1 Safety Human Exposure

1.1 Radio Frequency Exposure Compliance

1.1.1 Electromagnetic Fields

RESULT: Pass

Test Specification

Test item : WisLink LPWAN Concentrator

RAK5148

Identification / Type No. : (Trademark:

(Trademark:

FCC ID : 2AF6B-RAK5148 IC : 25908-RAK5148

HVIN : RAK5148

Test standard : CFR47 FCC Part 2: Section 2.1091

CFR47 FCC Part 1: Section 1.1310 FCC KDB Publication 447498 D01 v06 FCC KDB Publication 865664 D02 v01r02

RSS-102 Issue 5 February 2021

1.1.1.1 RF Exposure Compliance Requirement for FCC

FCC requirement: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 20cm normally can be maintained between the user and the device.

Antenna information:

One UFL connector (Hirose U. FL-R-SMT) for externa antenna, a Rod antenna (ANT0) or an Omni antenna for (ANT1) provided by client, 6.00 dBi for Rod antenna (ANT0).

Radio Frequency Exposure Limit

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	
300-1,500			f/1500	
1,500-100,000			1.0	

> Radio Frequency Exposure Calculation Formula

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

or:

$$S = \frac{EIRP}{4\pi R^2}$$

where: EIRP = equivalent (or effective) isotropically radiated power

a) RF Exposure Evaluation standalone operations (worse case)

Mode	*Measured RF Output Power (dBm)	EIRP (dBm)	Distance (cm)	Power Density (mW/cm²)	FCC Limit (mW/cm²)
2.4G Lora	17.97	8.0	20	0.079	1.0

Note:

1. *2.4GHz Lora RF Output Power: Refer to CN23346K 002

> Conclusion

Therefore, the maximum calculations result of above are meet the requirement of Radio Frequency Exposure (MPE) limit.

1.1.1.2 RF Exposure Compliance Requirement for IC

The EUT shall comply with the requirement of RSS-102 section 2.5.2.

Exemption from Routine Evaluation Limits - RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz;

RF exposure evaluation exempted power for 2.4GHz: 2.67 W

The nominal maximum conducted output power specified:

Antenna information:

One UFL connector (Hirose U. FL-R-SMT) for externa antenna, a Rod antenna (ANT0) or an Omni antenna for (ANT1) provided by client, 6.00 dBi for Rod antenna (ANT0).

The Max. e.i.r.p. for 2.4GHz Lora: 25.97 dBm = 0.3954 W

"RF Radiation Exposure Statement Caution: This Transmitter must be installed to provide a separation distance of at least 20 cm from all persons."