

SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD.

TEST REPORT

SCOPE OF WORK FCC TESTING- MODEL: Z6750A

REPORT NUMBER GZHH00581008-001

ISSUE DATE February 19, 2025

PAGES

24

DOCUMENT CONTROL NUMBER FCC ID 249_C © 2017 INTERTEK

SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD.

Application for Certification

FCC ID: 2BG6KZ6750A24G

Toys Car

Model: Z6750A Additional Models: Z6750AY, Z6750A-1, Z6750AY-1, Z6751A, Z6751AY, Z6752A, Z6752AY, Z6751A-1, Z6752A-1, Z6751AY-1, Z6752AY-1

2.4GHz Transmitter

Report No.: GZHH00581008-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-23]

Prepared and Checked by:

Approved by:

Sign on file

Maura Wang Engineer Johnny Wang Project Engineer Date: February 19, 2025

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

No.101&201, Building B, No.308, Wuhe Avenue, Zhangkengjing, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China/518110 Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Version: 01-November-2017

Page: 1 of 24

MEASUREMENT/TECHNICAL REPORT

This report concerns (che	eck one:)	Original Grant	<u>X</u>	Class II Ch	ange _						
Equipment Type: DXX - F	Equipment Type: DXX - Part 15 Low Power Communication Device Transmitter										
Deferred grant requested	per 47 CFR										
Company Name agrees t of the intended date of ar date.	-	·		date	issued	on that					
Transition Rules Request If no, assumed Part 15, Edition] provision.	•	for intentional rad	_	e new 47 (
Report prepared by:	No.101&20 Guanhu Su China/5181	sting Services Shei 1, Building B, No.3 ubdistrict, Longhua	308, Wuhe a District,	e Avenue, Z Shenzhen	hangk	0, 0,					

Table of Contents

1.0 Summary of Test Result	4
2.0 General Description	5
 2.1 Product Description 2.2 Related Submittal(s) Grants 2.3 Test Methodology 2.4 Test Facility 	5 5
3.0 System Test Configuration	6
 3.1 Justification 3.2 EUT Exercising Software 3.3 Special Accessories 3.4 Equipment Modification	
4.0 Emission Results	7
 4.1 Radiated Test Results 4.1.1 Field Strength Calculation 4.1.2 Radiated Emission Configuration Photograph 4.1.3 Radiated Emissions 4.1.4 Transmitter Spurious Emissions 	
5.0 Equipment Photographs	15
6.0 Product Labelling	15
7.0 Technical Specifications	
8.0 Instruction Manual	15
9.0 Miscellaneous Information	
 9.1 Bandedge Plot 9.2 20dB Bandwidth 9.3 Discussion of Pulse Desensitization 9.4 Calculation of Average Factor 9.5 Emissions Test Procedures 	
10.0 Test Equipment List	24

1.0 <u>Summary of Test Result</u>

Applicant: SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. Applicant Address: GUANGFENG INDUSTRIAL ZONE, DENGFENG ROAD, CHENGHAI DISTRICT, SHANTOU, CHINA

Manufacturer: SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. Manufacturer Address: GUANGFENG INDUSTRIAL ZONE, DENGFENG ROAD, CHENGHAI DISTRICT, SHANTOU, CHINA

MODEL: Z6750A

FCC ID: 2BG6KZ6750A24G

Test Specification	Reference	Results
Transmitter Radiated Emission	15.249 &15.209 &15.205	Pass
Bandedge		
20dB Bandwidth	15.215(c)	Pass

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

2.0 General Description

2.1 Product Description

The equipment under test (EUT) is an Toys Car operating at 2.4G Band. The EUT can be powered by DC 3.0V (1 x 3.0V CR2032 battery). For more detail information pls. refer to the user manual.

Antenna Type: Integral antenna Modulation Type: GFSK Antenna Gain: 0dBi

The Models: Z6750AY, Z6750A-1, Z6750AY-1, Z6751A, Z6751AY, Z6752A, Z6752AY, Z6751A-1, Z6752A-1, Z6751AY-1, Z6752AY-1 are the same as the Model: Z6750A in hardware aspect. The difference in appearance and model number serves as marketing strategy.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of controller unit for the Toys Car, and the corresponding receiver unit which associated with this EUT is subjected to FCC SDOC.

2.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The Semi-anechoic chamber used to collect the radiated data is **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by DC 3.0V (1 x 3.0V CR2032 battery) during the test, only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the bottom of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The EUT was operated standalone and placed in the central of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

There was no special software to exercise the device.

3.3 Special Accessories

No special accessories used.

3.4 Equipment Modification

Any modifications installed previous to testing by SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd Longhua Branch.

- 3.5 Measurement Uncertainty When determining the test conclusion, the Measurement Uncertainty of test has been considered.
- 3.6 Support Equipment List and Description

Description	Manufacturer	Model No.
N/A	N/A	N/A

4.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where	$FS = Field Strength in dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB/m
	AG = Amplifier Gain in dB
	PD = Pulse Desensitization in dB
	AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dBµV is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dBµV/m. This value in dBµV/m was converted to its corresponding level in μ V/m.

RA = $62.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB FS = $62 + 7.4 + 1.6 - 29 + 0 = 42 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(42 dB μ V/m)/20] = 125.9 μ V/m

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

4.1.3 Radiated Emissions

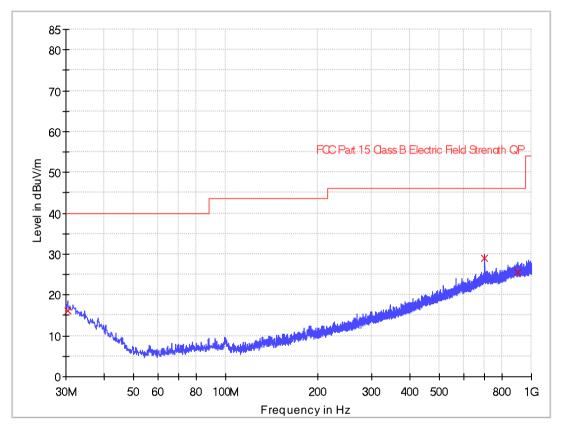
The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission at 704.028750 MHz

Judgement: Passed by 17.0 dB

TEST PERSONNEL:

Sign on file

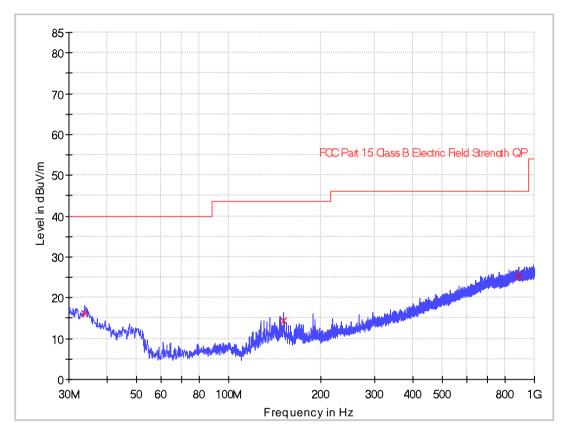

Maura Wang, Engineer Typed/Printed Name

February 12, 2025 Date

Applicant: SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. Date of Test: February 12, 2025 Model: Z6750A Worst Case Operating Mode: Transmitting(2405.000MHz)

ANT Polarity: Horizontal

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
30.363750	16.0	1000.0	120.000	Н	17.6	24.0	40.0
704.028750	29.0	1000.0	120.000	Н	24.0	17.0	46.0
903.363750	25.6	1000.0	120.000	Н	25.5	20.4	46.0


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dBµV/m) Level (dBµV/m)

Applicant: SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. Date of Test: February 12, 2025 Model: Z6750A Worst Case Operating Mode: Transmitting(2405.000MHz)

ANT Polarity: Vertical

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
33.880000	16.0	1000.0	120.000	V	15.9	24.0	40.0
151.371250	14.3	1000.0	120.000	V	9.9	29.2	43.5
888.692500	25.4	1000.0	120.000	V	25.3	20.6	46.0

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dBµV/m) Level (dBµV/m)

4.1.4 Transmitter Spurious Emissions (Radiated)

Worst Case Radiated Emission at 2440.000 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 0.3 dB

TEST PERSONNEL:

Sign on file

Maura Wang, Engineer Typed/Printed Name

February 12, 2025 Date

Applicant: SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. Date of Test: February 12, 2025 Model: Z6750A Worst Case Operating Mode: Transmitting

Table 1

	(2405 MHz)										
F	Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)			
	Vertical	2405.000	104.4	36.7	28.1	95.8	114.0	-18.2			
	Vertical	4810.000	49.6	36.7	35.5	48.4	74.0	-25.6			

Radiated Emissions

	Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
ſ	Vertical	2405.000	104.4	36.7	28.1	2.9	92.9	94.0	-1.1
ſ	Vertical	4810.000	49.6	36.7	35.5	2.9	45.5	54.0	-8.5

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. Date of Test: February 12, 2025 Model: Z6750A Worst Case Operating Mode: Transmitting

Table 2

Radiated Emissions

	(2440 MHz)												
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)						
Vertical	2440.000	105.0	36.7	28.3	96.6	114.0	-17.4						
Vertical	4880.000	52.0	36.7	35.7	51.0	74.0	-23.0						

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	2440.000	105.0	36.7	28.3	2.9	93.7	94.0	-0.3
Vertical	4880.000	52.0	36.7	35.7	2.9	48.1	54.0	-5.9

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: SHANTOU CHENGHAI XINHANG TOYS INDUSTRIAL CO., LTD. Date of Test: February 12, 2025 Model: Z6750A Worst Case Operating Mode: Transmitting

Table 3

Radiated Emissions

(2475 MHz) Polarization Frequency Reading Pre- Antenna Net Peak Limit Margin											
	(MHz)	(dBµV)	Amp Gain (dB)	Factor (dB)	at 3m (dBµV/m)	at 3m (dBµV/m)	(dB)				
Vertical	2475.000	104.6	36.7	28.5	96.4	114.0	-17.6				
Vertical	4950.000	45.9	36.7	35.9	45.1	74.0	-28.9				

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	2475.000	104.6	36.7	28.5	2.9	93.5	94.0	-0.5
Vertical	4950.000	45.9	36.7	35.9	2.9	42.2	54.0	-11.8

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

6.0 **Product Labelling**

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

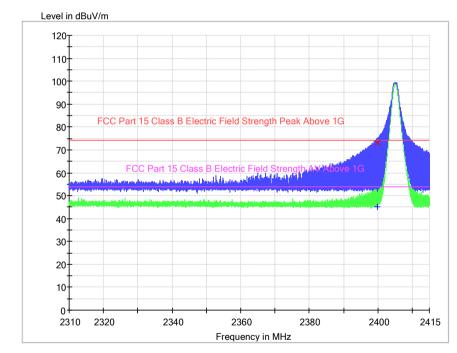
8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandedge, 20dB Bandwidth, the test procedure and calculation of factor such as pulse desensitization.

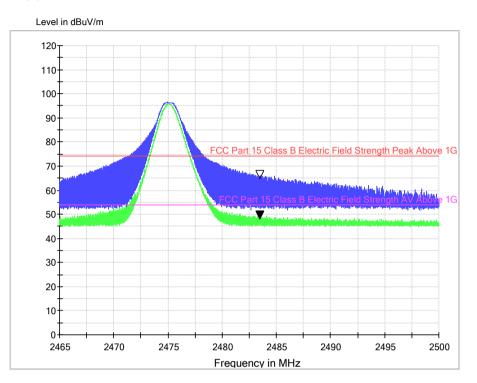

9.1 Bandedge Plot

The test plots are attached as below. From the plot, the field strength of any emissions outside of the specified frequency band are attenuated to the general radiated emission limits in section 15.209. It fulfils the requirement of 15.249(d).

Peak Measurement

Restricted-band band-edge tests shall be performed as radiated measurements, i.e (Band-edge Plot).

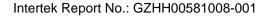
(i) Lower channel 2405.000 MHz:



(ii)							
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	2400.000	82.1	36.7	28.1	73.5	74.0	-0.5

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Vertical	2400.000	53.9	36.7	28.1	45.3	54.0	-8.7

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).



(ii) Upper channel 2475.000 MHz:

Po	olarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
	Vertical	2483.500	72.7	36.8	29.1	65.0	74.0	-9.0

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Vertical	2483.500	55.9	36.8	29.1	48.2	54.0	-5.8

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).

9.2 20dB Bandwidth

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered. The test plots are reported as below.

Spectrum									E
Ref Level		BuV		RBW 30 kHz					(*)
Att				VBW 100 kHz	Mode Aut	to FFT			
●1Pk View									
					D1[1]			-0.32 dB
100 dBµV—									05930 MHz
100 0000					M2 M1	[1]			71.87 dBµV
90 dBµV					X I			2.404	55720 GHz
					$\Lambda \downarrow$	ς			
80 dBµV—			-	$+\Lambda$		<u> </u>			
			M	$\pm 1 \times 1$		$\Lambda = h$	1		
70 dBµV—	D1 71.47	0 dBµV		+ - +		$\rightarrow \uparrow$	<u> </u>		
				γ 1		- V -	$\langle \rangle$		
60 dBµV		1	\downarrow						
	~	$1 \sim 1$						$L \Lambda$	
50.dBµV	\sim	/						\sim	
40 dBµV									
30 dBµV—				+ +					
ab									
20 dBµV									
CF 2.405 G	Hz			691 p	its			Spa	n 3.0 MHz
Marker									
Type Ref		X-value		Y-value	Functi	on	Fund	ction Result	
M1	1	2.40455		71.87 dBµ\					
D1 M M2	1 1	2.405082	93 MHz	-0.32 dE 91.47 dBµ\					
Spectrum Ref Level	109.00 d			RBW 30 kHz					
Ref Level	109.00 d			RBW 30 kHz VBW 100 kHz	Mode Aut	:o FFT			
Ref Level	109.00 d								
Ref Level Att 91Pk View	109.00 d				Mode Aut			1.1	0.83 dB
Ref Level Att	109.00 d				D1[1]			
Ref Level Att 100 dBµV	109.00 d				D1[1]		7	0.83 dB 05930 MHz
Ref Level Att 91Pk View	109.00 d				D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att 1Pk View 100 dBµV- 90 dBµV-	109.00 d				D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV 90 dBµV 80 dBµV	109.00 d 20	dB SWT 6			D1[1]	1	7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV-	109.00 d	dB SWT 6	3.2 μs • '		D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV 90 dBµV 80 dBµV	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]	1	7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]	1	7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 70 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]	1	7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 70 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]	1	7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 60 dBµV- 60 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]	1	7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV— 90 dBµV 80 dBµV 60 dBµV 50 dBµV 40 dBµV	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV— 90 dBµV 80 dBµV 60 dBµV 50 dBµV 40 dBµV	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV-	109.00 d 20	dB SWT 6	3.2 μs • '		D1[1]		7	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV- 90 dBµV- 80 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV-	D1 72.98	dB SWT 6	3.2 μs • '			1]		2.474	0.83 dB 05930 MHz 71.87 dBµV
Ref Level Att ● 1Pk View 100 dBµV 90 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV 20 dBµV	D1 72.98	dB SWT 6	3.2 μs • '	VBW 100 kHz		1]		2.474	0.83 dB 05930 MHz 71.87 dBµV 55720 GHz
Ref Level Att ● 1Pk View 100 dBµV 90 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV	109.00 d 20 01 72.98 Hz	0 dBµV	3.2 µs	VBW 100 kHz	D1[M2 M1[M2 M1[M2 M1[M2 M1[M2 M1[M2 M1[M2 M1[M2 M1[M2 M1[Func	2.474	0.83 dB 05930 MHz 71.87 dBµV 55720 GHz
Ref Level Att ● 1Pk View 100 dBµV 90 dBµV 80 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 20 dBµV 100 dBµV 90 dBµV 60 dBµV 50 dBµV 20 dBµV 80 dBµV 10 dBµV	109.00 d 20 01 72.98 Hz f Trc 1	0 dB SWT 6	3.2 µs • М	VBW 100 kHz	D1[M2 M1[M2 M1] M2 M1[M2 M1[M2 M1] M2 M1[M2 M1[M2 M1] M2 M1] M2 M1[M2 M1] M2 M1] M2 M1[M2 M1] M2 M1] M2 M1[M2 M1] M2 M1] M		Func	2.474	0.83 dB 05930 MHz 71.87 dBµV 55720 GHz
Ref Level Att ● 1Pk View 100 dBµV 90 dBµV 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV	109.00 d 20 01 72.98 Hz f Trc 1	0 dB SWT 6	3.2 µs • М М М Р Р Р 772 GHz 93 MHz	VBW 100 kHz	D1[M2 M1[M2 m1] M2 m1] M2 m1[M2 m1] M2 m1] M		Func	2.474	0.83 dB 05930 MHz 71.87 dBµV 55720 GHz

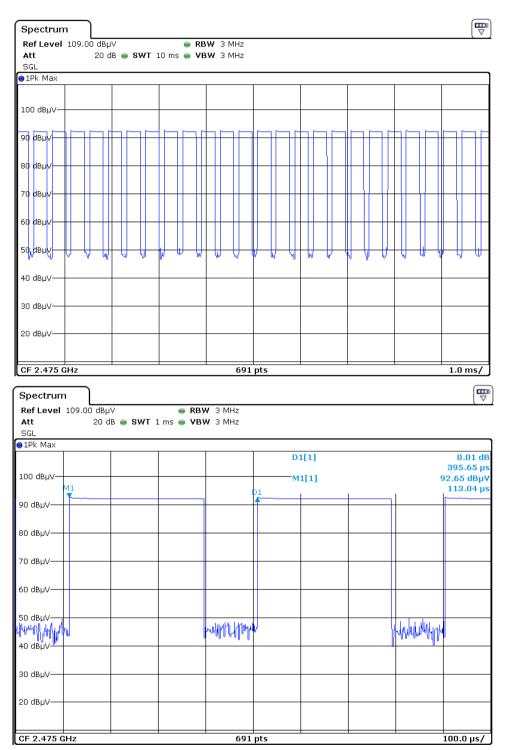
9.3 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 282.61µs for a digital "1" bit, as shown in the plots of Section 9.4 With a resolution bandwidth (3 dB) of 100 kHz, the pulse desensitivity factor was 0 dB

9.4 Calculation of Average Factor

Averaging factor in $dB = 20 \log (duty cycle)$

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.


The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 0.39565ms Effective period of the cycle = 282.61μ s x1 = 0.28261ms DC = 0.28261ms / 0.39565ms = 0.7143 or 71.43%

Therefore, the averaging factor is found by 20 $\log_{10} (0.7143) = -2.9 dB$

The test plots are attached as below.

Spectrum	·					
	•	3W 3 MHz				
Att SGL	20 dB 🛑 SWT 1 ms 🛑 V	BW 3 MHz				
1Pk Max						
			D	1[1]		-0.60 dB
100 dBµV—						282.61 µs
	M1		M	1[1]		92.65 dBμV 113.04 μs
	¥		r		<u> </u>]	[
90 dBµV—						
80 dBµV—						
70 dBµV—		-				
60 dBµV—		-				
50 dBµV						-
44491,464,4	ฟ ()	white me	V		1 WAARAN WAA	M
40 dBµV					(· · · · · · · · · · · · · · · ·	*
30 dBµV—						
20 dBµV—						
CF 2.475 G	Hz	691	pts		· ·	100.0 µs/

9.5 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter up to 1GHz and 1.5 meter above 1GHz in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Section 9.4.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

9.5 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Section 9.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used, RBW 3MHz used for fundamental emission.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

10.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-13	BiConiLog Antenna	ETS	3142E	00217919	13-Jul-2022	13-Jul-2025
SZ185-04	EMI Receiver	R&S	ESR7	102466	10-Nov-2024	10-Nov-2025
SZ061-09	Horn Antenna	ETS	3115	00092346	14-Oct-2022	14-Oct-2025
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	5-May-2024	5-May-2027
SZ061-15	Double- Ridged Waveguide Horn Antenna	ETS	3116C-PA	00224718	14-June-2024	14-June-2027
SZ056-06	Spectrum Analyzer	R&S	FSV40	101101	6-Dec-2024	6-Dec-2025
SZ181-04	Preamplifier	Agilent	8449B	3008A024 74	22-Apr-2024	22-Apr-2025
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	12-Dec-2021	12-Dec-2026
SZ062-02	RF Cable	RADIALL	RG 213U		1-Nov-2024	1-May-2025
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz		1-Nov-2024	1-May-2025
SZ062-12	RF Cable	RADIALL	0.04- 26.5GHz		1-Nov-2024	1-May-2025
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		23-Apr-2024	23-Apr-2025