

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC170737 Page: 1 of 37

FCC Radio Test Report FCC ID: 2ALN5-RL180070

Report No. : TB-FCC170737

Applicant: Siffron

Equipment Under Test (EUT)

EUT Name : Sonr SASH

Model No. : RL-18007-0

Serial Model No. : N/A

Brand Name : N/A

Receipt Date : 2020-03-16

Test Date : 2020-03-16 to 2020-03-27

Issue Date : 2020-03-28

Standards : FCC Part 15, Subpart C (15.231(a))

Test Method : ANSI C63.10:2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Engineer Supervisor

Engineer Manager :

Lydi. Ivansi &

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 37

Contents

1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	8
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	9
5.	CONDUCTED EMISSION TEST	10
	5.1 Test Standard and Limit	10
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	11
	5.5 Test Data	11
6.	RADIATED EMISSION TEST	12
	6.1 Test Standard and Limit	12
	6.2 Test Setup	13
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	15
	6.5 EUT Operating Condition	15
	6.6 Test Data	15
7.	BANDWIDTH	16
	7.1 Test Standard and Limit	16
	7.2 Test Setup	
	7.3 Test Procedure	16
	7.4 Deviation From Test Standard	16
	7.5 EUT Operating Condition	16
	7.6 Test Data	16
8.	RELEASE TIME MEASUREMENT	17
	8.1 Test Standard and Limit	17
	8.2 Test Setup	17
	8.3 Test Procedure	17
	8.4 Deviation From Test Standard	17
	8.5 EUT Operating Condition	17
	8.6 Test Data	17

Page: 3 of 37

9.	DUTY CYCLE	18
	9.1 Test Standard and Limit	
	9.2 Test Setup	18
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	18
	9.5 EUT Operating Condition	18
	9.6 Test Data	
10.	ANTENNA REQUIREMENT	19
	10.1 Standard Requirement	19
	10.1 Deviation From Test Standard	19
	10.2 Antenna Connected Construction	
ATT	ACHMENT A RADIATED EMISSION TEST DATA	20
ATT	ACHMENT BBANDWIDTH DATA	33
ATT	ACHMENT C RELEASE TIME MEASUREMENT DATA	34
ATT	ACHMENT DDUTY CYCLE DATA	35

Page: 4 of 37

Revision History

Report No.	Version	Description	Issued Date
TB-FCC170737	Rev.01	Initial issue of report	2020-03-28
WORTH TO SEE			1000
			TUDY
	1113	TOD BY	
	3	TOTAL TOTAL	3 60
TODY OF	<u>ann</u>	THE WAY THE PARTY OF THE PARTY	6033
The same	THE PERSON		The Court
TO THE REAL PROPERTY.			The same of the sa
		MILES MILES	TO THE STATE OF
THE PARTY OF THE P	2007	THE PARTY OF THE P	WORK .
	33		311

Page: 5 of 37

1. General Information about EUT

1.1 Client Information

Applicant	1	Siffron
Address	:	8181 Darrow Road Twinsburg, OH 44087 USA
Manufacturer		Shenzhen Allcomm Electronic Company Limited
Address		No. 272 Guangtian Road, Tangxiayong, Yanluo Street, Baoan District, Shenzhen City, Guangdong Province, P.R. China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Sonr SASH			
Models No.	:	RL-18007-0			
Model Difference	:	N/A			
		Operation Frequency:	433.92 MHz		
Product Description		Output Power:	Ant.1: 85.36 dBuV/m (PK Max.) 73.12 dBuV/m (AV Max.) Ant.2: 82.79 dBuV/m (PK Max.) 70.33 dBuV/m (AV Max.) Ant.3: 74.56 dBuV/m (PK Max.) 62.10 dBuV/m (AV Max.)		
		Antenna Gain:	Integral Antenna(0 dBi)see note 2		
	b	Modulation Type:	ASK		
Power Rating	:	DC 3.0V by button Bat	tery(CR2430).		
Software Version		V1.0			
Hardware Version	:	V1.0			
Remark			The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		

Note

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Antenna description

Antenna	ntenna Brand Model Name Type Antenna Gain(dBi)				
ANT.1	N/A	N/A	Integral Ant.	0	12 inch
ANT.2	N/A	N/A	Integral Ant.	0	9 inch
ANT.3	N/A	N/A	Integral Ant.	0	6 inch

Page: 6 of 37

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

EUT

1.4 Description of Support Units

The EUT has been test as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Conducted Emission	N/A
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note:

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a Mobile unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

Page: 7 of 37

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

RF Fower Setting in Test Sw.	RF Power Setting in Test SW:	DEF
------------------------------	------------------------------	-----

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.60 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.20 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 37

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

2. Test Summary

	FCC Part 15 Subpart (15	5.231(a))	
Standard Section FCC	Test Item	Judgment	Remark
15.203	Antenna Requirement	PASS	N/A
15.207	Conducted Emission	N/A	N/A
	Release Time	PASS	N/A
45.004	Radiation Emission	PASS	N/A
15.231	20 dB Bandwidth	PASS	N/A
(III):33	Duty Cycle	PASS	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

Page: 9 of 37

4. Test Equipment

Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission 1	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2021
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2021
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020
DE Dewer Course	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020

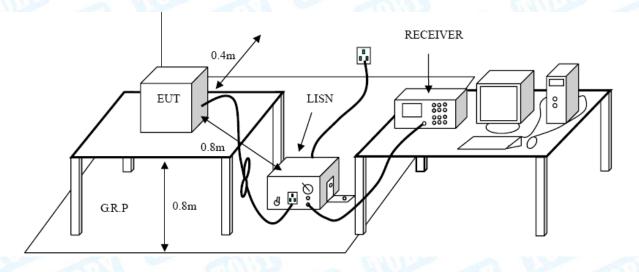
Page: 10 of 37

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguenev	Maximum RF Line	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 11 of 37

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

The EUT must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 Test Data

The EUT is powered by DC battery, no requirement for this test item.

Page: 12 of 37

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC 15.231

6.1.2 Test Limit

According to FCC 15.231(a) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m
40.66~40.70	2250	225
70~130	1250	125
130~174	1250 to 3750(**)	125 to 375(**)
174~260	3750	375
260~470	3750 to 12500(**)	375 to 1250(**)
Above 470	12500	1250

^{**} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130~174 MHz, uV/m at 3 meters= 56.81818(F)-6136.3636;
- (2) for the band 260~470 MHz, uV/m at 3 meter= 41.6667(F)-7083.3333.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in FCC Part15.209.

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Page: 13 of 37

Note:

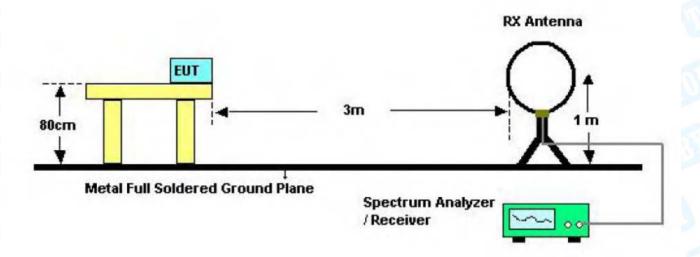
(1) The tighter limit applies at the band edges.

(2) For above 30MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m)

For 0.009~0.490MHz:

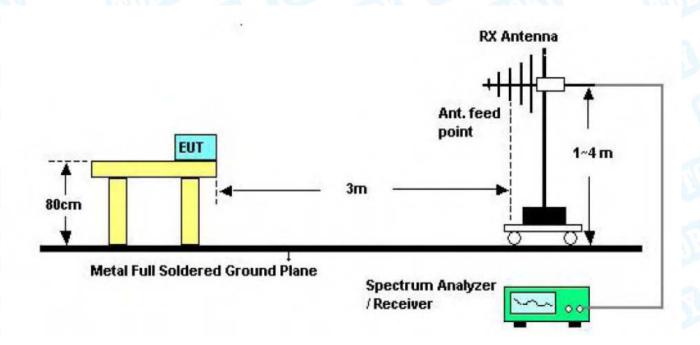
Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(300/3)

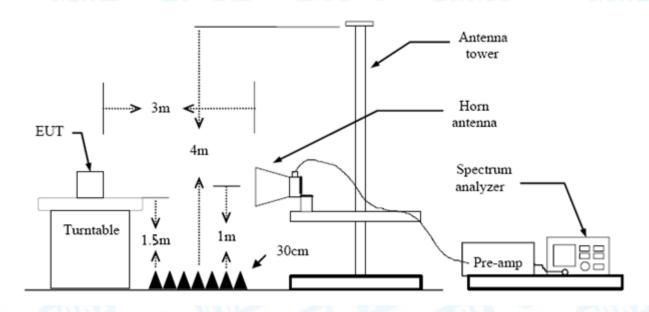

For 0.049~30MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(30/3)

So the field strength of emission limits have been calculated in below table.

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m
433.92 MHz	80.82 (Average)
433.92 MHz	100.82 (Peak)


6.2 Test Setup


Below 30MHz Test Setup

Page: 14 of 37

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

Page: 15 of 37

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

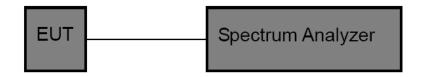
6.6 Test Data

Please refer to the Attachment A.

Page: 16 of 37

7. Bandwidth

7.1 Test Standard and Limit


7.1.1 Test Standard FCC 15.231

7.1.2 Test Limit

The 99%bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20 dB Bandwidth Limits (MHz)
433.92MHz	1.0848

7.2 Test Setup

7.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 1 MHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

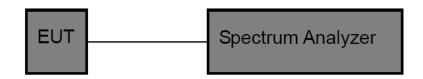
The Equipment Under Test was Programmed to be in continuously transmitting mode.

7.6 Test Data

Please refer to the Attachment B.

Page: 17 of 37

8. Release Time Measurement


8.1 Test Standard and Limit

8.1.1 Test Standard FCC 15.231

8.1.2 Test Limit

According to FCC 15.231a, A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

8.2 Test Setup

8.3 Test Procedure

- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 300 kHz, Span= 0 Hz. Sweep Time= 5 Seconds.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.

8.4 Deviation From Test Standard

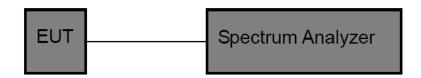
No deviation

8.5 EUT Operating Condition

The EUT was set to work in transmitting mode.

8.6 Test Data

Please refer to the Attachment C.


Page: 18 of 37

9. Duty Cycle

9.1 Test Standard and Limit

9.1.1 Test Standard FCC 15.231

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was placed on a turntable which is 0.8m above ground plane.
- (2) Set EUT operating in continuous transmitting mode.
- (3) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 100 kHz and video bandwidth (VBW) to 300 kHz, Span was set to 0 Hz.
- (4) The Duty Cycle was measured and recorded.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

9.6 Test Data

Please refer to the Attachment D.

Page: 19 of 37

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.1 Deviation From Test Standard

No deviation

10.2 Antenna Connected Construction

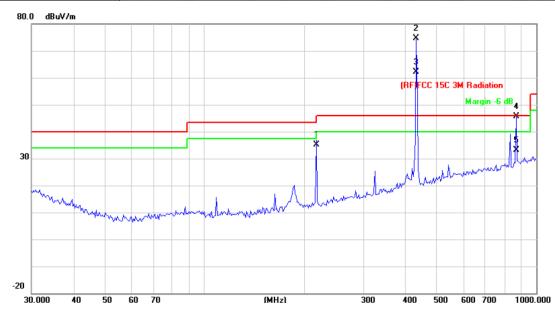
The gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

The EUT antenna is an Internal Antenna. It complies with the standard requirement.

	Antenna Type
	☐ Permanent attached antenna
ann.	▼ Unique connector antenna
	□ Professional installation antenna

Page: 20 of 37

Attachment A-- Radiated Emission Test Data


9 KHz to 30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz-1GHz

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.0V		מניוו
Ant. Pol.	Horizontal		
Test Mode:	TX Mode(6 inch Antenna)	(m) (1)	~ AAA
Remark:	No report for the emission which r prescribed limit.	nore than 10 dB below	the
80.0 dBuV/m		2	

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		216.7828	54.19	-18.94	35.25	46.00	-10.75	QP
2	*	434.0651	86.43	-11.87	74.56	100.82	-26.26	peak
3	X	434.0651	73.97	-11.87	62.10	80.82	-18.72	AVG
4	į	869.1302	50.39	-4.72	45.67	80.82	-35.15	peak
5		869.1302	37.93	-4.72	33.21	60.82	-27.61	AVG

Emission Level= Read Level+ Correct Factor

Page: 21 of 37

		20				550/
Temperat		$^{\circ}$ C		Relat	tive Humidity	: 55%
Test Volta	•	2 3.0V			100	
Ant. Pol.	Ve	rtical		8 M		
Test Mode	e: TX	Mode(6 inc	h Antenna)		CHILL	
Remark:		report for the escribed limit.		vhich more th	an 10 dB belo	ow the
80.0 dBuV/	m					
					2	
					×	
					(RFIFCC 15C 3M	Radiation
						Margin -6 dB
						4
30						
				1 *	, Na	www.
Mahala				Lughy w	mound water	
Moraphysia	war	mannaman	mmmmm	LW LAWRENCE		
	A m lands					
-20						
	40 50 60	70 80	(MHz)	300	400 500	600 700 1000.000
		Reading	Correct	Measure-		
No. MI	k. Freq.	Level	Factor	ment	Limit C)ver
	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB Detector
1	216.7828	42.62	-18.94	23.68	46.00 -2	22.32 QP
2 *	434.0651	77.60	-11.87	65.73	100.82 -	35.09 peak
3 X	434.0651	65.14	-11.87	53.27	80.82 -	-27.55 AVG
4	869.1302	40.58	-4.72	35.86	-44.96 -	10.14 peak
5	869.1302	28.12	-4.72	23.40	-37.42 -	22.60 AVG

Emission Level= Read Level+ Correct Factor

Page: 22 of 37

Temp	peratu	re:	25	$^{\circ}$ C				MAR	Relati	ive Hur	nidi	ty:	55%	6
Test	Voltag	je:	DC	3.0\	/		81			100		- i	1	MIL
Ant.	Pol.		Hoi	rizon	tal				N. See		K	Mill		
Test	Mode		TX	Mod	le(9 i	inch	Antenna)			1				
Rem	ark:				rt for ed lir		emission w	vhich m	nore tha	an 10 d	B be	elow t	he	
90.0	dBuV/m													
40	VMM	mmm	Market	at the state of th	man	1 ***	mpanaghan fun an		Manula	(RF)FC	C 15C :	3M Radii Margi	n -6 dl	5 ×
-10 30.0	000 40	0 50	60	70			(MHz)		300	400	500	600 7	700	1000.000
No	o. Mk	. Fre	eq.		eadi Leve		Correct Factor		sure- ent	Limit		Ove	er	
		MH	Ηz		dBu∖	/	dB/m	dBu	ıV/m	dBuV	m	dB		Detecto
1		108.2	2667		52.5	4	-22.42	30	.12	43.5	0	-13.	38	QP
2		216.7	828	,	57.5	8	-18.94	38	.64	46.0	0	-7.3	36	QP
3	*	434.0	651	,	94.6	6	-11.87	82	.79	100.	82	-18	.03	peak
4	Χ	434.0	651		82.2	0	-11.87	70	.33	80.8	2	-10	49	AVG
5	Х	869.1	302		67.2°	7	-4.72	62	.55	80.8	2	-18	27	peak

Emission Level= Read Level+ Correct Factor

54.81

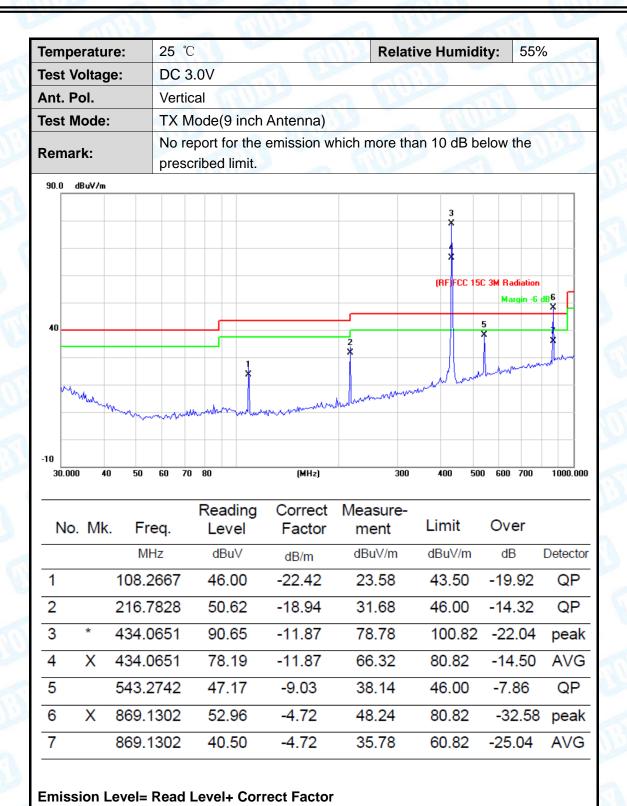
-4.72

50.09

60.82

Average Value=Peak Value-12.46

869.1302


6

X

-10.73 AVG

Page: 23 of 37

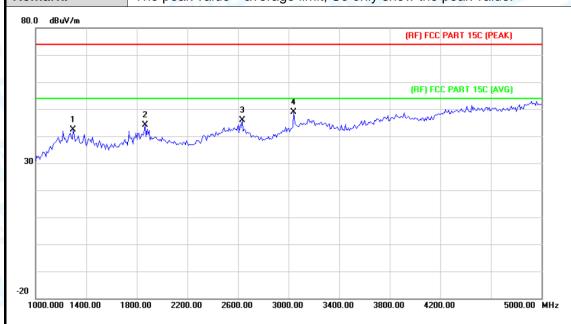
Page: 24 of 37

Tem	peratu	ıre:	25	$^{\circ}$		0	11/1	Relat	tive Humic	ditv: 55	%
	t Volta			3.0V					78/8	-	TOTAL
	Pol.			izontal	M			Bar			
Tes	t Mode):	TX	Mode(12 in	ch Antenna)		GHI		
Ren	nark:		No	•	for the	emission v		nore th	an 10 dB l	below the	0.53
90.0) dBuV/n	n									
									X		
									4		
									(RF)FCC 1	5C 3M Radiation	7
										Margin -6	dBX
40								2 X		5 6 * *	
							×				and the same
									my lun	What had	
	WASTAN	mannon		1	A. d.	mm	mlum	mulmin.	ALV.		
		mahas	Markedan	MMM. A.	n alma-	MANAGAN .					
-10 30	0.000	40 50	60	70 80		(MHz)		300	400 5	00 600 700	1000.000
					ding	Correct	Meas		Limit	Over	
N	lo. Mk		•	Le		Factor	me		Limit	Over	
		MH			u∨	dB/m		V/m	dBuV/m		Detector
1		216.7	828	54.	.61	-18.94	35.	.67	46.00	-10.33	QP
2	į	325.5	958	55.	.52	-15.17	40.	.35	46.00	-5.65	QP
3	*	434.0	651	97.	.23	-11.87	85.	.36	100.82	-15.46	peak
4	X	434.0	651	84.	.99	-11.87	73.	.12	80.82	-7.70	AVG
5		543.2	742	49.	.01	-9.03	39.	.98	46.00	-6.02	QP
6		651.9	417	46.	.67	-7.79	38.	.88	46.00	-7.12	QP
7	X	869.1	302	56.	.14	-4.72	51.	.42	80.82	-29.40	peak
8		869.1	302	43.	.68	-4.72	38.	.96	60.82	-21.86	AVG

Emission Level= Read Level+ Correct Factor

Page: 25 of 37

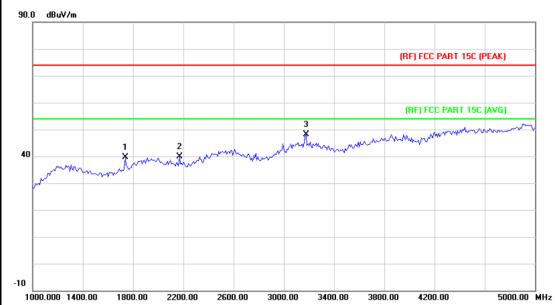
iem	npera	ature	e:	25	$^{\circ}$ C			(71)		Rela	tive Hur	nidity:	55	%
Tes	t Vol	tage) :	DC	3.0	V		a v						
Ant	. Pol	-		Ver	tical	6	1//		0	11.17				
Tes	t Mo	de:		TX	Mod	de(′	12 inc	h Antenna	1)			MAR	9	
Ren	nark:	:			•		or the limit.	emission	which m	nore th	nan 10 d	B belov	v the	
90.0	0 dBu	V/m												
											3			
											X			
											*			
											(RF)FC	C 15C 3M F	Radiation	1
												M	largin -6	dB [
40									+			5 X	6	×
						_			_	2	2		Ĭ	, Bun
									×	,	[]/\	mulum	Jum	Was
	MANNA	Ma.									Month			
		T MALL						8	مريهم كهالي المهرية	Marie -				
		- V	Jones	MANA	maria	seengele-	mah	mahaman	May happy	Market 2				
			Married Marrie		makan	seenpster-	mul	make marken	Marsh Marin	Water a				
-10 30						seens stern		(MHz)	Mary Hromm	300	400	500 60	0 700	1000.00
	0.000	40	50		70	seensystem.	made	(MHz)	And how	300	400	500 600	0 700	1000.00
30	0.000	40			70	Read	ding	(MHz)	Meas					1000.00
30		40	50		70 R	Read Lev	_		Meas me	sure-	400 Limit	500 600 OV		1000.00
30	0.000	40	50 Fr	60	70 R		/el	Correct		sure- ent		Ov	er	1000.00
30	0.000	40 Vlk.	50 Fr	eq.	70 R	Lev	/el u∀	Correct Factor	me	sure- ent V/m	Limit	Ov n dE	er 3	
30	0.000	40 Vlk.	Fr M 216.	eq.	70 R	dBı	/el u∀ 30	Correct Factor	me dBu	sure- ent V/m	Limit dBuV/r	Ov m dE 0 -20	er 3	Detector
1 1	0.000	Mk.	Fr M 216.	eq. Hz	70 R	dBı 44.	/el u∀ 30 85	Correct Factor dB/m -18.94	dBu	sure- ent V/m .36	Limit dBuV/r 46.00	Ov m dE 0 -20	er 3.64 3.32	Detector QP
1 2	0.000 No. I	40 Mk.	50 Fr M 216. 325. 434.	eq. Hz 7828	70 R	dBi 44. 42.	/el u/ 30 85 19	Correct Factor dB/m -18.94 -15.17	me dBu 25.	sure- ent V/m .36 .68 .32	Limit dBuV/r 46.00	Ov n dE 0 -20 0 -18 32 -22	er 3.64 3.32	Detector QP QP
1 2 3 4		40 Mk.	50 Fr M 216. 325. 434.	req. Hz 7828 5958 0651	70	dBi 44. 42. 90. 77.	/el uV 30 85 19 73	Correct Factor dB/m -18.94 -15.17 -11.87	me dBu 25. 27. 78. 65.	sure- ent V/m .36 .68 .32	Limit dBuV/r 46.00 46.00 100.8	Ov n dE 0 -20 0 -18 32 -22 2 -14	er 3.64 3.32 2.50	Detector QP QP peal AVG
1 2 3 4 5	*	40 Mk.	50 Fr M 216. 325. 434. 434. 543.	req. Hz 7828 5958 0651 0651 2742	70 R	dBi 44. 42. 90. 77. 49.	/el u/ 30 85 19 73	Correct Factor dB/m -18.94 -15.17 -11.87 -11.87 -9.03	me dBu 25. 27. 78. 65. 40.	sure- ent V/m .36 .68 .32 .86 .23	Limit dBuV/r 46.00 46.00 100.8 80.82 46.00	Ov n dE 0 -20 0 -18 32 -22 2 -14 0 -5.	er 3.64 3.32 2.50 4.96	QP QP QP peal AVG
1 2 3 4 5 6	* >	40 Mk.	50 Fr M 216. 325. 434. 434. 543. 651.	req. Hz 7828 5958 0651 0651 2742	70	44. 42. 90. 77. 49.	/el u/ 30 85 19 73 26 68	Correct Factor dB/m -18.94 -15.17 -11.87 -11.87 -9.03 -7.79	me dBu 25. 27. 78. 65. 40. 36.	sure- ent V/m .36 .68 .32 .86 .23	Limit dBuV/r 46.00 46.00 100.8 80.82 46.00 46.00	Ov -20 0 -18 32 -22 2 -14 0 -5.	er 3.64 3.32 2.50 4.96 77	QP QP peal AVG QP
1 2 3 4 5	* >	40 Mk.	50 Fr M 216. 325. 434. 434. 543. 651. 869.	req. Hz 7828 5958 0651 0651 2742	70 R	dBi 44. 42. 90. 77. 49.	/el u/ 30 85 19 73 26 68 97	Correct Factor dB/m -18.94 -15.17 -11.87 -11.87 -9.03	me dBu 25. 27. 78. 65. 40.	sure- ent	Limit dBuV/r 46.00 46.00 100.8 80.82 46.00	Ov de	er 3.64 3.32 2.50 4.96	QP QP QP peal AVG


Emission Level= Read Level+ Correct Factor

Page: 26 of 37

Above 1G

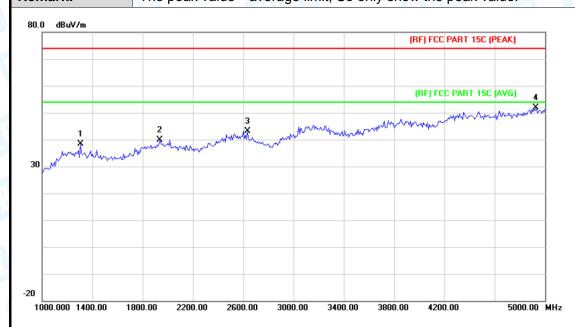
Temperature:	25 ℃	Relative Humidity: 55%	
Test Voltage:	DC 3.0V	THE PARTY OF THE P	
Ant. Pol.	Horizontal		
Test Mode:	TX Mode(6 inch Antenna)		3
Remark:	The peak value < average limit. So	only show the peak value.	


No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1296.000	45.65	-3.38	42.27	74.00	-31.73	peak
2		1864.000	44.49	-0.45	44.04	74.00	-29.96	peak
3		2632.000	41.60	4.18	45.78	74.00	-28.22	peak
4	*	3040.000	42.29	6.63	48.92	74.00	-25.08	peak

Emission Level= Read Level+ Correct Factor Average Value=Peak Value-12.46

Page: 27 of 37

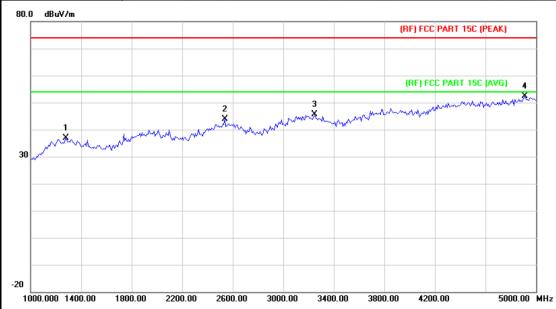
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.0V		
Ant. Pol.	Vertical	The state of the s	
Test Mode:	TX Mode(6 inch Antenna)	GIUL	
Remark:	The peak value < average limit, So	only show the peak va	alue.


No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1736.000	40.91	-1.25	39.66	74.00	-34.34	peak
2		2168.000	37.63	2.22	39.85	74.00	-34.15	peak
3	*	3176.000	41.00	7.05	48.05	74.00	-25.95	peak

Emission Level= Read Level+ Correct Factor

Page: 28 of 37

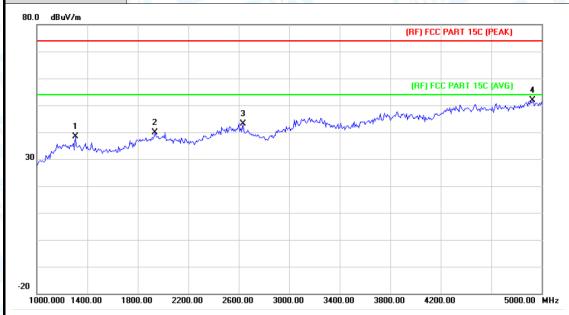
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.0V		
Ant. Pol.	Horizontal		1013
Test Mode:	TX Mode(9 inch Antenna)		
Remark:	The peak value < average limit. So	only show the peak val	ue.


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1304.000	41.59	-3.33	38.26	74.00	-35.74	peak
2		1936.000	39.62	0.37	39.99	74.00	-34.01	peak
3		2632.000	39.00	4.18	43.18	74.00	-30.82	peak
4	*	4928.000	35.67	16.13	51.80	74.00	-22.20	peak

Emission Level= Read Level+ Correct Factor Average Value=Peak Value-12.46

Page: 29 of 37

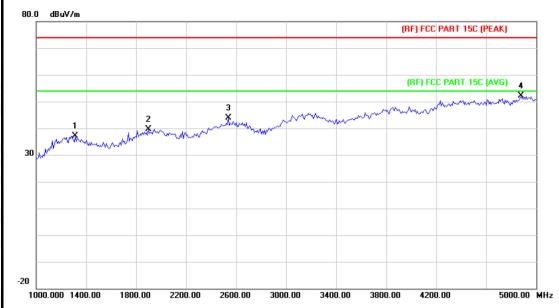
Temperature:	25 ℃	Relative Humidity: 55%
Test Voltage:	DC 3.0V	
Ant. Pol.	Vertical	
Test Mode:	TX Mode(9 inch Antenna)	
Remark:	The peak value < average limit, So	only show the peak value.


No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1280.000	40.38	-3.50	36.88	74.00	-37.12	peak
2		2536.000	40.09	3.73	43.82	74.00	-30.18	peak
3		3248.000	38.32	7.27	45.59	74.00	-28.41	peak
4	*	4912.000	36.35	16.05	52.40	74.00	-21.60	peak

Emission Level= Read Level+ Correct Factor

Page: 30 of 37

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.0V		
Ant. Pol.	Horizontal		
Test Mode:	TX Mode(12 inch Antenna)		HAMIL
Remark:	The peak value < average limit, So	o only show the peak va	alue.


No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1304.000	41.59	-3.33	38.26	74.00	-35.74	peak
2		1936.000	39.62	0.37	39.99	74.00	-34.01	peak
3		2632.000	39.00	4.18	43.18	74.00	-30.82	peak
4	*	4928.000	35.67	16.13	51.80	74.00	-22.20	peak

Emission Level= Read Level+ Correct Factor Average Value=Peak Value-12.46

Page: 31 of 37

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.0V		
Ant. Pol.	Vertical	The state of the s	
Test Mode:	TX Mode(12 inch Antenna)	CHILIT	
Remark:	The peak value < average limit, So	only show the peak va	alue.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1312.000	40.31	-3.28	37.03	74.00	-36.97	peak
2		1896.000	39.77	-0.08	39.69	74.00	-34.31	peak
3		2536.000	40.18	3.73	43.91	74.00	-30.09	peak
4	*	4880.000	36.23	15.90	52.13	74.00	-21.87	peak

Emission Level= Read Level+ Correct Factor

Page: 32 of 37

Other harmonics emissions are lower than 20dB below the allowable limit.

Note:

(1) All Readings are Peak Value and AV. And AV is calculated by the following: Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.

Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values.

Average Values=Peak Values+20log (Duty Cycle)

- (2) Emission Level= Reading Level + Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

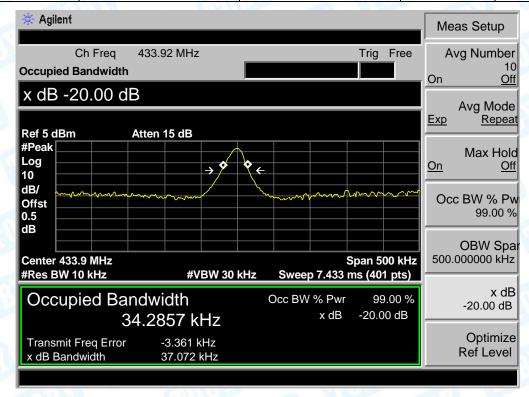
Pulse Desensitization Correction Factor

Note:

1)The Smallest Pulse Width (PW)= 0.325ms

(2) 2/PW=2/0.325(ms)= 6.15kHz<100 kHz

Because 2/PW<RBW, so the PDCF is not needed.

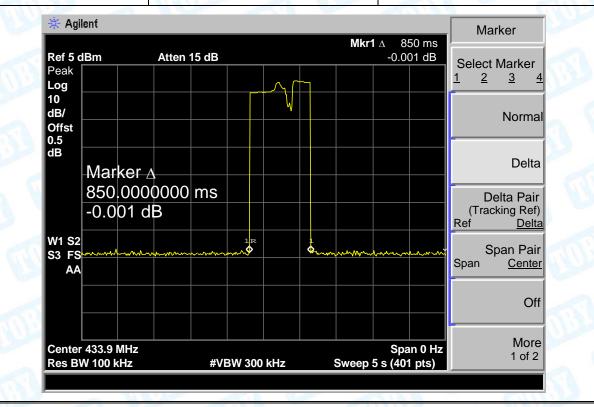


Page: 33 of 37

Attachment B--Bandwidth Data

Temperature	:	25℃
Relative Humidity	ż	65 %
Pressure		1010 hPa
Test Power		DC 3.0V

Frequency (MHz)	20 dBc Bandwidth (kHz)	99% OBW (kHz)	Limit (kHz)	Result
433.92	37.072	34.2857	1084.8	PASS



Page: 34 of 37

Attachment C-- Release Time Measurement Data

:	25 ℃
1	65 %
	1010 hPa
	DC 3.0V

Release Time(s)	Limit (s)	Result
0.85	5	PASS

Page: 35 of 37

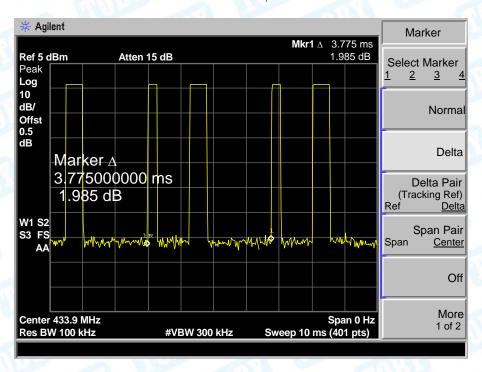
Attachment D--Duty Cycle Data

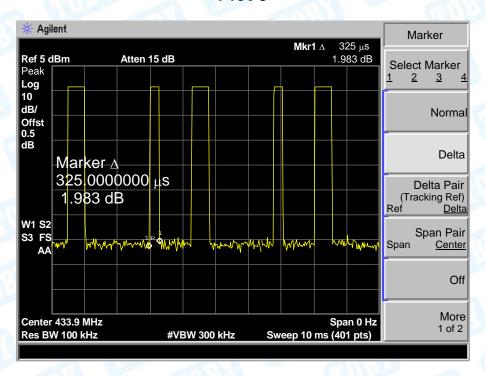
Please refer the following pages:

Plot 1/Plot 2: transmit once in 100ms, and each cycle is 3.775 ms there are two kinds of pulse in each cycle, the large pulses total 1, the small pulses total 1.

Plot 3: one large pulse in a time period of 0.325ms **Plot 4:** one middle pulse in a time period of 0.575 ms

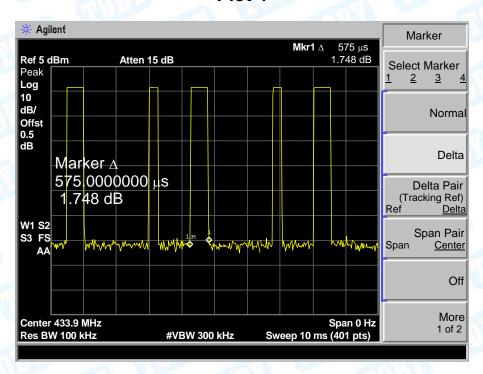
Duty Cycle=ON/Total=(0.325+0.575)/3.7=0.9/3.775=23.82% 20 log(Duty Cycle)=-12.46 Average=Peak Value+ 20log(Duty Cycle), AV=PK-12.46


Plot 1



Page: 36 of 37

Plot 2


Plot 3

Page: 37 of 37

Plot 4

----END OF REPORT----