

PARTIAL TEST REPORT

Test report no.: TELI2_011_23001_FCC15_255

Testing laboratory

cetecom advanced GmbH Im Teelbruch 45219 Essen / Germany Tel.: + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12047-01. IC Lab company No. / CAB ID: 3462D / DE0005

Applicant

Agnex Inc. 16460 E Annadale Ave, Sanger CA 93657, USA Phone: Fax: Contact: Benjamin Francis e-mail: bfrancis@agnex.io Phone: +1 559-270-7121

Manufacturer

Same as applicant

Test standard/s

47 CFR Part 15

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Subpart 15.255

For further applied test standards please refer to section 3 of this test report.

	Test Item	
Kind of test item:	tank sensor monitoring device	
Model name:	AGN3	AAGNEX
FCC ID:	2BBS4AGN3	
Frequency:	57 GHz – 64 GHz	
Antenna:	2 embedded folded Dipole Antennas dielectric Lens FZP	
Power supply:	3 V DC	الــــــــــــــــــــــــــــــــــــ
Temperature range:	-20 °C to +75 °C	AAGHEX

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Thomas Volger
Lab Manager
Radio Labs

Test performed:

Guangcheng Huang Lab Manager Radio Labs

1 Table of contents

1	Tabl	e of contents	2
2	Gene	eral information	.3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3 3 3
3	Test	standard/s and references	4
4	Repo	orting statements of conformity – decision rule	5
5	Test	environment	6
6	Test	item	6
	6.1 6.2	General description Additional information	6 6
7	Desc	cription of the test setup	.7
	7.1 7.3 7.4 7.5	Shielded semi anechoic chamber Radiated measurements, 18 GHz – 50 GHz Radiated measurements > 50 GHz Radiated measurements > 50 GHz	.8 11 11 12
8	Sequ	uence of testing	15
	8.1 8.2 8.3 8.4 8.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	15 16 17 18 19
9	Meas	surement uncertainty	20
10	Fa	r field consideration for measurements above 18 GHz	21
11	Su	mmary of measurement results	22
12	Ме	asurement results	23
	12.1 12.1. 12.2	Maximum E.I.R.P. / Transmitter Output Power 1 Radiated RF-detector and power measurement 2 Spurious emissions radiated	23 24 28
13	Glo	ossary	37
14	Do	cument history	38

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2023-07-07
Date of receipt of test item:	2023-07-11
Start of test:	2023-09-04
End of test:	2024-01-23
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
Guidance	Version	Description
		American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2020	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

3 Test standard/s and references

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests N/A N/A
Relative humidity content	:		55 %
Barometric pressure	:		1016 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.6 V DC by internal battery - -

6 Test item

6.1 General description

Kind of test item	:	Tank sensor monitoring device
Type identification	:	AGN3
S/N serial number	:	n.a.
hardware version	:	0.3
software version	:	1.0.9
firmware version	:	n.a.
Frequency band	:	57 GHz – 64 GHz
Type of modulation	:	Pulse Modulation
Number of channels	:	1
Antenna	:	2 embedded folded Dipole Antennas dielectric lens FZP
Power supply	:	3.6 V DC internal battery
Auxiliary equipment	:	Test laptop
Temperature range	:	-20 °C to +75 °C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

TELI2_011_23001_FCC15_255_A1

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 3 meter EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table.

ID	Description	Manufacturer	SerNo	Cal date	Cal interval	Cal due date
	120904 - FAC1 - Radiated Emissions					
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	2022- May-18	24/12M	2024-May-18
20549	Log. Per. Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	2021- Aug-18	36/21M	2024-Aug-18
20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	-	-	-
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	-	Pre-m	-

cetecom

advanced

ID	Description	Manufacturer	SerNo	Cal date	Cal interval	Cal due date
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600- 38-5P	Miteq Inc.	838697	2023- Aug-23	12M	2024-Aug-23
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-100M4G- 35-10P	Miteq Inc.	379418	2023- Aug-23	12M	2024-Aug-23
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	2023- May-25	24/12M	2025-May-25
20608	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH	830547/008	2023-Jul- 04	36/12M	2026-Jul-04

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

Equipment table:

ID	Description	Manufacturer	SerNo	Cal date	Cal interval	Cal due date
	120904 - FAC1 - Radiated Emissions					
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	2022- May-18	24/12M	2024-May-18
20549	Log. Per. Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	2021- Aug-18	36/21M	2024-Aug-18
20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	-	-	-
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	-	Pre-m	-
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600- 38-5P	Miteq Inc.	838697	2023- Aug-23	12M	2024-Aug-23
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-100M4G- 35-10P	Miteq Inc.	379418	2023- Aug-23	12M	2024-Aug-23
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	2023- May-25	24/12M	2025-May-25
20608	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH	830547/008	2023-Jul- 04	36/12M	2026-Jul-04

7.3 Radiated measurements, 18 GHz – 50 GHz

7.4 Radiated measurements > 50 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

<u>Example calculation:</u> OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μW)

Note: conversion loss of mixer is already included in analyzer value.

7.5 Radiated measurements > 50 GHz

Note: EUT is replaced by reference source for substitution measurement

Equipment table:

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Intervall	Next Check
	120907 - FAC2 - Radiated Emissions			chk			
					chk: 2023-Feb-21	chk:12M	chk: 2024-Feb-21
20005	AC - LISN 50 Ohm/50µH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH /	861741/005	cal	cal: 2023-May-25	cal: 12M	cal: 2024-May-25
		Memmingen					
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH / Gilching	9012-3629	cal	cal: 2023-May-22	cal: 36M	cal: 2026-May-22
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG /	155	сри			
		Schonau			chk: 2020-Apr-15	chk:12M	
20412	Fully Anechoic Chamber 2	ETS-Lindgren Gmbh / Taufkirchen	without	chk			
					chk: 2023-Apr-14	chk:6M	chk: 2023-Oct-14
20729	FS-Z140	Rohde & Schwarz Messgerätebau GmbH /	101004	cal	cal: 2023-Jun-16	cal: 36M	cal: 2026-Jun-16
		Memmingen					
20730	FS-Z110	Rohde & Schwarz Messgerätebau GmbH / Memmingen	101468	cal	cal: 2023-Jun-02	cal: 36M	cal: 2026-Jun-02
20731	FS-Z75	Rohde & Schwarz Messgerätebau GmbH /	101022	cal	cal: 2022-May-18	cal: 36M	cal: 2025-May-18
		wenningen					
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH / Memmingen	104023	cal	cal: 2023-May-25	cal: 12M	cal: 2024-May-25
20733	Harmonic Mixer FS-Z220	RPG-Radiometer Physics GmbH	101009	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-27
20734	Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH	101005	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-27
20765	Pickett-Potter Horn Antenna FH-PP 40-60	RPG-Radiometer Physics GmbH/	010001	cal	cal: 2020-Sep-15	cal: 36M	cal: 2023-Sep-15
		Meckennenn					
20767	Pickett-Potter Horn Antenna FH-PP 140- 220	RPG-Radiometer Physics GmbH / Meckenheim	010011	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L.	29F14182337	cal	cal: 2021-Oct-20	cal: 36M	cal: 2024-Oct-20
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
20813	Pickett-Potter Horn Antenna FH-PP 075	RPG-Radiometer Physics GmbH /	10006	cal	cal: 2020-Sep-09	cal: 36M	cal: 2023-Sep-09
		Meckenheim					
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
20815	Pickett-Potter Horn Antenna FH-PP 110	RPG-Radiometer Physics GmbH	10014	cal	cal: 2020-Sep-04	cal: 36M	cal: 2023-Sep-04
20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc. / Roseville	0001	chk			
						chk:36M	
20877	JS42-08001800-16-8P Verstärker	Mitea Inc.	2079991 / 2079992	chk			
20077	5512 00001000 10 01 Velsander	since inc.	20177711 2017772	ciik			
					chk: 2023-Feb-27	chk:6M	chk: 2023-Aug-27
20907	Waveguide WR-15 attenuator STA-30-15- M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
20908	Waveguide WR 10 attenuator STA-30-10- M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
00010	Design M. R. P. P. South 10 205	MI WAS APPENDENT. P. L. S.					
20910	riequency Multiplier 936VF-10/385	wii-wave, Millimeter Wave Products Inc.	142	cnn	cal: -	cal: -	cal: -

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Intervall	Next Check
					chk: -	chk:-	chk: -
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141	cnn	cal: -	cal: -	cal: -
					chk: -	chk:-	chk: -
20913	Phase Amplitude Stable Cable Assembly	RF-Lambda Europe GmbH	AC19040001	cnn	cal: -	cal: -	cal: -
	DC-40GHz						
					chk: -	chk:-	chk: -
25457	DRG Horn Antenna SAS-574	A.H. Systems, Inc. / Chatsworth	383	cal	cal: 2022-Mar-28	cal: 36M	cal: 2025-Mar-28
20757	Thermal Power Sensor NRP110T	Rohde & Schwarz Messgerätebau GmbH /	1424.6215K02-100984-	cal	cal: 2022-May-31	cal: 36M	cal: 2025-May-31
		Memmingen	nm				
-	V Full Band Low Noise Amplifier	Ducommun Inc.	1026151-01	cnn	cal: 2023-Mar-08	chk: 12M	chk: 2024-Mar-08

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor k, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

RF-Measurement	Reference	Frequency range	Calculated uncertainty based on a confidence level of 95%		na	Remarks			
Conducted emissions (U CISPR)	CISPR 16-2- 1	9 kHz - 150 kHz 150 kHz - 30	4.0 dl 3.6 dl	4.0 dB 3.6 dB				-	
Radiated emissions Enclosure	CISPR 16-2- 3	30 - 1 GHz 1 GHz - 18 GHz	4.2 dB 5.1 dB				E-Field		
Disturbance power	CISPR 16-2- 2	30 - 300	-						-
		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		-
conducted		12.75 GHz - 26.5 GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not
on RF-port		2.8 GHz - 12.75 GHz	1.48	N/A	1.51	N/A	1.43		applicable
		12.75 GHz – 18 GHz	1.81	N/A	1.83	N/A	1.77		
		18 GHz - 26.5 GHz	1.83	N/A	1.85	N/A	1.79		
Occupied bandwidth	-	For range 75-90	24.54	5 kHz		•			Frequency error
		GHZ	4.24 dB						Power
Frequency stability	-	For range 75-90 GHz	24.54	5 kHz					-
		150 kHz - 30 MHz	5.0 dl	В					Magnetic field
		30 MHz - 1 GHz	4.2 d	В					E-field
		1 GHz - 18 GHz	4.67	dB					Substitution
PE output power (airp)		18-33 GHz	4.790	IB					Method
KF-output power (eirp)		33-50 GHz	4.02 (dB					
Radiated emissions	-	40-60 GHz	4.55 (dB					
Enclosure		50-75 GHz	4.02 (dB					External
		75-90 GHz	4.24	dB					Mixer
		90-140 GHz	5.29	dB					J
		140-225 GHz	6.02	dB					
		225-325 GHz	6.67	dB					

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

$D_{ff} = 2 \times D^2 / \lambda$

with D_{ff} Far field distance

- D Antenna dimension
- λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
110-170	170	0.85	0.18	8.19
170-220	220	0.68	0.14	6.78

In band measurement (EIRP, OBW):

Antenna frequency range in GHz	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	far field distance in cm
50-75	64	1.85	0.47	14.6

11	Summary of measurement results

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	FCC 47 CFR Part 15	Passed	2024-01-25	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Results
§15.215(c)	Occupied bandwidth	Nominal	Nominal				\boxtimes	Note 2
§15.255(c)(3)	Maximum E.I.R.P.	Nominal	Nominal	\boxtimes				complies
§15.255(d)	Spurious Emissions	Nominal	Nominal	\square				complies
§15.255(f)	Frequency stability	Nominal	Nominal				\boxtimes	Note 3

Note 1: NA = Not Applicable; NP = Not Performed. Note 2: Test results are leveraged from test report 1-5794_23-01-03.pdf Note 3: Test results are leveraged from test report 1-5794_23-01-03.pdf. The test case is assessed against the host environment.

cetecom advanced

12 Measurement results

12.1 Maximum E.I.R.P. / Transmitter Output Power

Description:

Measurement of the maximum radiated e.i.r.p. of the wanted signal.

Limits:

FCC Part 15.255

The requirements of Part 15.255 (c) (3) for pulsed field disturbance sensors are as follows:

- Pulse duration not to exceed 6 ns
- Duty factor ≤ 10% within any 0.3 µs time window
- Averaged EIRP ≤ 13 dBm
- Peak EIRP ≤ 33 dBm
- Averaged integrated EIRP <= 5 dBm in any 0.3 µs time window within 61.5 and 64 GHz

Measurement:

Measurement parameter				
Detector:	Pos-Peak (RF-Detector)			
Video bandwidth:	10 MHz			
Trace-Mode:	Max Hold			

Measurement results:

	with Lens	limit
Average E.I.R.P. 10 MHz VBW	3.85 dBm	13 dBm
Peak E.I.R.P. 10 MHz VBW	17.72 dBm	33 dBm
Maximum Pulse duration	2.48 ns *	6 ns
Duty factor within 0.3µs time window	4.1% *	10%
Averaged integrated E.I.R.P. within 61.5 – 64 GHz within 0.3µs	-9.79 dBm **	5 dBm

*) refer module test report No. 1-5794_23-01-03.pdf

**) no emission detected (noise floor)

<u>Result:</u> The measurement is passed.

12.1.1 Radiated RF-detector and power measurement

Measuring the radiated power level of the EUT applying the RF detector

Replacement of EUT by reference source:

Oscilloscope shows emission of the EUT (peak value of 42.18 mV)

Substitution (peak value of 42.24

cetecom advanced

Determination of the conducted power of the reference source

Antenna gain of the TX antenna AG_{TX} , which is attached to the signal generator: 22.46 dBi, Free space loss FSL1 of a signal at 60.5 GHz at a distance of 150 cm: 71.61 dB, Free space loss FSL2 of a signal at 60.5 GHz at a distance of 150 cm: 71.61 dB, Thus, the equivalent radiated power of the EUT calculates:

Peak EIRP_{EUT} = $P_{sensor} + AG_{TX} - FSL2 + FSL1$ = -4.74 dBm + 22.46 dB - 71.61 dB + 71.61 dB = **17.72 dBm**

Average EIRP_{EUT} = Peak EIRP_{EUT} * duty cycle factor (4.1%) = **3.85 dBm**

Pre-scan: Channel power within 61.5 to 64 GHz (the emission peaks are ghost signal because Signal ID USB and LSB don't overlap)

Channel power within 61.5 to 64 GHz (noise floor)

12.2 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in transmit mode.

Limits:

FCC Part 15.255

cetecom advanced

- (c) Limits on spurious emissions:
- (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.
- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm² (-10 dBm) at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

FCC				
CFR Part 15.209(a)				
Radiated Spurious Emissions				
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
0.009 – 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		
Above 960	54.0	3		

Limit conversion (ANSI C63.10-2013 9.6):

 $EIRP[dBm] = 10 \times \log(4 \times \pi \times d^2 \times PD[W/m^2])$

- PD [W/m²] Power density at the distance specified by the limit
- EIRP [dBm] Equivalent isotropically radiated power
- d [m] Distance at which the power density limit is specified

According to this formula, an emission limit of PD = 90 pW/cm² at a distance of d = 3 m corresponds to an equivalent isotropically radiated power of EIRP = -10 dBm.

Limit conversion (ANSI C63.10-2013 9.5):

 $\mathsf{EIRP}[\mathsf{dBm}] = E_{\mathsf{Meas}} + 20\log(d_{\mathsf{Meas}}) - 104.7$

- E_{Meas} The field strength of the emission at the measurement distance, in dBµV/m
- *d*_{Meas} The measurement distance

According to this formula, the emission limit of the field strength 54 dB μ V/m at 3 m measurement distance is equivalent to an EIRP of 41.2 dBm average and 21.2 dBm peak.

Measurement:

Measurement parameter				
Detector:	Quasi Peak / Pos-Peak / RMS			
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz			
Video bandwidth:	F < 1 GHz: 300 kHz F > 1 GHz: 3 MHz			
Trace-Mode:	Max Hold			

Measurement results:

Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]			
0.181	QPK	0.12	38.97	43.50	4.53			
2.484 RMS		1	53.61	54.00	1.39			
-								
Please refer to the following plots for more information on the level of spurious emissions								

<u>Result:</u> The measurement is passed.

Plot 1: 9 kHz – 30 MHz, horizontal / vertical polarization

Plot 2: 30 MHz - 1 GHz, horizontal / vertical polarization

Final_Result

Frequency (MHz)	QuasiP eak (dBµV/ m)	Limit (dBµV/ m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Sig Path (dB)	Preamp (dB)	Trd Corr. (dB/m)	Raw Rec (dBµV)
181.110000	38.97	43.50	4.53	120.000	105.0	V	341.0	10.6	0.0	1.2	9.3	28.4
282.310000	32.52	46.00	13.48	120.000	112.0	V	257.0	14.4	0.0	1.6	12.8	18.1
926.990000	36.99	46.00	9.01	120.000	120.0	н	34.0	27.0	0.0	3.4	23.6	10.0

Plot 3: 1 GHz - 15 GHz, horizontal / vertical polarization

Final_Result

Frequency	RMS	Limit	Margin	Meas.	Height	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBµV/m)	(dBµ	(dB)	Time	(cm)		(deg)	(deg)	(dB/m)
		V/m)		(ms)					
2804.273333		74.00	17.80	100.0	155.0	V	150.0	90.0	34.7
2804.273333	45.43	54.00	8.57	100.0	155.0	V	150.0	90.0	34.7
2886.390000		74.00	17.40	100.0	155.0	V	144.0	90.0	34.9
2886.390000	45.81	54.00	8.19	100.0	155.0	V	144.0	90.0	34.9

(continuation of the "Final_Result" table from column 17 ...)

Frequency (MHz)	Sig Path (dB)	Preamp (dB)	Trd Corr. (dB/m)	Raw Rec (dBµV)	Comment
2804.273333	5.4	0.0	29.3	21.5	20:45:45 - 12.01.2024
2804.273333	5.4	0.0	29.3	10.7	20:45:45 - 12.01.2024
2886.390000	5.4	0.0	29.5	21.7	20:44:38 - 12.01.2024
2886.390000	5.4	0.0	29.5	10.9	20:44:39 - 12.01.2024

Full Spectrum

Plot 5: 18 GHz – 40 GHz, horizontal / vertical polarization

01:55:48 PM 10/15/2023

Plot 6: 40 GHz – 50 GHz, antenna vertical / horizontal

02:41:01 PM 10/15/2023

Plot 7: Out of Band 50 GHz - 75 GHz, antenna vertical / horizontal, final scan with RMS detector

04:14:21 PM 10/04/2023

Plot 8: 75 GHz - 110 GHz, antenna vertical / horizontal

Plot 9: 110 GHz – 140 GHz, antenna vertical / horizontal

Plot 10: 140 GHz – 220 GHz, antenna vertical / horizontal

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

14 Document history

Version	Applied changes	Date of release	
-/-	Initial release	2024-01-25	