

TEST REPORT

Report No. CISRR25041617906

Project No. CISR250416179

FCC ID 2BFQI-X23PRO

Applicant Jiangxi Jichi Technology Co., Ltd.

Address PlantNo.3,BlockB13-1-2,B14-1,JinggangshanEconomicandDevelopment

Zone, Ji'an City, Jiangxi Province, China

Manufacturer Jiangxi Jichi Technology Co., Ltd.

Address PlantNo.3,BlockB13-1-2,B14-1,JinggangshanEconomicandDevelopment

Zone, Ji'an City, Jiangxi Province, China

Product Name MOUSE

Trade Mark N/A

Model/Type reference X23Pro

Listed Model(s) N/A

Standard Part 15 Subpart C Section 15.249

Test date April 17, 2025 to April 22, 2025

Issue date April 23, 2025

Test result Complied

Kory Awang

GenryLong

Prepared by: Rory Huang

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	
2. SUMMARY OF TEST RESULT	4
3. SUMMARY	5
3.1. Product Description	Į
3.2. Radio Specification Description	
3.3. Modification of EUT	
3.4. Testing Site	
3.5. Field Strength Calculation	
3.6. DISTURBANCE Calculation	
4. TEST CONFIGURATION	_
4. TEST CONFIGURATION	
4.1. Test frequency list	
4.2. Test mode	
4.3. Support unit used in test configuration and system	
4.4. Test sample information	
4.5. Testing environmental condition	
4.6. Statement of the measurement uncertainty	
4.7. Equipment Used during the Test	
5. TEST CONDITIONS AND RESULTS	1 0
5.1. Antenna Requirement	
5.2. AC Conducted Emission	
5.3. 20 dB Bandwidth	
5.4. Radiated Band edge Emission	
5.5. Radiated Spurious Emission (below 1GHz)	
5.6. Radiated Spurious Emission (Above 1GHz)	
6. TEST SETUP PHOTOS	3 4
7. EXTERNAL AND INTERNAL PHOTOS	3 4
7.1 External photos	3
7.2 Internal photos	

1. REPORT VERSION

Version No.	Issue date	Description
00	April 23, 2025	Original

Page: 3 of 34

2. SUMMARY OF TEST RESULT

Report clause	Test Item	Standard Requirement	Result
5.1	Antenna Requirement	15.203/15.247 (c)	PASS
5.2	AC Conducted Emission	15.207	PASS
5.3	20 dB Bandwidth	15.215 (c)	PASS
5.4	Radiated Band Edge Emission	15.205/15.209	PASS
5.5	Radiated Spurious Emission (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
5.6	Radiated Spurious Emission (Above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

Note:

Page: 4 of 34

The measurement uncertainty is not included in the test result.

3. **SUMMARY**

3.1. Product Description

Main unit information:			
Product Name:	MOUSE		
Trade Mark:	N/A		
Model No.:	X23Pro		
Listed Model(s):	N/A		
Model difference:	N/A		
Power supply:	N/A		
Hardware version:	N/A		
Software version:	N/A		
Accessory unit (AU) information:			
Battery:	DC 3.7V		

3.2. Radio Specification Description

Technology:	2.4G
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Antenna type:	PCB
Antenna gain:	2.94dBi

Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474

Page: 5 of 34

Report No.: CISRR25041617906

7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.	
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen, Guangdong, China	
FCC registration number	736346	

3.5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

3.6. DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

Page: 6 of 34

Report No.: CISRR25041617906

4. TEST CONFIGURATION

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

4.1. Test frequency list

Channel	Frequency (MHz)
CH-L	2402
CH-M	2440
CH-H	2480

4.2. Test mode

No	Test mode	Description
TM1	TX mode	Keep the EUT in continuously transmitting mode with GFSK modulation at lowest, middle and highest channel.
TM2	Link mode	Keep the EUT in Bluetooth linking mode with AE.
TM3	Charging mode	Keep the EUT in charging status

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1	PC	Lenovo	ThinkPad
2	Adapter	Guangdong Sangu Technology Co. Itd	SG-0501000AU

4.4. Test sample information

Туре	sample no.
Engineer sample	CISR250416179S01
Normal sample	CISR250416179S01


4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

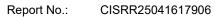
4.6. Statement of the measurement uncertainty

No. Test Items	Measurement Uncertainty
----------------	-------------------------

Page: 7 of 34

1	AC Conducted Emission	1.63dB
2	20dB Bandwidth	0.002%
2	Dedicted David Edwa Envisaion	3.76dB for 30MHz-1GHz
3	Radiated Band Edge Emission	3.80dB for above 1GHz
4	Dadiated Country Fusions	3.76dB for 30MHz-1GHz
4	Radiated Spurious Emission	3.80dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.


4.7. Equipment Used during the Test

AC Co	AC Conducted Emission						
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date	
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07	
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2025-01-08	2026-01-07	
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2025-01-08	2026-01-07	
4	Artificial power network	Schwarzbeck	ENV216	1	2025-01-08	2026-01-07	

20 dB	Bandwidth					
Item Equipment name Manufacturer Model Serial No. Calibration date Due da						
1	MXG RF Signal Generator	Agilent	N5181A	MY50145362	2025-01-08	2026-01-07
2	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
3	Vector Signal Generator	Agilent	N5182A	MY50142364	2025-01-08	2026-01-07

	ed Band Edge Emission ed Spurious Emission	on				
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2025-01-08	2026-01-07
2	Amplifier	Tonscend	TAP9K3G 40	AP23A806027 0	2025-01-08	2026-01-07
3	Prime amplifier	Tonscend	TAP0101 8050	AP23A806028 0	2025-01-08	2026-01-07
4	9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024-09-02	2027-09-01
5	Spectrum analyzer	Agilent	N9020A	MY50530263	2025-01-08	2026-01-07
6	Spectrum analyzer	R&S	FSV-40N	102130	2025-01-08	2026-01-07
7	Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023-01-09	2026-01-08

Page: 8 of 34

	1					
8	Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023-01-09	2026-01-08
9	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	1	2023-01-09	2026-01-08
10	RF Cable	Tonscend	Cable 1	1	2025-01-08	2026-01-07
11	RF Cable	Tonscend	Cable 2	1	2025-01-08	2026-01-07
12	RF Cable	SKET	Cable 3	1	2025-01-08	2026-01-07
13	L.I.S.N.#1	Schwarzbeck	NSLK812 7	1	2025-01-08	2026-01-07
14	L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	1	2025-01-08	2026-01-07
15	Horn Antenna	SCHWARZBECK	BBHA917 0	1130	2023-01-09	2026-01-08
16	Preamplifier	Tonscend	TAP1804 0048	AP21C806126	2025-01-08	2026-01-07
17	Variable-frequency power source	Pinhong	PH1110	1	2025-01-08	2026-01-07
18	6dB Attenuator	SKET	DC-6G	1	2025-01-08	2026-01-07
19	Antenna tower	SKT	Bk-4AT- BS	AT202104010 1-V1	2025-01-08	2026-01-07

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Standard Applicable

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the response-ble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

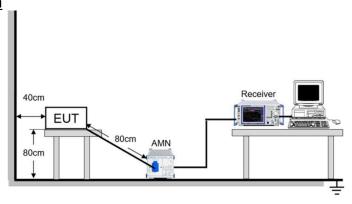
FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Description

The EUT antenna is PCB(2.94dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo.

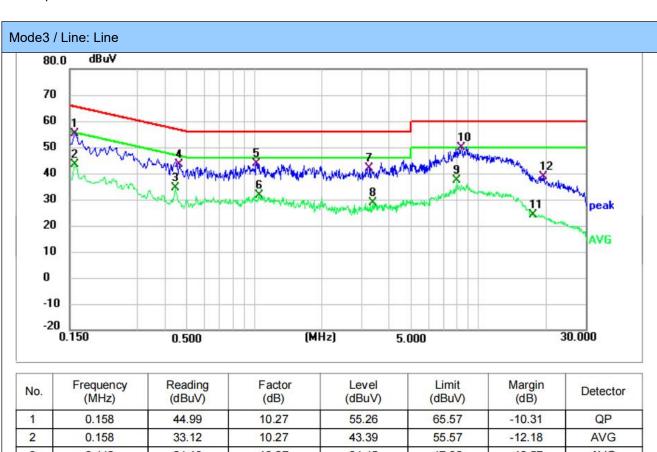
Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen Bangce Testing Technology Co., Ltd. does not assume any responsibility.


Page: 10 of 34

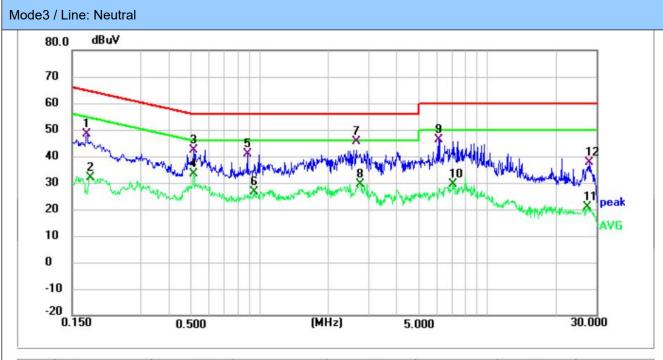
5.2. AC Conducted Emission

Test Requirem	ent: Se	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).			
		Frequency of emiss	ion (MHz) C	onducted limit (dBµV)	
		, ,	` '	, , ,	verage
-		0.15-0.5			6 to 46*
Test Limit:		0.5-5	5		
		5-30	6	-	
		Decreases with the I	1 -		
Test Method:	ANSI C63.10-2020 section 6.2				
Procedure:	2 al cri or 3. in cc 4. (F 5. (s sc 6. w 4. 7. tc 8.	1. The EUT was setup according to ANSI C63.10 requirements. 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs) 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 8. During the above scans, the emissions were maximized by cable manipulation.			
Operating Envi	ronment:				
Temperature :	22.5 °C	C Humidity:	56.7 %	Atmospheric Pressure:	103 kPa
Pre test mode:		TM1, TM2, TM3			
Final test mode	e :	TM1, TM2, TM3			

Test Setup Diagram


Test Result Pass

Test Data

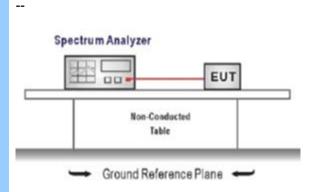

Note:

Have pre-scan all test mode, found TM3 mode which it was worst case, so only show the worst case's data on this report.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.158	44.99	10.27	55.26	65.57	-10.31	QP
2	0.158	33.12	10.27	43.39	55.57	-12.18	AVG
3	0.442	24.18	10.27	34.45	47.02	-12.57	AVG
4	0.462	33.08	10.28	43.36	56.66	-13.30	QP
5	1.022	33.40	10.39	43.79	56.00	-12.21	QP
6	1.050	21.13	10.39	31.52	46.00	-14.48	AVG
7	3.274	31.00	11.00	42.00	56.00	-14.00	QP
8	3.390	17.68	11.05	28.73	46.00	-17.27	AVG
9	7.998	24.41	12.92	37.33	50.00	-12.67	AVG
10 *	8.398	36.70	13.03	49.73	60.00	-10.27	QP
11	17.490	8.53	15.67	24.20	50.00	-25.80	AVG
12	19.326	23.48	15.39	38.87	60.00	-21.13	QP

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.174	37.91	10.32	48.23	64.77	-16.54	QP
2	0.181	21.63	10.32	31.95	54.44	-22.49	AVG
3	0.514	32.02	10.38	42.40	56.00	-13.60	QP
4	0.514	23.15	10.38	33.53	46.00	-12.47	AVG
5	0.882	30.36	10.41	40.77	56.00	-15.23	QP
6	0.950	16.23	10.42	26.65	46.00	-19.35	AVG
7 *	2.654	34.57	10.89	45.46	56.00	-10.54	QP
8	2.778	18.69	10.93	29.62	46.00	-16.38	AVG
9	6.150	33.73	12.36	46.09	60.00	-13.91	QP
10	7.090	16.81	12.80	29.61	50.00	-20.39	AVG
11	27.482	5.68	15.07	20.75	50.00	-29.25	AVG
12	27.974	22.49	15.02	37.51	60.00	-22.49	QP

Note:


- 1). Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)
- 2). Margin = Result Limit

5.3. 20 dB Bandwidth

Limit:

Test configuration:

Test procedure:

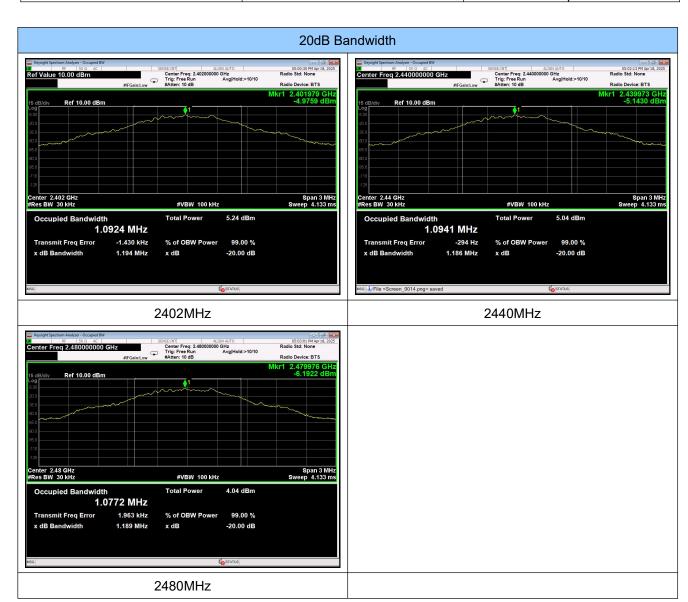
- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

Operating Envi	Operating Environment:									
Temperature:	22.2 °C		Humidity:	56.3 %	Atmospheric Pressure:	103 kPa				
Pre test mode:	TM	1								
Final test mode:			1							

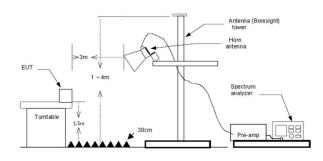
Test Setup Diagram


Test Result

Pass

Test Data

Test	Result of 20dB Bandwidth Measure	ment
Test Frequency(MHz)	20dB Bandwidth(MHz)	Limit(MHz)
2402	1.194	Non-Specified
2440	1.186	Non-Specified
2480	1.189	Non-Specified

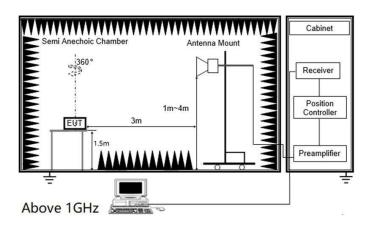

5.4. Radiated Band edge Emission

Limit:

FFCC CFR Title 47 Part 15 Subpart C Section 15.249 (d):

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Test configuration:


Test procedure:

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
 - d) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=Average, Trace=RMS for Average measurement

Operating Envi	Operating Environment:									
Temperature:	;	Humidity:	56.5 %	Atmospheric Pressure:	103 kPa					
Pre test mode:		TM1	I, TM2, TM3							
Final test mode	TM1	I, TM2, TM3								

Test Setup Diagram

Test Result

Pass

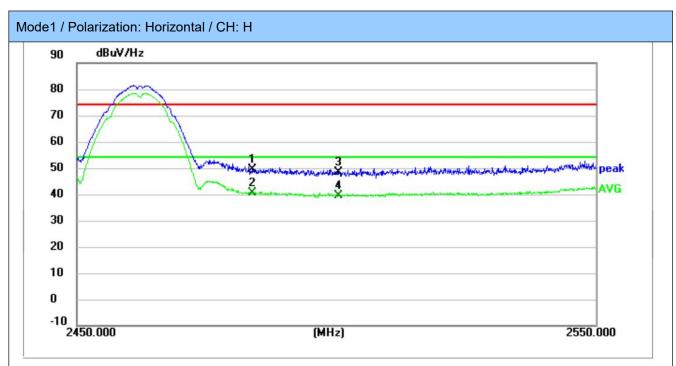


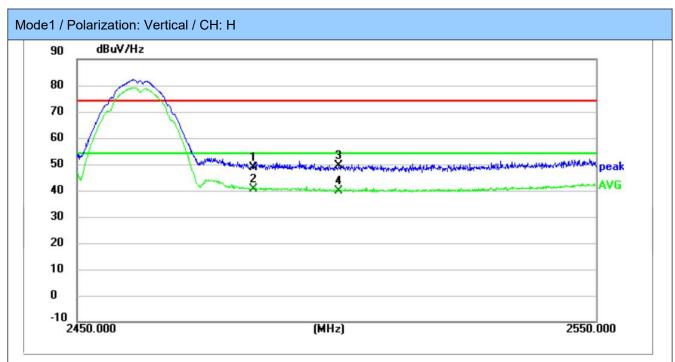
Test Data

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Average measurement was not performed if peak level is lower than average limit
- 4) Have pre-scan all test mode, found TM1 mode which it was worst case, so only show the worst case's data on this report.
- 5) The other emission levels were very low against the limit.

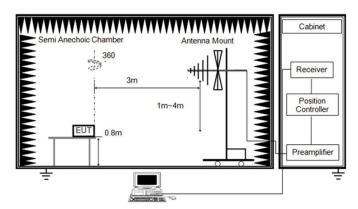
Have pre-scan all test mode, found TM1 mode which it was worst case, so only show the worst case's data on this report.


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2390.0000	47.71	2.34	50.05	74.00	23.95	peak
2	2390.0000	38.40	2.34	40.74	54.00	13.26	AVG
3	2400.0000	48.83	2.38	51.21	74.00	22.79	peak
4 *	2400.0000	41.22	2.38	43.60	54.00	10.40	AVG


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2390.0000	45.29	2.34	47.63	74.00	26.37	peak
2	2390.0000	37.06	2.34	39.40	54.00	14.60	AVG
3	2400.0000	50.30	2.38	52.68	74.00	21.32	peak
4 *	2400.0000	43.52	2.38	45.90	54.00	8.10	AVG

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2483.5000	46.72	2.66	49.38	74.00	24.62	peak
2 *	2483.5000	37.82	2.66	40.48	54.00	13.52	AVG
3	2500.0000	45.61	2.80	48.41	74.00	25.59	peak
4	2500.0000	36.52	2.80	39.32	54.00	14.68	AVG

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	2483.5000	46.07	2.66	48.73	74.00	25.27	peak
2 *	2483.5000	38.00	2.66	40.66	54.00	13.34	AVG
3	2500.0000	46.58	2.80	49.38	74.00	24.62	peak
4	2500.0000	37.20	2.80	40.00	54.00	14.00	AVG



5.5. Radiated Spurious Emission (below 1GHz)

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. [Test Method: ANSI C63.10-2020 section 6.6.4 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings a) Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Detertion the test mode: TM1, TM2, TM3	Test Requireme	nt: re	estricted bands, as o	defined in § 15.205(adiated emissions which a), must also comply wit			
0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30 30-88 100 ** 3 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands is permitted under other sections of this part, e.g., §\$ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands is permitted under other sections of this part, e.g., §\$ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020 section 6.6.4 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then turne the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum reading and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings a) Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than th				Field stren	gth Nameter) d	istance		
Test Limit: 0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30 30-88 100 ** 3 88-216 150 ** 3 216-960 200 ** 3 216-960 500 500 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §\$ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable leimit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. The EUT was set 2			n nng_n 49n	2400/F/kH		,		
Test Limit: 1.705-30.0 30 30 30 30 30 30 30-88 100 ** 3 216-960 200 ** 3 216-960 200 ** 3 30-84 216-960 200 ** 3 216-960 3 30-84 216-960 200 ** 200 ** 200								
Test Limit: 30-88				,	,			
Res-216								
Test Limit: 216-960 200 ** 3								
Above 960 500 3 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020 section 6.6.4 The EUT was setup and tested according to ANSI C63.10. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. Set to the maximum power setting and enable the EUT transmit continuously.								
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Fest Method: ANSI C63.10-2020 section 6.6.4 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings a) Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Poperating Environment: Temperature 22.2 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa		_						
radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Test Method: ANSI C63.10-2020 section 6.6.4 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degrees to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings a) Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Departing Environment: Temperature 22.2 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa	Test Limit:							
ANSI C63.10-2020 section 6.6.4 1. The EUT was setup and tested according to ANSI C63.10. 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings a) Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. **Determine Environment:** Pre test mode:		th 1: Ir T e: 1	15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands					
2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. 5. Set to the maximum power setting and enable the EUT transmit continuously. 6. Use the following spectrum analyzer settings a) Span shall wide enough to fully capture the emission being measured; b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Determine Temperature 22.2 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa Temperature 22.2 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa	Test Method:				an arerage actions.			
Temperature 22.2 °C Humidity: 56.5 % Atmospheric Pressure: 103 kPa Pre test mode: TM1, TM2, TM3	Procedure:	2 G d 3 th 4 tu d fc 5 6 a b T If th	The EUT is placed the position of the EUT was set to the EUT was set to the top of a variable later to the EUT was set to the Antenna town egrees) to find the portion the test in order to the EUT with the	on a turn table whichbove 1 GHz. The turn of the maximum end of the maximum end end end of the EUT measure the EUT measure of the EUT measure the peak emission legister.	ch is 0.8 meter above grant table is rotated 360 demission level. Exceiving antenna, which exercity and turntable (from 0 capperamp and a high particular to comply with the grant to comply with th	was mounted on rst case and then legree to 360 ss filter are used uidelines. hit continuously. easured; n=peak, s 3 dB lower than erwise, the		
Pre test mode: TM1, TM2, TM3	Operating Enviro	onment:						
	Temperature :	22.2 °(C Humidity:	56.5 %	Atmospheric Pressure:	103 kPa		
Final test mode: TM1, TM2, TM3	Pre test mode:		TM1, TM2, TM3	1				
	Final test mode:		TM1, TM2, TM3					

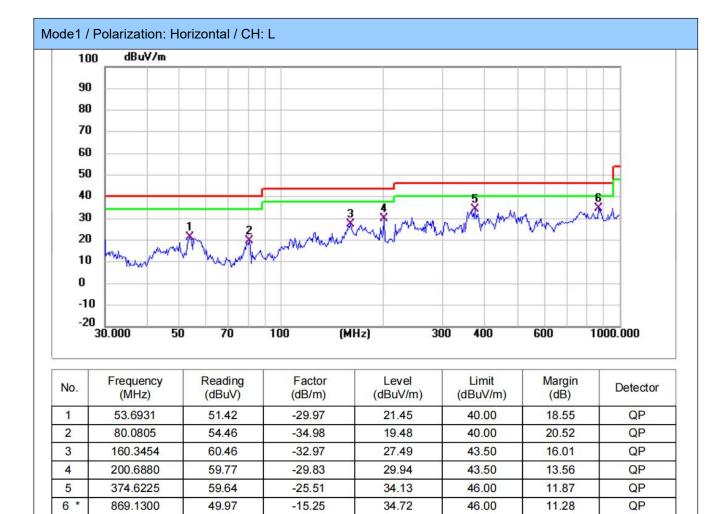
Test Setup Diagram

Below 1 GHz and above 30 MHz

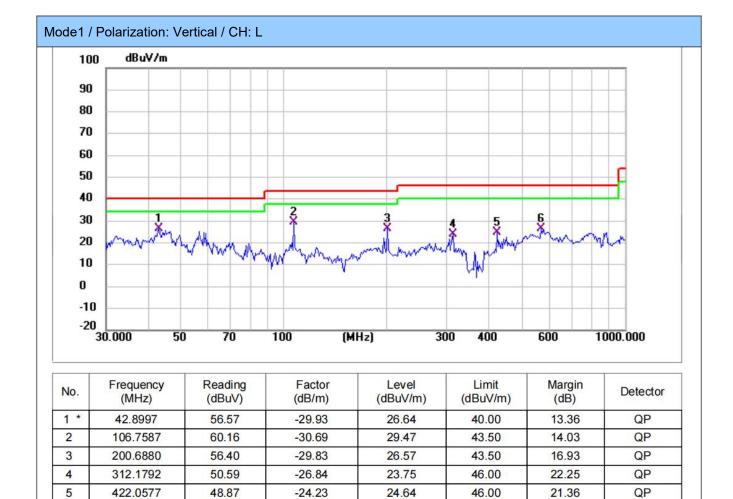
Test Result Pass

Test Data

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.
- 4) The other emission levels were very low against the limit.
- 5) This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

For 9 kHz ~ 30 MHz


The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

For 30 MHz ~ 1000 MHz

Have pre-scan all test mode, found TM1 mode CH00 which it was worst case, so only show the worst case's data on this report.

Note:

6

566.6221

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

26.68

46.00

19.32

QP

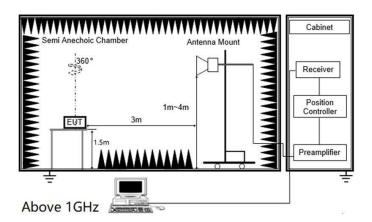
2) Level= Reading + Factor; Factor = Antenna Factor + Cable Loss- Preamp Factor

-20.15

46.83

3) Margin = Limit - Level

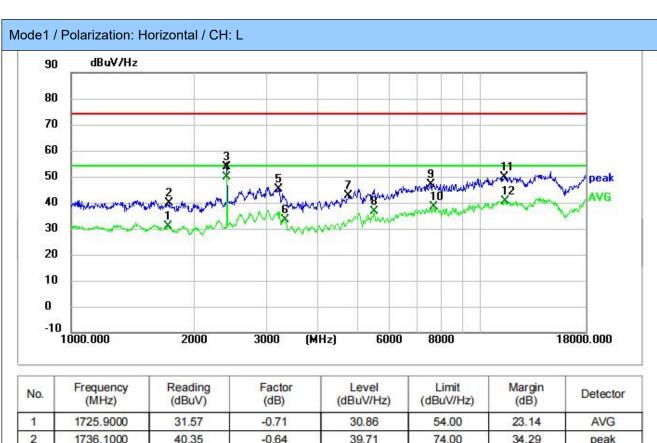
¹⁾ For 9 kHz ~ 30 MHz Measurement



5.6. Radiated Spurious Emission (Above 1GHz)

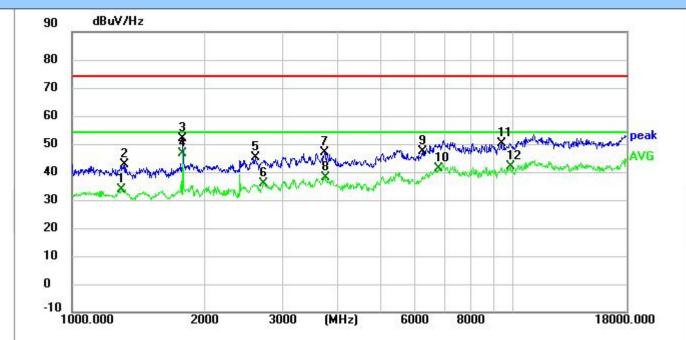
Test Requirement:	15.20		comply with the rad	l in the restricted bands diated emission limits sp	
		uency (MHz)	Field strer (microvolts	s/meter)	Measurement distance (meters)
	0.009	9-0.490	2400/F(kH		300
		0-1.705	24000/F(k		30
	1.70	5-30.0	30	,	30
	30-8	8	100 **		3
	88-216		150 **		3
	216-	960	200 **		3
Test Limit:	Abov	/e 960	500		3
	these 15.23 In the The e emplo 110–4	frequency band 1 and 15.241. emission table mission limits s bying a CISPR of 190 kHz and ab	ds is permitted undo above, the tighter I hown in the above quasi-peak detector ove 1000 MHz. Rad	or 470-806 MHz. However other sections of this imit applies at the band table are based on measurement of the frequence diated emission limits in an average detector.	part, e.g., §§ edges. surements by bands 9–90 kHz,
Test Method:		C63.10-2020 s		<u> </u>	
Procedure:	2. The GHz, detern 3. The the top 4. For tune the for the 5. Set 6. Use a) Spa b) Set Trace For av	e EUT is placed and 1.5 m for a mine the position is EUT was set 3 p of a variable if each suspecte he Antenna town es) to find the maximum is the following set in Shall wide er is RBW=1MHz, is emax hold for Forerage measures.	on a turn table which bove 1 GHz. The to nof the maximum of meters from the repetition of the maximum reading. As get better signal leading to fully captured to fully captured to get measurement.	eceiving antenna, whicher. IT was arranged to its wan) and turntable (from 0 A pre-amp and a high prevel to comply with the denable the EUT transsettings re the emission being man and a high preventions. GHz, Sweep time=auto, the correction factor meters.	degrees to was mounted on orst case and then degree to 360 ass filter are used guidelines. mit continuously. neasured; Detector=peak,
Operating Environmen	nt:				
Temperature 22	.2 °C	Humidity:	56.5 %	Atmospheric Pressure	e: 103 kPa
:				<u> </u>	
Pre test mode:		11, TM2, TM3		,	

Test Setup Diagram

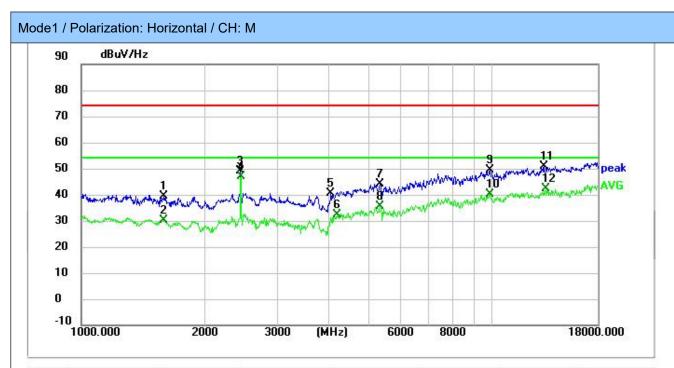

Test Result Pass

Test Data

For 1 GHz ~ 18 GHz

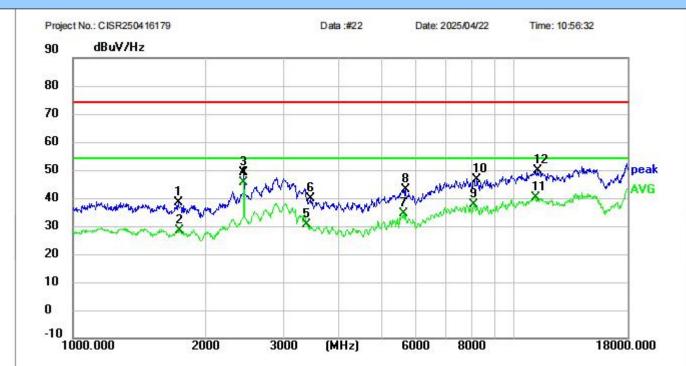

Have pre-scan all test mode, found TM1 mode which it was worst case, so only show the worst case's data on this report.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1725.9000	31.57	-0.71	30.86	54.00	23.14	AVG
2	1736.1000	40.35	-0.64	39.71	74.00	34.29	peak
3	2404.2000	51.27	2.38	53.65	74.00	20.35	peak
4 *	2404.2000	47.60	2.38	49.98	54.00	4.02	AVG
5	3215.1000	38.46	6.59	45.05	74.00	28.95	peak
6	3330.7000	26.81	6.43	33.24	54.00	20.76	AVG
7	4751.9000	32.66	10.00	42.66	74.00	31.34	peak
8	5501.6000	21.75	14.85	36.60	54.00	17.40	AVG
9	7556.9000	24.43	22.71	47.14	74.00	26.86	peak
10	7672.5000	15.66	22.67	38.33	54.00	15.67	AVG
11	11432.9000	21.69	28.28	49.97	74.00	24.03	peak
12	11448.2000	12.17	28.28	40.45	54.00	13.55	AVG

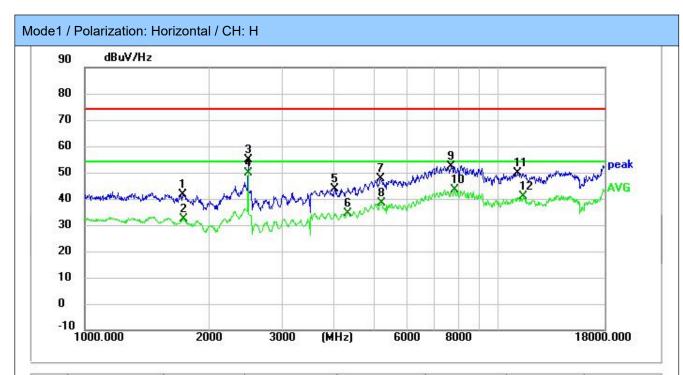

Mode1 / Polarization: Vertical / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1299.2000	35.50	-1.61	33.89	54.00	20.11	AVG
2	1316.2000	44.35	-1.62	42.73	74.00	31.27	peak
3	1785.4000	52.39	-0.27	52.12	74.00	21.88	peak
4 *	1785.4000	47.05	-0.27	46.78	54.00	7.22	AVG
5	2604.8000	41.05	4.06	45.11	74.00	28.89	peak
6	2717.0000	31.16	4.64	35.80	54.00	18.20	AVG
7	3735.3000	40.06	6.79	46.85	74.00	27.15	peak
8	3748.9000	31.17	6.80	37.97	54.00	16.03	AVG
9	6225.8000	30.59	16.67	47.26	74.00	26.74	peak
10	6774.9000	21.30	20.03	41.33	54.00	12.67	AVG
11	9399.7000	25.89	24.26	50.15	74.00	23.85	peak
12	9848.5000	16.63	25.17	41.80	54.00	12.20	AVG

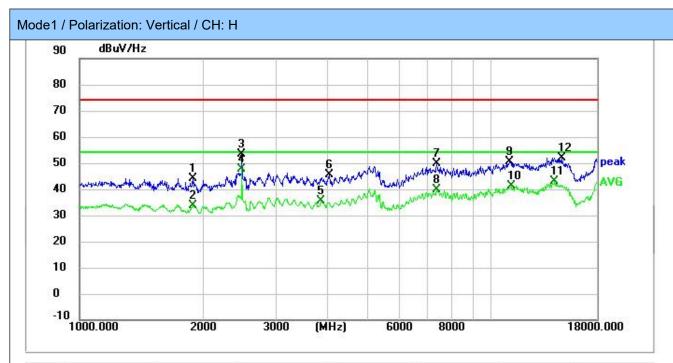
Test char	Test channel:2402MHz										
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	Level (dBuv)	Limit (dBuV/m)	Margin (dB)	Remark	Polarity	
2402.00	92.45	29.18	4.02	38.35	-5.15	87.30	114	26.70	Peak	Horizontal	
2402.00	80.15	29.18	4.02	38.35	-5.15	75.00	94	19.00	Average	Horizontal	
2402.00	81.54	29.18	4.02	38.35	-5.15	76.39	114	37.61	Peak	Vertical	
2402.00	67.06	29.18	4.02	38.35	-5.15	61.91	94	32.09	Average	Vertical	



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1591.6000	40.86	-1.25	39.61	74.00	34.39	peak
2	1591.6000	31.59	-1.25	30.34	54.00	23.66	AVG
3	2441.6000	46.74	2.39	49.13	74.00	24.87	peak
4 *	2443.3000	44.58	2.39	46.97	54.00	7.03	AVG
5	4041.3000	33.13	7.30	40.43	74.00	33.57	peak
6	4197.7000	24.55	7.90	32.45	54.00	21.55	AVG
7	5329.9000	30.36	13.65	44.01	74.00	29.99	peak
8	5338.4000	22.03	13.61	35.64	54.00	18.36	AVG
9	9843.4000	24.45	25.17	49.62	74.00	24.38	peak
10	9843.4000	15.03	25.17	40.20	54.00	13.80	AVG
11	13328.4000	62.35	-11.61	50.74	74.00	23.26	peak
12	13493.3000	53.81	-11.50	42.31	54.00	11.69	AVG


Mode1 / Polarization: Vertical / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1734.4000	39.11	-0.63	38.48	74.00	35.52	peak
2	1742.9000	29.03	-0.58	28.45	54.00	25.55	AVG
3	2441.6000	46.62	2.39	49.01	74.00	24.99	peak
4 *	2441.6000	43.19	2.39	45.58	54.00	8.42	AVG
5	3395.3000	24.10	6.46	30.56	54.00	23.44	AVG
6	3458.2000	33.53	6.24	39.77	74.00	34.23	peak
7	5613.8000	19.77	14.77	34.54	54.00	19.46	AVG
8	5675.0000	28.05	15.04	43.09	74.00	30.91	peak
9	8104.3000	14.93	22.77	37.70	54.00	16.30	AVG
10	8228.4000	23.79	22.74	46.53	74.00	27.47	peak
11	11142.2000	12.13	28.11	40.24	54.00	13.76	AVG
12	11271.4000	21.64	28.16	49.80	74.00	24.20	peak


Test channel:2440MHz											
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	Level (dBuv)	Limit (dBuV/m)	Margin (dB)	Remark	Polarity	
2440.00	90.73	29.23	4.02	38.2	-4.95	85.78	114	28.22	Peak	Horizontal	
2440.00	80.46	29.23	4.02	38.2	-4.95	75.51	94	18.49	Average	Horizontal	
2440.00	82.98	29.23	4.02	38.2	-4.95	78.03	114	35.97	Peak	Vertical	
2440.00	68.11	29.23	4.02	38.2	-4.95	63.16	94	30.84	Average	Vertical	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1727.7620	42.39	-0.69	41.70	74.00	32.30	peak
2	1732.7681	33.00	-0.65	32.35	54.00	21.65	AVG
3	2480.5621	52.04	2.64	54.68	74.00	19.32	peak
4 *	2480.5621	47.15	2.64	49.79	54.00	4.21	AVG
5	4021.5221	36.30	7.30	43.60	74.00	30.40	peak
6	4323.1836	26.46	8.03	34.49	54.00	19.51	AVG
7	5187.5825	34.31	13.25	47.56	74.00	26.44	peak
8	5202.6130	24.94	13.30	38.24	54.00	15.76	AVG
9	7688.7010	29.67	22.66	52.33	74.00	21.67	peak
10	7823.3388	21.35	22.22	43.57	54.00	10.43	AVG
11	11134.9606	21.78	28.09	49.87	74.00	24.13	peak
12	11461.8301	12.50	28.27	40.77	54.00	13.23	AVG

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV/Hz)	Limit (dBuV/Hz)	Margin (dB)	Detector
1	1892.5000	44.18	-0.06	44.12	74.00	29.88	peak
2	1892.5000	33.91	-0.06	33.85	54.00	20.15	AVG
3	2482.4000	50.61	2.66	53.27	74.00	20.73	peak
4 *	2482.4000	44.94	2.66	47.60	54.00	6.40	AVG
5	3861.1000	28.38	7.04	35.42	54.00	18.58	AVG
6	4032.8000	38.34	7.30	45.64	74.00	28.36	peak
7	7363.1000	27.68	22.13	49.81	74.00	24.19	peak
8	7386.9000	17.78	22.12	39.90	54.00	14.10	AVG
9	11070.8000	22.42	28.06	50.48	74.00	23.52	peak
10	11150.7000	13.30	28.12	41.42	54.00	12.58	AVG
11	14224.3000	53.49	-10.54	42.95	54.00	11.05	AVG
12	14805.7000	62.83	-10.69	52.14	74.00	21.86	peak

Test char	Test channel:2480MHz											
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
2480.00	94.57	29.2	4.02	38.3	-5.08	89.49	114	24.51	Peak	Horizontal		
2480.00	80.37	29.2	4.02	38.3	-5.08	75.29	94	18.71	Average	Horizontal		
2480.00	83.07	29.2	4.02	38.3	-5.08	77.99	114	36.01	Peak	Vertical		
2480.00	67.40	29.2	4.02	38.3	-5.08	62.32	94	31.68	Average	Vertical		

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Average measurement was not performed if peak level is lower than average limit (54dBuV/m) for above 1GHz.

6. TEST SETUP PHOTOS

Please refer to report for Test CISRR25041617905 of the EUT.

7. EXTERNAL AND INTERNAL PHOTOS

7.1 External photos

Please refer to report for Test CISRR25041617905 of the EUT.

7.2 Internal photos

Please refer to report for Test CISRR25041617905 of the EUT.

-----End of the report-----