2	0 dB below t	the limits are	amplitude of spurious emise not reported. d, and only the worst-case	

6.9.2 Test Setup Diagram:

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,China
Q/MTI-QP-12-FE038Ver./Rev.: A1Page 30 of 56

6.9.3 Test Data:

Report No.: MTi250113007-0202E1

de1 / P	olariza	atior	n: Horizon	tal / CH: L	-				
	No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4804.000	50.77	0.53	51.30	74.00	-22.70	peak
	2		4804.000	45.85	0.53	46.38	54.00	-7.62	AVG
	3		7206.000	46.44	7.90	54.34	74.00	-19.66	peak
	4	*	7206.000	41.45	7.90	49.35	54.00	-4.65	AVG
	5		9608.000	45.54	8.85	54.39	74.00	-19.61	peak
	6		9608.000	40.47	8.85	49.32	54.00	-4.68	AVG

Mode1 / Polarization: Vertical / CH: L

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4804.000	49.19	0.53	49.72	74.00	-24.28	peak
2	4804.000	44.74	0.53	45.27	54.00	-8.73	AVG
3	7206.000	46.63	7.90	54.53	74.00	-19.47	peak
4 *	7206.000	41.47	7.90	49.37	54.00	-4.63	AVG
5	9608.000	44.66	8.85	53.51	74.00	-20.49	peak
6	9608.000	39.42	8.85	48.27	54.00	-5.73	AVG

Report No.: MTi250113007-0202E1

Mode1 / P	olariz	atio	n: Horizor	ntal / CH:	Μ				
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4880.000	50.43	0.56	50.99	74.00	-23.01	peak
	2		4880.000	44.70	0.56	45.26	54.00	-8.74	AVG
	3		7320.000	47.96	7.54	55.50	74.00	-18.50	peak
	4	*	7320.000	40.69	7.54	48.23	54.00	-5.77	AVG
	5		9760.000	44.89	9.33	54.22	74.00	-19.78	peak
	6		9760.000	38.81	9.33	48.14	54.00	-5.86	AVG
	-								

Mode1 / Polarization: Vertical / CH: M

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4880.000	47.14	0.56	47.70	74.00	-26.30	peak
2	4880.000	41.63	0.56	42.19	54.00	-11.81	AVG
3	7320.000	46.92	7.54	54.46	74.00	-19.54	peak
4 *	7320.000	41.81	7.54	49.35	54.00	-4.65	AVG
5	9760.000	44.39	9.33	53.72	74.00	-20.28	peak
6	9760.000	38.93	9.33	48.26	54.00	-5.74	AVG

Report No.: MTi250113007-0202E1

Mode1 / Po	olariz	atio	n: Horizor	ntal / CH: I	Н				
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4960.000	50.94	0.66	51.60	74.00	-22.40	peak
	2		4960.000	44.66	0.66	45.32	54.00	-8.68	AVG
	3		7440.000	50.70	7.94	58.64	74.00	-15.36	peak
	4	*	7440.000	42.81	7.94	50.75	54.00	-3.25	AVG
	5		9920.000	44.84	9.69	54.53	74.00	-19.47	peak
	6		9920.000	39.93	9.69	49.62	54.00	-4.38	AVG

Mode1 / Polarization: Vertical / CH: H

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4960.000	46.74	0.66	47.40	74.00	-26.60	peak
2	4960.000	41.73	0.66	42.39	54.00	-11.61	AVG
3	7440.000	49.04	7.94	56.98	74.00	-17.02	peak
4 *	7440.000	42.23	7.94	50.17	54.00	-3.83	AVG
5	9920.000	44.68	9.69	54.37	74.00	-19.63	peak
6	9920.000	38.58	9.69	48.27	54.00	-5.73	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Report No.: MTi250113007-0202E1

Report No.: MTi250113007-0202E1

Photographs of the EUT

Refer to Appendix - EUT Photos

Report No.: MTi250113007-0202E1

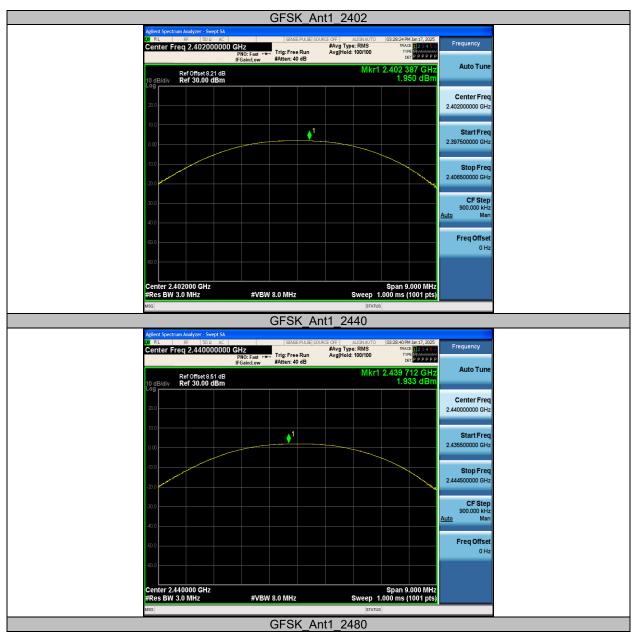
Appendix

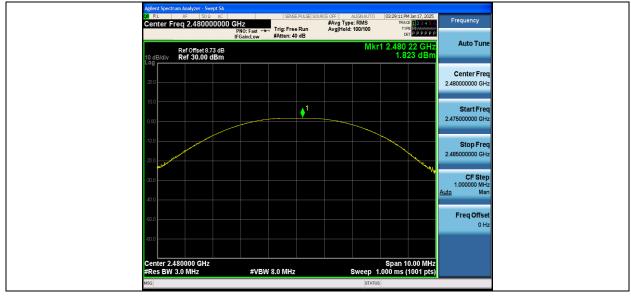
Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	1.878
GFSK	Ant1	2440	1.890
		2480	1.902

Test Graphs


Report No.: MTi250113007-0202E1

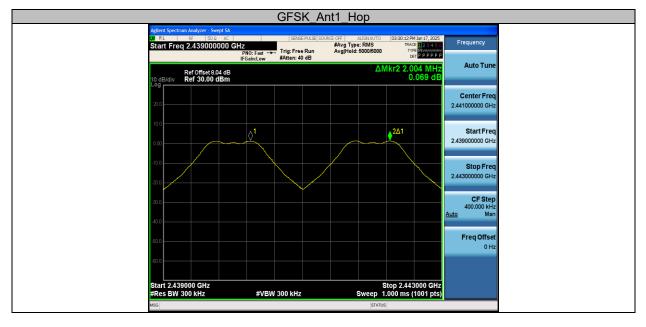

Appendix B: Maximum conducted output power

Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	1.95	≤21	PASS
GFSK	Ant1	2440	1.93	≤21	PASS
		2480	1.82	≤21	PASS

Test Graphs

Report No.: MTi250113007-0202E1


Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
GFSK	Ant1	Нор	2.004	≥1.252	PASS

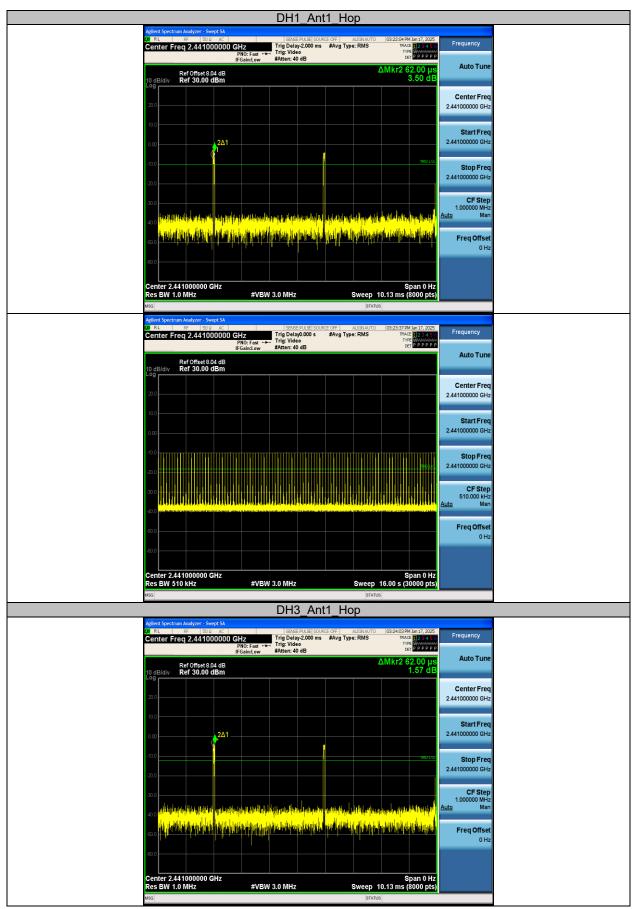
Report No.: MTi250113007-0202E1

Test Graphs

Appendix D: Time of occupancy

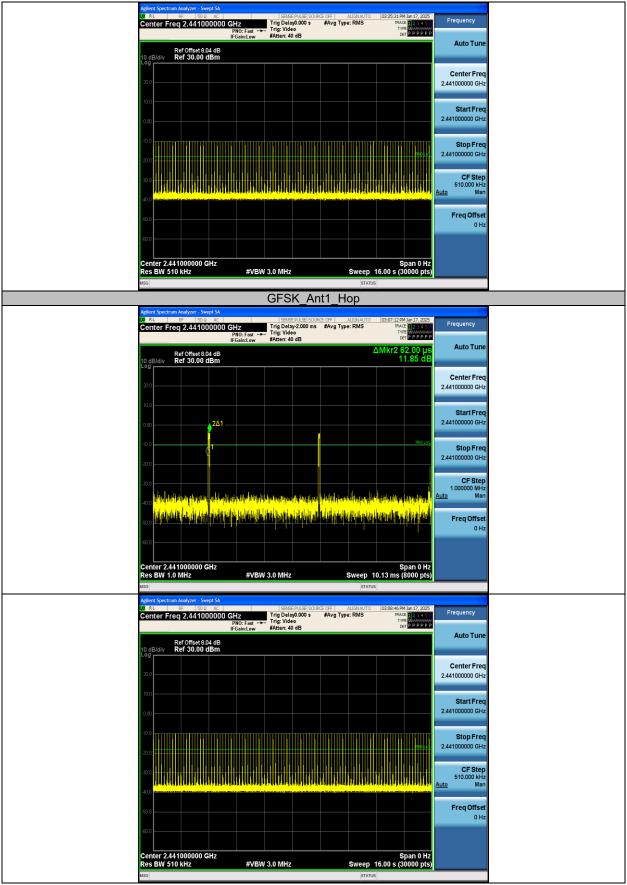
Test Result

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 16s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.062	100	0.006	≤0.4	PASS
DH3	Ant1	Нор	0.062	100	0.006	≤0.4	PASS
GFSK	Ant1	Нор	0.062	100	0.006	≤0.4	PASS


Notes:

1. Period time = 0.4s * 40 = 16s

2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 16s [Num]

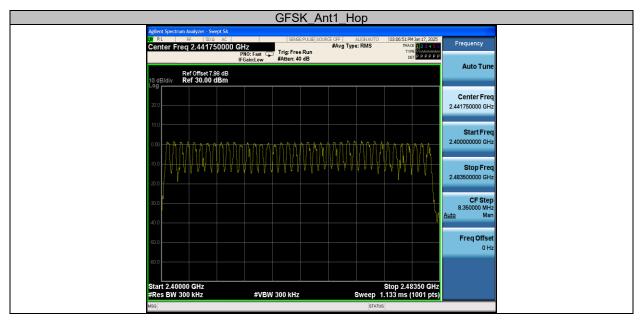

Report No.: MTi250113007-0202E1

Test Graphs

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Ver./Rev.: A1Page 46 of 56

Report No.: MTi250113007-0202E1

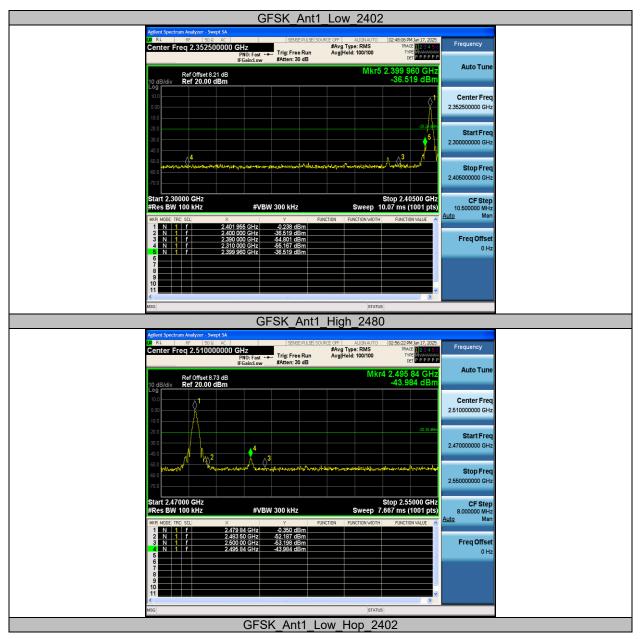
Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Q/MTI-QP-12-FE038Ver./Rev.: A1Page 47 of 56


Report No.: MTi250113007-0202E1

Appendix E: Number of hopping channels

Test Result

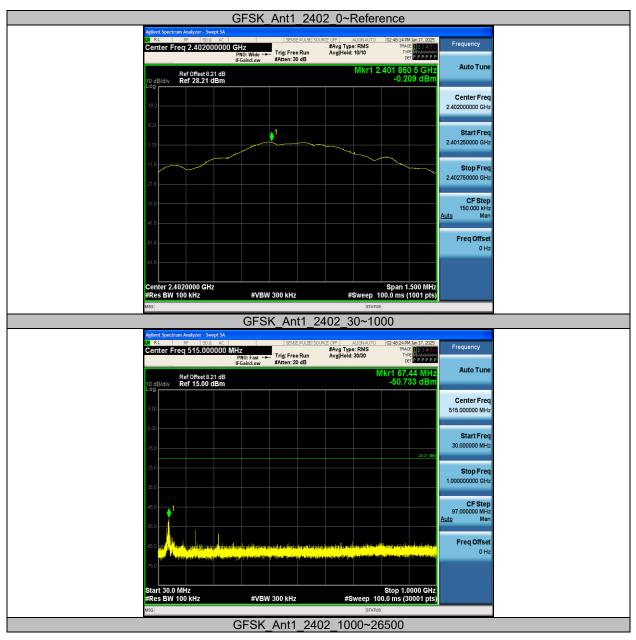
Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
GFSK	Ant1	Нор	40	≥15	PASS


Test Graphs

Report No.: MTi250113007-0202E1

Appendix F: Band edge measurements

Test Graphs



It It <th< th=""></th<>
Ref Offset 8.79 dB Mkr5 2.399 960 GHz -34.148 dBm Auto Tune 10 dBidly Ref 20.00 dBm -34.148 dBm Center Freq 2.352500000 GHz 000
Log Center Freq 100
100
300 4 3 5 5 2.30000000 GHz 400 4 4 4 4 4 2.3000000 GHz 2.3000000 GHz 500 5
40.0 4 4 4 4 5
COULD Could be an
Start 2.30000 GHz Stop 2.40500 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 10.07 ms (1001 pts) MR MODE The Solution 2.403740 GHz 1.439 GHz Function worth Function w
#Res BW 100 kHz #VBW 300 kHz Sweep 10.07 ms (1001 pts) MRR Mode TRC SQL X Y RUNCTION RUNCTION WOTH RUNCTION WOTH Auto Man 0 N 1 f 2.403 740 GHz 1.435 GBm Auto Man
0 N 1 f 2.403 740 GHz 1.435 dBm 2 N 1 f 2.400 000 GHz 34.148 dBm 5.4148 dBm 2 N 1 f 2.400 000 GHz 34.148 dBm 5.4148 dBm
3 N 1 f 2.390 000 GHz 45.962 dBm Freq Offset
3 N 1 f 2.390 000 GHz -45.962 dBm Freq Offset 4 N 1 f 2.390 000 GHz -52.380 dBm 0 Hz 5 N 1 f 2.399 960 GHz -34.148 dBm 0 Hz 6
NSG STATUS
GFSK_Ant1_High_Hop_2480
Agilent Spectrum Analyzer - Swept SA UR RF 50 g. AC SENSE PULSE SOURCE OFF ALIGN AUTO 03:27:56 PM Jan 17, 2025
Center Freq 2.510000000 GHz PNC: Fast CD IFGainLow FGainLow Fast CD Fast CD Fa
Ref Offset 8.32 dB Mkr4 2.483 60 GHz Auto Tune 10 dB/div Ref 20.00 dBm -42.099 dBm -42.099 dBm
100 A
2.51000000 GHz
600 Stop Freq
Start 2.47000 GHz Stop 2.55000 GHz
Start 2.47000 GHz Stop 2.55000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 7.667 ms (1001 pts)
Start 2.47000 GHz Stop 2.55000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 7.667 ms (1001 pts) We Mode Tec Sul X Y Environ worth Environ worth Environ worth
Start 2.47000 GHz Stop 2.55000 GHz CF Step 2.55000 GHz #Res BW 100 kHz #VEW 300 kHz Sweep 7.667 ms (1001 pts) B.000000 MHz Auto Man 1 N 1 f 2.471 76 GHz 0.281 dBm Function Function worth F
Start 2.4700 GHz ¥VBW 300 kHz Stop 2.55000 GHz CF Step 8.00000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 7.667 ms (1001 pts) Auto Man 1 N 1 f 2.47176 GHz O.281 dHm Function width Function width Auto Man 2 N 1 f 2.4591 dHm O.281 dHm Fine Constraints Freq Offset 0.42691 dHm O.42690 dHm O.42690 dHm Fine Constraints Freq Offset 0.42691 dHm O.42690 dHm O.42690 dHm Freq Offset 0.42691 dHm O.42690 dHm O.42690 dHm Fine Constraints Freq Offset 0.42690 dHm
Start 2.4700 GHz Stop 2.55000 GHz CF Step 3.55000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 7.667 ms (1001 pts) Auto Man 1 N 1 f 2.471 76 GHz 0.281 dBm Auto Man 2 N 1 f 2.473 76 GHz 0.281 dBm Freq Offset Auto Man 3 N 1 f 2.483 50 GHz -42.591 dBm Freq Offset 0 Hz 0 Hz 6 1 7 2.483 60 GHz -42.099 dBm 0 0 Hz

Report No.: MTi250113007-0202E1

Appendix G: Conducted Spurious Emission

Test Graphs

Report No.: MTi250113007-0202E1

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,ChinaQ/MTI-QP-12-FE038Page 53 of 56

Report No.: MTi250113007-0202E1

Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.comAddress: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,China
Ver./Rev.: A1Page 54 of 56

Agilent Spectrum Analyzer - Swept SA
00 RL BF 100 AC SHOPEPLIES DOUCE OF ALIZANDTO (0257:1474/bit).2025 Center Freq 13.750000000 GHz P00: Fait → Trig: Free Run Avg[Hold: 10/10 Free Frequency #Atten: 20 B
Ref Offset 8.73 dB Auto Tun 10 dB/div Ref 15.00 dBm -49.371 dBm
Log 5:00 (1) (2)
0550 0550 0550 0550 0550 0550 0550 055
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Start 1.00 GHz Stop 26.50 GHz CF Ste #Res BW 100 kHz #VBW 300 kHz Sweep 2.438 s (30001 pts) Auto Auto
MOR MODE TRC SLL X Y FUNCTION FUNCTION WOTH FUNCTION WOTH FUNCTION VALUE 1 N 1 f 25/173 15 GHz -1022 GHz
M9G STATUS

Report No.: MTi250113007-0202E1

Statement

- 1. This report is invalid without the seal and signature of the laboratory.
- 2. The test results of this report are only responsible for the samples submitted.Client shall be responsible for representativeness of the sample and authenticity of the material.
- 3. The report shall not be partially reproduced without the written consent of the Laboratory.
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization.
- 5. The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.
- 6. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

****** END OF REPORT ******