

Test report No. Page Issued date FCC ID : 13127991H-A-R1 : 1 of 21 : February 14, 2020

: MLBHLSS-5B

### **RADIO TEST REPORT**

**Test Report No.: 13127991H-A-R1** 

Applicant : Honda Lock Mfg. Co., Ltd.

Type of Equipment : FOB OF 2R SMART SYSTEM

Model No. : HLSS-5B

FCC ID : MLBHLSS-5B

Test regulation : FCC Part 15 Subpart C: 2019

Test Result : Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.A.Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.
- 9. This report is a revised version of 13127991H-A. 13127991H-A is replaced with this report.

December 12, 2019

Representative test engineer:

Date of test:

Junki Nagatomi Engineer

Consumer Technology Division

Approved by:

Shinichi Miyazono Engineer

Consumer Technology Division



This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. \*As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc\_accredited/

This report contains data that are not covered by the NVLAP accreditation.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1
Page : 2 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

## **REVISION HISTORY**

Original Test Report No.: 13127991H-A

| Revision        | Test report No. | Date                | Page    | Contents                                                                   |
|-----------------|-----------------|---------------------|---------|----------------------------------------------------------------------------|
|                 |                 |                     | revised |                                                                            |
| -<br>(Original) | 13127991H-A     | January 17,<br>2020 | -       | -                                                                          |
| 1               | 13127991H-A-R1  | February 14, 2020   | P.9     | Correction of Model number of EUT in Clause 4.2;<br>From HLSS-5 to HLSS-5B |

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1

Page : 3 of 21

Wireless LAN

Issued date : February 14, 2020 FCC ID : MLBHLSS-5B

### Reference: Abbreviations (Including words undescribed in this report)

MCS A2LA The American Association for Laboratory Accreditation Modulation and Coding Scheme MRA AC Alternating Current Mutual Recognition Arrangement AFH N/A Not Applicable Adaptive Frequency Hopping NIST Amplitude Modulation National Institute of Standards and Technology AM

Amp, AMP Amplifier NS No signal detect.

ANSI American National Standards Institute NSA Normalized Site Attenuation
Ant, ANT Antenna NVLAP National Voluntary Laboratory Accreditation Program

AP Access Point OBW Occupied Band Width

ASK Amplitude Shift Keying OFDM Orthogonal Frequency Division Multiplexing

Atten., ATT Attenuator P/M Power meter ΑV PCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer BT Bluetooth PΚ Peak

 BT LE
 Bluetooth Low Energy
 PN
 Pseudo random Noise

 BW
 BandWidth
 PRBS
 Pseudo-Random Bit Sequence

 Cal Int
 Calibration Interval
 PSD
 Power Spectral Density

CCK Complementary Code Keying QAM Quadrature Amplitude Modulation

Ch., CH Channel QP Quasi-Peak
CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying

CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency DFS Dynamic Frequency Selection RMS Root Mean Square

DQPSK Differential QPSK RSS Radio Standards Specifications

 DSSS
 Direct Sequence Spread Spectrum
 Rx
 Receiving

 EDR
 Enhanced Data Rate
 SA, S/A
 Spectrum Analyzer

 EIRP, e.i.r.p.
 Equivalent Isotropically Radiated Power
 SG
 Signal Generator

EMC ElectroMagnetic Compatibility SVSWR Site-Voltage Standing Wave Ratio

**EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm Tx Transmitting VBW ERP, e.r.p. Effective Radiated Power Video BandWidth EU European Union Vert. Vertical

EUT Equipment Under Test WLAN

Fac. Factor
FCC Federal Communications Commission

FM Frequency Modulation

Freq. Frequency

FSK Frequency Shift Keying

GFSK Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System

GPS Global Positioning System

Hori. Horizontal

**FHSS** 

ICES Interference-Causing Equipment Standard
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

ILAC International Laboratory Accreditation Conference
ISED Innovation, Science and Economic Development Canada

Frequency Hopping Spread Spectrum

ISO International Organization for Standardization

JAB Japan Accreditation Board LAN Local Area Network

LIMS Laboratory Information Management System

## UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date : 13127991H-A-R1 : 4 of 21

Issued date : February 14, 2020 FCC ID : MLBHLSS-5B

| CONTENTS           |                                                                          | PAGE       |
|--------------------|--------------------------------------------------------------------------|------------|
| SECTION 1:         | Customer information                                                     | 5          |
| <b>SECTION 2:</b>  | Equipment under test (E.U.T.)                                            | 5          |
| <b>SECTION 3:</b>  | Test specification, procedures & results                                 | 6          |
| <b>SECTION 4:</b>  | Operation of E.U.T. during testing                                       | 9          |
| <b>SECTION 5:</b>  | Radiated emission (Electric Field Strength of Fundamental and Spurious E | mission)10 |
| <b>SECTION 6:</b>  | Automatically deactivate                                                 | 12         |
| <b>SECTION 7:</b>  | -20 dB and 99 % Occupied Bandwidth                                       |            |
| <b>APPENDIX 1:</b> | Test data                                                                |            |
| Automati           | cally deactivate                                                         | 13         |
|                    | Emission (Electric Field Strength of Fundamental and Spurious Emission)  |            |
|                    | d 99% Occupied Bandwidth                                                 |            |
|                    | Test instruments                                                         |            |
|                    | Photographs of test setup                                                |            |
| Radiated           | emission                                                                 | 18         |
| Worst ca           | se position                                                              | 20         |

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1
Page : 5 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

#### **SECTION 1: Customer information**

[Applicant]

Company Name : Honda Lock Mfg. Co., Ltd.

Address : 3700 Shimonaka, Sadowara-Cho, Miyazaki-Shi, Miyazaki, 880-0293,

Japan

Telephone Number : +81-50-3757-3759 Facsimile Number : +81-985-73-5197 Contact Person : Shinichuro Eto

[Manufacturer]

Company Name : Honda Lock Vietnam Co., Ltd.

Address : Dong Van II Industrial Zone, Bach Thuong Ward, Duy Tien District,

Ha Nam Province, Vietnam

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No. FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer information

- SECTION 2: Equipment under test (E.U.T.)

- SECTION 4: Operation of E.U.T. during testing

#### **SECTION 2:** Equipment under test (E.U.T.)

#### 2.1 Identification of E.U.T.

Type of Equipment : FOB of 2R SMART SYSTEM

Model No. : HLSS-5B

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 3.0 V

Receipt Date of Sample : September 19, 2019

(Information from test lab.)

Country of Mass-production : Vietnam

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

#### 2.2 Product Description

Model: HLSS-5B (referred to as the EUT in this report) is a FOB of 2R SMART SYSTEM.

#### **Radio Specification**

Radio Type : Transmitter
Frequency of Operation : 433.92 MHz

Modulation : FSK

Antenna type : Pattern Antenna

Clock Frequency (Maximum) : 13 MHz

Radio Type : Receiver Frequency of Operation : 125 kHz \*1)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup> The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

<sup>\*1)</sup> The test of receiver part was performed separately from this test report, and the conformability is confirmed.

Test report No. : 13127991H-A-R1 Page : 6 of 21 **Issued date** : February 14, 2020

FCC ID : MLBHLSS-5B

#### **SECTION 3:** Test specification, procedures & results

#### 3.1 **Test Specification**

**Test Specification** FCC Part 15 Subpart C

FCC Part 15 final revised on July 19, 2019 and effective August 19, 2019 except 15.258

Title FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

#### 3.2 Procedures and results

| Item                                               | <b>Test Procedure</b>                                                  | Specification                                                                                        | Worst margin                                                 | Results        | Remarks  |
|----------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------|----------|
| Conducted emission                                 | FCC: ANSI C63.10:2013<br>6 Standard test methods<br>ISED: RSS-Gen 8.8  | FCC: Section 15.207  ISED: RSS-Gen 8.8                                                               | N/A                                                          | N/A            | *1)      |
| Automatically Deactivate                           | FCC: ANSI C63.10:2013<br>6 Standard test methods<br>ISED: -            | FCC: Section<br>15.231(a)(1)<br>ISED: RSS-210 A1.1                                                   | N/A                                                          | Complied<br>a) | Radiated |
| Electric Field Strength<br>of Fundamental Emission | FCC: ANSI C63.10:2013<br>6 Standard test methods<br>ISED: RSS-Gen 6.12 | FCC: Section 15.231(b)  ISED: RSS-210 A1.2                                                           | 5.6 dB<br>433.920 MHz<br>Vertical<br>PK with Duty<br>factor  | Complied<br>b) | Radiated |
| Electric Field Strength of Spurious Emission       | FCC: ANSI C63.10:2013<br>6 Standard test methods<br>ISED: RSS-Gen 6.13 | FCC: Section 15.205<br>Section 15.209<br>Section 15.231(b)<br>ISED: RSS-210 A1.2, 4.4<br>RSS-Gen 8.9 | 6.8 dB<br>3905.280 MHz<br>Vertical<br>PK with Duty<br>factor | Complied<br>b) | Radiated |
| -20dB Bandwidth                                    | FCC: ANSI C63.10:2013<br>6 Standard test methods<br>ISED: -            | FCC: Section 15.231(c)  ISED: Reference data                                                         | N/A                                                          | Complied c)    | Radiated |

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

a) Refer to APPENDIX 1 (data of Automatically deactivate)

b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))

c) Refer to APPENDIX 1 (data of -20dB and 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

#### FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

#### FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*1)</sup> The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13127991H-A-R1

Page : 7 of 21

Issued date : February 14, 2020 FCC ID : MLBHLSS-5B

#### 3.3 Addition to standard

| Item                                                                        | <b>Test Procedure</b> | Specification      | Worst margin | Results | Remarks  |  |
|-----------------------------------------------------------------------------|-----------------------|--------------------|--------------|---------|----------|--|
| 99 % Occupied<br>Bandwidth                                                  | ISED: RSS-Gen 6.7     | ISED: RSS-210 A1.3 | N/A          | -       | Radiated |  |
| Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422. |                       |                    |              |         |          |  |

Other than above, no addition, exclusion nor deviation has been made from the standard.

#### 3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

**Radiated emission** 

| Kaulateu elilissio   | <u> </u>                         |                   |        |
|----------------------|----------------------------------|-------------------|--------|
| Measurement distance | Frequency ran                    | Uncertainty (+/-) |        |
| 3 m                  | 9 kHz to 30 M                    | Hz                | 3.3 dB |
| 10 m                 |                                  |                   | 3.2 dB |
| 3 m                  | 30 MHz to 200 MHz                | (Horizontal)      | 4.8 dB |
|                      |                                  | (Vertical)        | 5.0 dB |
|                      | 200 MHz to 1000 MHz (Horizontal) |                   | 5.2 dB |
|                      |                                  | (Vertical)        | 6.3 dB |
| 10 m                 | 10 m 30 MHz to 200 MHz (I        |                   | 4.8 dB |
|                      |                                  | (Vertical)        | 4.8 dB |
|                      | 200 MHz to 1000 MHz              | (Horizontal)      | 5.0 dB |
|                      |                                  | (Vertical)        | 5.0 dB |
| 3 m                  | 1 GHz to 6 GI                    | łz                | 4.9 dB |
|                      | 6 GHz to 18 GHz                  |                   | 5.2 dB |
| 1 m                  | 10 GHz to 26.5 GHz               |                   | 5.5 dB |
|                      | 26.5 GHz to 40 G                 | GHz               | 5.5 dB |
| 10 m                 | 1 GHz to 18 G                    | Hz                | 5.2 dB |

#### **Antenna Terminal test**

| Test Item                                          | Uncertainty (+/-) |
|----------------------------------------------------|-------------------|
| Automatically Deactivate                           | 0.10 %            |
| -20dB Emission Bandwidth / 99 % Occupied Bandwidth | 0.96 %            |

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1 Page : 8 of 21

Issued date : February 14, 2020 FCC ID : MLBHLSS-5B

#### 3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

\*NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

| Test site                  | Width x Depth x<br>Height (m) | Size of reference ground plane (m) / horizontal conducting plane | Other rooms            | Maximum<br>measurement<br>distance |
|----------------------------|-------------------------------|------------------------------------------------------------------|------------------------|------------------------------------|
| No.1 semi-anechoic chamber | 19.2 x 11.2 x 7.7             | 7.0 x 6.0                                                        | No.1 Power source room | 10 m                               |
| No.2 semi-anechoic chamber | 7.5 x 5.8 x 5.2               | 4.0 x 4.0                                                        | -                      | 3 m                                |
| No.3 semi-anechoic chamber | 12.0 x 8.5 x 5.9              | 6.8 x 5.75                                                       | No.3 Preparation room  | 3 m                                |
| No.3 shielded room         | 4.0 x 6.0 x 2.7               | N/A                                                              | -                      | -                                  |
| No.4 semi-anechoic chamber | 12.0 x 8.5 x 5.9              | 6.8 x 5.75                                                       | No.4 Preparation room  | 3 m                                |
| No.4 shielded room         | 4.0 x 6.0 x 2.7               | N/A                                                              | -                      | -                                  |
| No.5 semi-anechoic chamber | 6.0 x 6.0 x 3.9               | 6.0 x 6.0                                                        | -                      | -                                  |
| No.5 measurement room      | 6.4 x 6.4 x 3.0               | 6.4 x 6.4                                                        | -                      | -                                  |
| No.6 shielded room         | 4.0 x 4.5 x 2.7               | 4.0 x 4.5                                                        | -                      | -                                  |
| No.6 measurement room      | 4.75 x 5.4 x 3.0              | 4.75 x 4.15                                                      | -                      | -                                  |
| No.7 shielded room         | 4.7 x 7.5 x 2.7               | 4.7 x 7.5                                                        | -                      | -                                  |
| No.8 measurement room      | 3.1 x 5.0 x 2.7               | 3.1 x 5.0                                                        | -                      | -                                  |
| No.9 measurement room      | 8.8 x 4.6 x 2.8               | 2.4 x 2.4                                                        | -                      |                                    |
| No.11 measurement room     | 6.2 x 4.7 x 3.0               | 4.8 x 4.6                                                        | -                      | -                                  |

<sup>\*</sup> Size of vertical conducting plane (for Conducted Emission test):  $2.0 \times 2.0 \text{ m}$  for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

#### 3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1
Page : 9 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

#### **SECTION 4:** Operation of E.U.T. during testing

#### 4.1 **Operating Mode(s)**

| Test Item*                                      | Mode                       |
|-------------------------------------------------|----------------------------|
| Automatically Deactivate                        | Normal use mode            |
| Electric Field Strength of Fundamental Emission | Transmitting mode (Tx) *1) |
| Electric Field Strength of Spurious Emission    |                            |
| -20 dB & 99 % Occupied Bandwidth                |                            |

<sup>\*</sup> The system was configured in typical fashion (as a user would normally use it) for testing.

\*EUT was set by the software as follows;

Software: MKR-2A RF Version 1.0.0

(Date: 2019.09.07, Storage location: IC1)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

#### 4.2 Configuration and peripherals

A

**Description of EUT** 

| No. | Item            | Model number | Serial number | Manufacturer                 | Remarks |
|-----|-----------------|--------------|---------------|------------------------------|---------|
| A   | Smart Key (FOB) | HLSS-5B      | FT-001 *1)    | Honda Lock Vietnam Co., Ltd. | EUT     |
|     | • ` ` ´         |              | FR-001 *2)    |                              |         |

<sup>\*1)</sup> Used for Normal use mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*1)</sup> The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, EUT stops to transmit in a given time, even if transceiver button is being pressed.)

<sup>\*</sup>This setting of software is the worst case.

<sup>\*</sup> Setup was taken into consideration and test data was taken under worse case conditions.

<sup>\*2)</sup> Used for Transmitting mode

Test report No. : 13127991H-A-R1
Page : 10 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

# **SECTION 5:** Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

#### **Test Procedure and conditions**

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

#### [For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

#### [For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

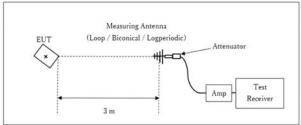
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

#### Test Antennas are used as below:

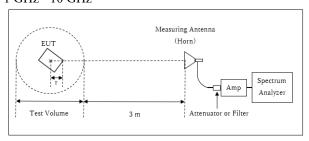
| Frequency    | Below 30 MHz | 30 MHz to 200 MHz | 200 MHz to 1 GHz | Above 1 GHz |
|--------------|--------------|-------------------|------------------|-------------|
| Antenna Type | Loop         | Biconical         | Logperiodic      | Horn        |


|              | From 9 kHz    | From       | From       | From      | From        | Above 1 GHz           |
|--------------|---------------|------------|------------|-----------|-------------|-----------------------|
|              | to 90 kHz and | 90 kHz     | 150 kHz    | 490 kHz   | 30 MHz      |                       |
|              | From 110 kHz  | to 110 kHz | to 490 kHz | to 30 MHz | to 1 GHz    |                       |
|              | to 150 kHz    |            |            |           |             |                       |
| Detector     | Peak          | Peak       | Peak       | Peak      | Peak and    | Peak and              |
| Type         |               |            |            |           | Peak with   | Peak with Duty factor |
|              |               |            |            |           | Duty factor |                       |
| IF Bandwidth | 200 Hz        | 200 Hz     | 9.0 kHz    | 9.0 kHz   | 120 kHz     | PK: S/A: RBW 1 MHz,   |
|              |               |            |            |           |             | VBW: 3 MHz            |

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1
Page : 11 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

### [Test Setup]


#### Below 1 GHz



× : Center of turn table

Test Distance: 3 m

#### 1 GHz - 10 GHz



- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Distance Factor:  $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ \* Test Distance: (3 + Test Volume / 2) - r = 4.00 m

Test Volume : 2.0 m (Test Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m

\* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined. Noise levels of all the frequencies were measured at the position.
- This EUT has two modes which mechanical key is folded in or out. The worst case was confirmed that mechanical key is folded in or out, as a result, the test which mechanical key was folded in was the worst case. Therefore the test was performed under the worst condition.
- \*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 30 MHz - 4.4 GHz
Test data : APPENDIX

Test result : Pass

## UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1
Page : 12 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

#### **SECTION 6: Automatically deactivate**

#### **Test Procedure**

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

#### SECTION 7: -20 dB and 99 % Occupied Bandwidth

#### **Test Procedure**

The test was measured with a spectrum analyzer using a test fixture.

| Test                       | Span                                    | RBW                | VBW                                     | Sweep   | Detector | Trace           | Instrument used   |
|----------------------------|-----------------------------------------|--------------------|-----------------------------------------|---------|----------|-----------------|-------------------|
| 20 dB Bandwidth            | 200kHz                                  | 2 kHz              | 6.2 kHz                                 | Auto    | Peak     | Max Hold        | Spectrum Analyzer |
| 99 % Occupied<br>Bandwidth | Enough width to display emission skirts | 1 to 5 %<br>of OBW | Three times of RBW                      | Auto    | Peak *1) | Max Hold<br>*1) | Spectrum Analyzer |
| *1\TT                      | c 1 'd D 1                              | 1                  | T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 . 1.0 | 0.07     |                 |                   |

<sup>\*1)</sup> The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.

Test data : APPENDIX

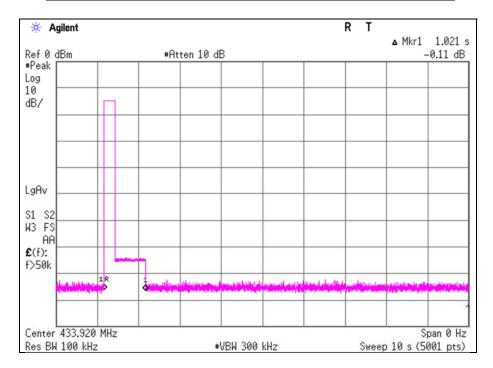
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1
Page : 13 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

#### **APPENDIX 1:** Test data


#### **Automatically deactivate**

Report No. 13127991H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 12, 2019
Temperature / Humidity 23 deg. C / 36 % RH
Engineer Junki Nagatomi
Mode Normal use mode

| Time of      | Limit | Result |
|--------------|-------|--------|
| Transmitting |       |        |
| [sec]        | [sec] |        |
| 1.021        | 5.00  | Pass   |



<sup>\*</sup> The EUT transmits UHF when LF signal is received from a car or a button on the EUT is pressed. In both cases, the UHF transmission is stopped within 5 seconds. So the test was performed by a button-pressed operation as the worst case.

Please refer to the "Theory of Operation" for details.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1 Page : 14 of 21 Issued date : February 14, 2020

FCC ID : MLBHLSS-5B

#### Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

13127991H Report No. Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 12, 2019 Temperature / Humidity 23 deg. C / 36 % RH Junki Nagatomi Engineer Mode Tx 433.92 MHz

#### QP or PK

| Frequency | Detector | Rea  | ding | Ant    | Loss | Gain | Duty   | Res  | sult | Limit    | Margin |      | Remark              |
|-----------|----------|------|------|--------|------|------|--------|------|------|----------|--------|------|---------------------|
|           |          | [dB  | uV]  | Factor |      |      | Factor | [dBu | V/m] |          | [dB]   |      | Inside or Outside   |
| [MHz]     |          | Hor  | Ver  | [dB/m] | [dB] | [dB] | [dB]   | Hor  | Ver  | [dBuV/m] | Hor    | Ver  | of Restricted Bands |
| 433.920   | PK       | 79.7 | 79.8 | 16.4   | 11.0 | 32.0 | -      | 75.1 | 75.2 | 100.8    | 25.7   | 25.6 | Carrier             |
| 867.840   | PK       | 40.8 | 38.1 | 21.7   | 13.2 | 31.3 | -      | 44.5 | 41.8 | 80.8     | 36.3   | 39.0 | Outside             |
| 1301.760  | PK       | 43.5 | 44.0 | 25.2   | 6.2  | 33.9 | -      | 41.0 | 41.5 | 73.9     | 32.9   | 32.4 | Inside              |
| 1735.680  | PK       | 43.1 | 43.1 | 25.1   | 5.8  | 32.7 | -      | 41.2 | 41.3 | 80.8     | 39.6   | 39.6 | Outside             |
| 2169.600  | PK       | 42.9 | 42.8 | 27.9   | 5.9  | 32.0 | -      | 44.7 | 44.6 | 80.8     | 36.1   | 36.2 | Outside             |
| 2603.520  | PK       | 42.7 | 42.7 | 28.0   | 6.0  | 31.8 | -      | 44.9 | 44.9 | 80.8     | 35.9   | 35.9 | Outside             |
| 3037.440  | PK       | 42.2 | 42.2 | 28.6   | 6.2  | 31.6 | -      | 45.4 | 45.4 | 80.8     | 35.4   | 35.4 | Outside             |
| 3471.360  | PK       | 41.9 | 41.8 | 28.7   | 6.3  | 31.5 | -      | 45.4 | 45.4 | 80.8     | 35.4   | 35.4 | Outside             |
| 3905.280  | PK       | 41.5 | 42.2 | 29.8   | 6.5  | 31.4 | -      | 46.4 | 47.1 | 73.9     | 27.5   | 26.8 | Inside              |
| 4339.200  | PK       | 41.4 | 41.1 | 30.3   | 6.7  | 31.3 | -      | 47.0 | 46.7 | 73.9     | 26.9   | 27.2 | Inside              |

#### PK with Duty factor

| Frequency | Detector | Rea  | ding | Ant    | Loss | Gain | Duty   | Res      | sult | Limit    | Mai  | rgin | Remark  |
|-----------|----------|------|------|--------|------|------|--------|----------|------|----------|------|------|---------|
|           |          | [dB  | uV]  | Factor |      |      | Factor | [dBuV/m] |      |          | [dB] |      |         |
| [MHz]     |          | Hor  | Ver  | [dB/m] | [dB] | [dB] | [dB]   | Hor      | Ver  | [dBuV/m] | Hor  | Ver  |         |
| 433.920   | PK       | 79.7 | 79.8 | 16.4   | 11.0 | 32.0 | 0.0    | 75.1     | 75.2 | 80.8     | 5.7  | 5.6  | Carrier |
| 867.840   | PK       | 40.8 | 38.1 | 21.7   | 13.2 | 31.3 | 0.0    | 44.5     | 41.8 | 60.8     | 16.3 | 19.0 | Outside |
| 1301.760  | PK       | 43.5 | 44.0 | 25.2   | 6.2  | 33.9 | 0.0    | 41.0     | 41.5 | 53.9     | 12.9 | 12.4 | Inside  |
| 1735.680  | PK       | 43.1 | 43.1 | 25.1   | 5.8  | 32.7 | 0.0    | 41.2     | 41.3 | 60.8     | 19.6 | 19.6 | Outside |
| 2169.600  | PK       | 42.9 | 42.8 | 27.9   | 5.9  | 32.0 | 0.0    | 44.7     | 44.6 | 60.8     | 16.1 | 16.2 | Outside |
| 2603.520  | PK       | 42.7 | 42.7 | 28.0   | 6.0  | 31.8 | 0.0    | 44.9     | 44.9 | 60.8     | 15.9 | 15.9 | Outside |
| 3037.440  | PK       | 42.2 | 42.2 | 28.6   | 6.2  | 31.6 | 0.0    | 45.4     | 45.4 | 60.8     | 15.4 | 15.4 | Outside |
| 3471.360  | PK       | 41.9 | 41.8 | 28.7   | 6.3  | 31.5 | 0.0    | 45.4     | 45.4 | 60.8     | 15.4 | 15.4 | Outside |
| 3905.280  | PK       | 41.5 | 42.2 | 29.8   | 6.5  | 31.4 | 0.0    | 46.4     | 47.1 | 53.9     | 7.5  | 6.8  | Inside  |
| 4339.200  | PK       | 41.4 | 41.1 | 30.3   | 6.7  | 31.3 | 0.0    | 47.0     | 46.7 | 53.9     | 6.9  | 7.2  | Inside  |

#### Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor:  $20 \times \log (4.0 \text{ m/}3.0 \text{ m}) = 2.50 \text{ dB}$ 

Since the peak emission result satisfied the average limit, duty factor was omitted.

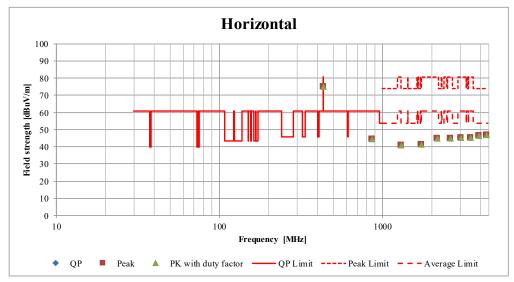
Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

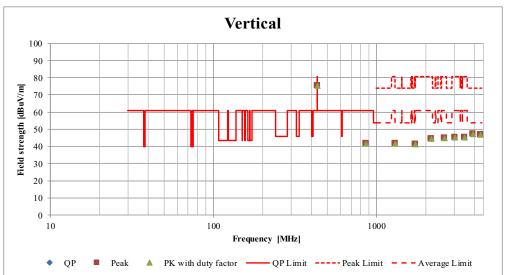
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 13127991H-A-R1
Page : 15 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B


# Radiated Spurious Emission (Plot data, Worst case)


Report No. 13127991H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 12, 2019
Temperature / Humidity 23 deg. C / 36 % RH
Engineer Junki Nagatomi
(Below 1 GHz)

Mode Tx 433.92 MHz





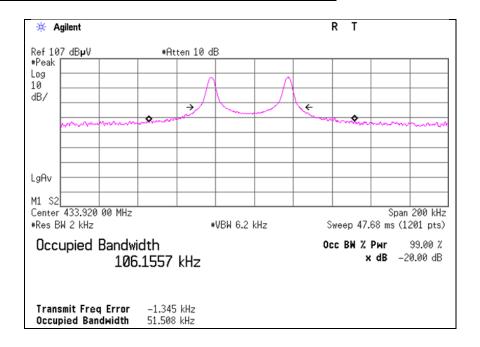
<sup>\*</sup>These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1
Page : 16 of 21
Issued date : February 14, 2020
FCC ID : MLBHLSS-5B

### -20dB and 99% Occupied Bandwidth

Report No. 13127991H Test place Ise EMC Lab.


Semi Anechoic Chamber No.4

Date December 12, 2019
Temperature / Humidity 23 deg. C / 36 % RH
Engineer Junki Nagatomi
Mode Tx 433.92 MHz

Bandwidth Limit: Fundamental Frequency 433.92 MHz x 0.25% = 1084.80 kHz
\* The above limit was calculated from more stringent nominal frequency.

| -20dB Bandwidth | Bandwidth Limit | Result |
|-----------------|-----------------|--------|
| 51.508          | 1084.80         | Pass   |

| 99% Occupied Bandwidth | Bandwidth Limit | Result |
|------------------------|-----------------|--------|
| [kHz]                  | [kHz]           |        |
| 106.1557               | 1084.80         | Pass   |



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13127991H-A-R1 Page : 17 of 21

Issued date : February 14, 2020 FCC ID : MLBHLSS-5B

#### **APPENDIX 2:** Test instruments

#### **Test Instruments**

| Test item | LIMS ID | Description                         | Manufacturer         | Model                       | Serial                          | Last<br>Calibration<br>Date | Calibration<br>Due Date | Cal Int |
|-----------|---------|-------------------------------------|----------------------|-----------------------------|---------------------------------|-----------------------------|-------------------------|---------|
| RE        | 141331  | Attenuator(6dB)                     | TME                  | UFA-01                      | -                               | 02/05/2019                  | 02/29/2020              | 12      |
| RE        | 142227  | Measure                             | KOMELON              | KMC-36                      | -                               | -                           | _                       | -       |
| RE        | 141397  | Coaxial Cable                       | UL Japan             | -                           | -                               | 06/18/2019                  | 06/30/2020              | 12      |
| RE        | 141545  | DIGITAL HITESTER                    | HIOKI                | 3805                        | 51201148                        | 01/29/2019                  | 01/31/2020              | 12      |
| RE        | 141951  | EMI Test Receiver                   | Rohde & Schwarz      | ESR26                       | 101408                          | -                           | -                       | -       |
| RE        | 178648  | EMI measurement program             | TSJ                  | TEPTO-DV                    | -                               | -                           | -                       | -       |
| RE        | 141267  | Logperiodic<br>Antenna(200-1000MHz) | Schwarzbeck          | VUSLP9111B                  | 9111B-192                       | 08/24/2019                  | 08/31/2020              | 12      |
| RE        | 141583  | Pre Amplifier                       | SONOMA<br>INSTRUMENT | 310                         | 260833                          | 02/08/2019                  | 02/29/2020              | 12      |
| RE        | 142011  | AC4_Semi Anechoic<br>Chamber(NSA)   | TDK                  | Semi Anechoic<br>Chamber 3m | DA-10005                        | 06/28/2018                  | 06/30/2020              | 24      |
| RE        | 141562  | Thermo-Hygrometer                   | CUSTOM               | CTH-201                     | 0010                            | 01/11/2019                  | 01/31/2020              | 12      |
| RE        | 141581  | MicroWave System<br>Amplifier       | AGILENT              | 83017A                      | 650                             | 10/16/2019                  | 10/31/2020              | 12      |
| RE        | 141412  | Microwave Cable                     | Junkosha             | MWX221                      | 1305S002R(1m) /<br>1405S146(5m) | 06/17/2019                  | 06/30/2020              | 12      |
| RE        | 141884  | Spectrum Analyzer                   | AGILENT              | E4448A                      | MY44020357                      | 03/13/2019                  | 03/31/2020              | 12      |
| RE        | 141297  | High Pass<br>Filter(1.1-10GHz)      | TOKYO KEIKI          | TF219CD1                    | 1001                            | 01/10/2019                  | 01/31/2020              | 12      |
| RE        | 142017  | AC4_Semi Anechoic<br>Chamber(SVSWR) | TDK                  | Semi Anechoic<br>Chamber 3m | DA-10005                        | 04/04/2019                  | 04/30/2021              | 24      |
| RE        | 141508  | Horn Antenna 1-18GHz                | Schwarzbeck          | BBHA9120D                   | 9120D-557                       | 09/26/2019                  | 09/30/2020              | 12      |
| RE        | 141425  | Biconical Antenna                   | Schwarzbeck          | VHA9103+<br>BBA9106         | 1302                            | 08/24/2019                  | 08/31/2020              | 12      |
| RE        | 142645  | Loop Antenna                        | UL Japan             | -                           | -                               | -                           | -                       | -       |

<sup>\*</sup>Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

#### Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, and Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN