Calibration information for Dipole CCIS Certificate No: Z20-60195 Client # CALIBRATION CERTIFICATE E-mail: ettl@chinattl.com Object D750V3 - SN: 1118 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 28, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|--| | 106277 | 04-Sep-19 (CTTL, No.J19X07825) | Sep-20 | | 104291 | 04-Sep-19 (CTTL, No.J19X07825) | Sep-20 | | SN 7514 | 27-Sep-19(CTTL-SPEAG,No.Z19-60306) | Sep-20 | | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | 106277
104291
SN 7514
SN 1555
ID #
MY49071430 | 106277 04-Sep-19 (CTTL, No.J19X07825) 104291 04-Sep-19 (CTTL, No.J19X07825) SN 7514 27-Sep-19(CTTL-SPEAG,No.Z19-60306) SN 1555 22-Aug-19(CTTL-SPEAG,No.Z19-60295) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 25-Feb-20 (CTTL, No.J20X00516) | | lle en | | Name | Function | Signature | |--------|------------|-------------|--------------------|-----------| | Cali | brated by: | Zhao Jing | SAR Test Engineer | 表彰 | | Rev | riewed by: | Lin Hao | SAR Test Engineer | 前光 | | App | roved by: | Qi Dianyuan | SAR Project Leader | 20 | | | | | | | Issued: May 30, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60195 Page 1 of 8 Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60195 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | 6.71152 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.37 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.53 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | V | **** | #### SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.61 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.67 W/kg ±18.7 % (k=2) | Certificate No: Z20-60195 Page 3 of 8 Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com Add: No.51 Xueyuan Rond, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.4Ω- 4.05jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.8dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.0Ω- 6.05jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.2dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.900 ns | |----------------------------------|----------| | | - 11 C | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | SPEAG | | |-------|-------| | | SPEAG | Certificate No: Z20-60195 Page 4 of 8 Date: 05.27.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1118 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.872$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(9.7, 9.7, 9.7) @ 750 MHz; Calibrated: 2019-09-27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe
tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.61 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.21 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.37 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 64.7% Maximum value of SAR (measured) = 2.80 W/kg 0 dB = 2.80 W/kg = 4.47 dBW/kg Page 5 of 8 Add: No.51 Xueyuan Rond, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Page 6 of 8 Date: 05.28.2020 Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1118 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.938$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(9.87, 9.87, 9.87) @ 750 MHz; Calibrated: 2019-09-27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.55 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.4 W/kg Smallest distance from peaks to all points 3 dB below = 19.2 mm Ratio of SAR at M2 to SAR at M1 = 64.7% Maximum value of SAR (measured) = 2.87 W/kg 0 dB = 2.87 W/kg = 4.58 dBW/kg Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Page 8 of 8 # **Dipole Impedance and Return Loss calibration Report** D750V3 - SN: 1118 Object: **Calibration Date:** June 1, 2021 IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference: Janet Wei (Janet Wei, SAR project engineer) Winner Thank Tark in Calibrated By: **Reviewed By:** (Winner Zhang, Technical manager) #### **Environment of Test Site** | Temperature: | 21 ~ 23°C | |-----------------------|-----------| | Humidity: | 50~60% RH | | Atmospheric Pressure: | 1011 mbar | #### **Test Data** #### Measurement Plot for Head TSL In 2021 # **Comparison with Original report** | Items | Calibrated By
CTTL | Calibrated By JYT
In 2021 | Deviation | Limit | |--------------------------|-----------------------|------------------------------|----------------|--------------------------| | Impendence for Head TSL | 54.4Ω –4.05jΩ | 53.02Ω –3.64jΩ | -1.38Ω +0.41jΩ | ±5Ω | | Return Loss for Head TSL | -24.8 | -26.26 | 5.89% | ±20%(No less than 20 dB) | # Result Compliance In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client CCIS Certificate No: Z19-60175 # CALIBRATION CERTIFICATE Object D835V2 - SN: 4d154 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 11, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Name | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | Calibrated by: | Zhao Jing | SAR Test Engineer | 22 | |----------------|-------------|--------------------|-------| | Reviewed by: | Lin Hao | SAR Test Engineer | AF AR | | Approved by: | Qi Dianyuan | SAR Project Leader | Secr | Function Issued: June 14, 2019 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60175 Calibrated by Page 1 of 8 In Collaboration with S D e a g Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz # **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60175 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1504 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | **** | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.49 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.33 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | |
---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.57 W /kg ± 18.8 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.31 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60175 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.com # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.9Ω- 3.09jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.0dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.3Ω- 4.87jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.9dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.277 ns | |----------------------------------|----------| | Electrical Delay (one direction) | 1.277 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: Z19-60175 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn # DASY5 Validation Report for Head TSL Date: 06.11.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.886$ S/m; $\epsilon_r = 41.12$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.27 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.09 W/kg 0 dB = 3.09 W/kg = 4.90 dBW/kg Certificate No: Z19-60175 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Certificate No: Z19-60175 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # DASY5 Validation Report for Body TSL Date: 06.11.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.973$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.93 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.23 W/kg 0 dB = 3.23 W/kg = 5.09 dBW/kg Certificate No: Z19-60175 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Certificate No: Z19-60175 Page 8 of 8 # **Dipole Impedance and Return Loss calibration Report** D835V2 - SN: 4d154 Object: **Calibration Date:** June 11, 2021 IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference: Janet Wei (Janet Wei, SAR project engineer) Winner Thank Tachnical Transmission of the Communication Commu Calibrated By: **Reviewed By:** (Winner Zhang, Technical manager) #### **Environment of Test Site** | Temperature: | 21 ~ 23°C | |-----------------------|-----------| | Humidity: | 50~60% RH | | Atmospheric Pressure: | 1011 mbar | #### **Test Data** ### Measurement Plot for Head TSL In 2021 # **Comparison with Original report** | Items | Calibrated By
CTTL | Calibrated By JYT
In 2021 | Deviation | Limit | |-------------------------|-----------------------|------------------------------|---------------|-------------------------| | pendence for Head TSL | 51.9Ω –3.09jΩ | 55.57Ω –3.48jΩ | 3.67Ω –0.39jΩ | ±5Ω | | eturn Loss for Head TSL | -29.0 | -28.51 | -1.69% | ±20%(No less than 20 dl | # Result Compliance Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client JYT (Auden) Certificate No: D1750V2-1177_Feb21 # CALIBRATION CERTIFICATE Object D1750V2 - SN:1177 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 10, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|---------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | S. Land | | Approved by: | Katja Pokovic | Technical Manager | acas. | | | | | Issued: February 11, 2021 | Certificate No: D1750V2-1177_Feb21 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear
(frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1177_Feb21 Page 2 of 6 Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | News | **** | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.00 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.73 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.0 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1177_Feb21 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.5 Ω - 1.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 37.5 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.218 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | The state of s | | |--|-------| | Manufactured by | SPEAG | Certificate No: D1750V2-1177_Feb21 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 10.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1177 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.3 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9 W/kg; SAR(10 g) = 4.73 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.2% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg Certificate No: D1750V2-1177_Feb21 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1177_Feb21 Page 6 of 6 In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client CCIS Certificate No: Z19-60176 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d175 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 11, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | 1 | | | | | Name | Function | Signature | |----------------|-------------|--------------------|--------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 红 | | Reviewed by: | Lin Hao | SAR Test Engineer | W % | | Approved by: | Oi Dianyuan | SAR Project Leader | and the same | Issued: June
14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60176 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60176 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1504 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | **** | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.50 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | **** | SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60176 Page 3 of 8 Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7Ω+ 5.93jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.8Ω+ 5.24jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.7dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.064 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z19-60176 Page 4 of 8 Date: 06.10.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.387$ S/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.94 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z19-60176 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Certificate No: Z19-60176 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn ### DASY5 Validation Report for Body TSL Date: 06.11.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.499 S/m; ε_r = 52.18; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.67 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.23 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z19-60176 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Certificate No: Z19-60176 Page 8 of 8 #
Dipole Impedance and Return Loss calibration Report D1900V2 - SN: 5d175 Object: **Calibration Date:** June 11, 2021 IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference: Janet Wei (Janet Wei, SAR project engineer) Winner Thank Tachnical Transmission of the Communication Commu Calibrated By: **Reviewed By:** (Winner Zhang, Technical manager) #### **Environment of Test Site** | Temperature: | 18 ~ 25°C | |-----------------------|-----------| | Humidity: | 50~60% RH | | Atmospheric Pressure: | 1011 mbar | #### **Test Data** # Measurement Plot for Head TSL In 2021 # **Comparison with Original report** | Items | Calibrated By
CTTL | Calibrated By
JYT In 2021 | Deviation | Limit | |-----------------------------|-----------------------|------------------------------|------------------|--------------------------| | Impendence for Head
TSL | 51.7Ω+5.93 jΩ | 53.21Ω+5.10 jΩ | 1.51Ω-
0.83jΩ | ±5Ω | | Return Loss for Head
TSL | -24.3dB | -22.91dB | -5.72% | ±20%(No less than 20 dB) | # Result Compliance In Collaboration with http://www.chinattl.cn Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Certificate No: Z19-60177 # CALIBRATION CERTIFICATE CCIS Object D2450V2 - SN: 910 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 10, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | Sections Across | Name | Function | Signature | |-----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是礼 | | Reviewed by: | Lin Hao | SAR Test Engineer | # 16 | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | Issued: June 14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60177 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60177 Page 2 of 8 In Collaboration with # S P e a g Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | Temperature | Permittivity | Conductivity | |-----------------|----------------------------|--| | 22.0 °C | 39.2 | 1.80 mho/m | | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.83 mho/m ± 6 % | | <1.0 °C | **** | | | | 22.0 °C
(22.0 ± 0.2) °C | 22.0 °C 39.2
(22.0 ± 0.2) °C 39.8 ± 6 % | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | 2.02 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.9 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.94 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60177 Page 3 of 8 Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.1Ω+ 2.51 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.8dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.3Ω+ 3.40 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27.9dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.020 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | SPEAG | |-------| | | Certificate No: Z19-60177 Page 4 of 8 Date: 06,10,2019 Add:
No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.825$ S/m; $\varepsilon_t = 39.75$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.66 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 22.3 W/kg $\theta dB = 22.3 W/kg = 13.48 dBW/kg$ Certificate No: Z19-60177 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL Certificate No: Z19-60177 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn ### DASY5 Validation Report for Body TSL Date: 06.10.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.962$ S/m; $\epsilon_r = 52.06$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.63 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.94 W/kg Maximum value of SAR (measured) = 21.3 W/kg 0 dB = 21.3 W/kg = 13.28 dBW/kg Certificate No: Z19-60177 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail; cttl@chinattl.com http://www.chinattl.cn ### Impedance Measurement Plot for Body TSL Certificate No: Z19-60177 Page 8 of 8 # **Dipole Impedance and Return Loss calibration Report** D2450V2 - SN: 910 Object: **Calibration Date:** June 11, 2021 IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference: Janet Wei (Janet Wei, SAR project engineer) Winner Thank Tachnical Transmission of the Communication Commu Calibrated By: **Reviewed By:** (Winner Zhang, Technical manager) ### **Environment of Test Site** | Temperature: | 18 ~ 25°C | |-----------------------|-----------| | Humidity: | 50~60% RH | | Atmospheric Pressure: | 1011 mbar | #### **Test Data** ### Measurement Plot for Head TSL In 2021 ### **Comparison with Original report** | Items | Calibrated By
CTTL | Calibrated By
JYT In 2021 | Deviation | Limit | |-----------------------------|-----------------------|------------------------------|--------------|--------------------------| | Impendence for Head
TSL | 54.1Ω+2.51jΩ | 56.22Ω+1.32jΩ | 2.12Ω-1.19jΩ | ±5Ω | | Return Loss for Head
TSL | -26.8dB | -24.56dB | -8.36% | ±20%(No less than 20 dB) | #### Result Compliance JYT Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.com Certificate No: Z21-60440 ### CALIBRATION CERTIFICATE Object D2600V2 - SN: 1114 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 28, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | and the second | | Scheduled Calibration | | |----------------|---|---|--| | 06277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | | 04291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | | N 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | | D# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | | AY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | SI SI | N 7517
N 1556
)#
Y49071430 | N 7517 03-Feb-21(CTTL-SPEAG,No.Z21-60001)
N 1556 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)
D# Cal Date (Calibrated by, Certificate No.)
Y49071430 01-Feb-21 (CTTL, No.J21X00593) | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | le le | | Reviewed by: | Lin Hao | SAR Test Engineer | 林场 | | Approved by: | Qi Dianyuan | SAR Project Leader | Da | Issued: October 31, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60440 Page 1 of 6 In Collaboration with S P E A G CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60440 Page 2 of 6 Add: No.52 HuaYuamBei Road, Haidian District, Beijing, 100191, Chinu Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------
--|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | | | and the second control of | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.94 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60440 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.1Ω- 7.05jΩ | | |--------------------------------------|---------------|--| | Return Loss | -23.1dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 4.000 | |----------------------------------|----------| | | 1.060 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z21-60440 Page 4 of 6 Date: 10.28.2021 Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2564 E-mail: cttl@chinattl.com bttp://www.chinattl.cn ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1114 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.944 S/m; ε_f = 39.81; ρ = 1000 kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(7.1, 7.1, 7.1) @ 2600 MHz; Calibrated: 2021-02-03 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.6 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.05 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 45% Maximum value of SAR (measured) = 24.0 W/kg 0 dB = 24.0 W/kg = 13.80 dBW/kg Certificate No: Z21-60440 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2009 Fax: +86-10-62304633-2504 http://www.chinantl.en ### Impedance Measurement Plot for Head TSL Certificate No: Z21-60440 Page 6 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client JYT (Auden) Certificate No: D5GHzV2-1320_Feb21 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1320 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: February 05, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03105) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature / | | Calibrated by: | Claudio Leubler | Laboratory Technician | (12) | | Approved by: | Katja Pokovic | Technical Manager | 1000 | Certificate No: D5GHzV2-1320_Feb21 Page 1 of 9 Issued: February 5, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement
procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point, No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1320_Feb21 Page 2 of 9 Project No.: JYTSZE2112056 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 10.0 mm, dz = 10.0 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.49 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | ### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2:28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1320_Feb21 ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.59 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 644 | | ### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.78 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | ### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1320_Feb21 ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 4.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 5.09 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | ### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1320_Feb21 Page 5 of 9 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 50.1 Ω - 3.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.1 dB | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 50.6 Ω + 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.0 dB | | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | $47.5 \Omega + 1.2 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 30,7 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.5 Ω + 2.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.2 dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | $50.5 \Omega + 7.6 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 22.4 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.197 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole
arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | SPEAG | |-------| | | Certificate No: D5GHzV2-1320_Feb21 Page 6 of 9 ### DASY5 Validation Report for Head TSL Date: 05.02.2021 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1320 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.49 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5300 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 34.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 4.78$ S/m; $\varepsilon_r = 34.3$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\varepsilon_r = 34.2$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.09 \text{ S/m}$; $\varepsilon_r = 33.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.70 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 17.9 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.91 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.3 W/kg Certificate No: D5GHzV2-1320_Feb21 Page 7 of 9 ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.98 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 8.67 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.1% Maximum value of SAR (measured) = 20.1 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.18 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 19.2 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.07 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.6 W/kg ### SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 19.0 W/kg Certificate No: D5GHzV2-1320_Feb21 Page 8 of 9 ### Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1320_Feb21 Page 9 of 9 #### Calibration information for DAE а e Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss IMPORTANT NOTICE ### **USAGE OF THE DAE4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. ### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. ### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. TN EH190306AE DAE4.docx 07.03.2019 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates CCIS (Auden) Certificate No: DAE4-1452_May21 Accreditation No.: SCS 0108 # CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 1452 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) May 26, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|---|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 07-Sep-20 (No:28647) | Sep-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 07-Jan-21 (in house check) | In house check: Jan-22 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 사용하다 보다 이 아니는 아들이 되었다. 그는 그 아니라 아니는 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 | In house check: Jan-22 | Calibrated by: Name Adrian Gehring Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: May 26, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1452_May21 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizie svizzero di taratura S swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or
negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1452_May21 Page 2 of 5 ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 6.1µV , 1LSB = 1LSB = full range = -100...+300 mV full range = -1......+3mV Low Range: 61nV , | DASY measurement paramet | ers: Auto Zero Time: | 3 sec; Measuring time | : 3 sec | |--------------------------|----------------------|-----------------------|---------| | Calibration Factors | x | Y | | | High Range | 404,348 ± 0.02% (k=2) | 404.687 ± 0.02% (k=2) | 405.256 ± 0.02% (k=2) | |------------|-----------------------|-----------------------|-----------------------| | Low Range | 3.99425 ± 1.50% (k=2) | 3.99683 ± 1.50% (k=2) | 4.01673 ± 1.50% (k=2) | ### Connector Angle | Connector Apple to be used in DASV system | 51.0°±1° | |---|----------| | Connector Angle to be used in DASY system | 0110 2 1 | Certificate No: DAE4-1452_May21 Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) | C Voltage Linearity High Bange | Reading (µV) | Difference (μV) | Error (%) | |--------------------------------|--------------|-----------------|-----------| | Channel X + Input | 200035.36 | 0.42 | 0.00 | | Channel X + Input | 20006.81 | 0.84 | 0.00 | | Channel X - Input | -20003.88 | 1.82 | -0.01 | | Channel Y + Input | 200037.10 | 2.34 | 0.00 | | Channel Y + Input | 20004.84 | -0.89 | -0.00 | | Channel Y - Input | -20007.39 | -1.50 | 0.01 | | Channel Z + Input | 200033.27 | -1.83 | -0.00 | | Channel Z + Input | 20003.78 | -1.97 | -0.01 | | Channel Z - Input | -20006.83 | -0.82 | 0.00 | | Low Range | Reading (µV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.37 | 0.05 | 0.00 | | Channel X + Input | 200.96 | -0.33 | -0.16 | | Channel X - Input | -199.17 | -0.61 | 0.31 | | Channel Y + Input | 2000.80 | -0.39 | -0.02 | | Channel Y + Input | 200,07 | -1.12 | -0.56 | | Channel Y - Input | -200.08 | -1.28 | 0.65 | | Channel Z + Input | 2001.07 | -0.11 | -0.01 | | Channel Z + Input | 200.38 | -0.77 | -0.38 | | Channel Z - Input | -199.93 | -1.12 | 0.57 | ### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 1.67 | -0.11 | | | - 200 | 0.56 | -1.39 | | Channel Y | 200 | -2.77 | -3.79 | | | - 200 | 1.75 | 1.13 | | Channel Z | 200 | -22.37 | -22.78 | | | - 200 | 21.31 | 21.31 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | 1.56 | -3.85 | | Channel Y | 200 | 6.97 | | 3.25 | | Channel Z | 200 | 8.35 | 4.50 | *3 | Certificate No: DAE4-1452_May21 Page 4 of 5 4. AD-Converter Values with inputs shorted | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16028 | 16039 | | Channel Y | 15789 | 16121 | | Channel Z | 15769 | 16454 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | nput 10MΩ | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(µV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.79 | -0.02 | 2.36 | 0.41 | | Channel Y | -0.13 | -1.32 | 1.53 | 0.52 | | Channel Z | -0.36 | -1.38 | 0.84 | 0.39 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for Information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1452_May21 Page 5 of 5 # -----End of Report-----