

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM140400167002 Page: 1 of 63

FCC REPORT

Application No:	SZEM1404001670RF
Applicant:	Creative Labs Inc
Manufacturer:	Creative Technology Ltd.
Product Name:	Creative MUVO mini
Model No.(EUT):	MF8200
Trade Mark:	Creative
FCC ID:	IBAMF8200
Standards:	47 CFR Part 15, Subpart C (2013)
Date of Receipt:	2014-04-21
Date of Test:	2014-04-22 to 2014-04-30
Date of Issue:	2014-05-07
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM140400167002 Page: 2 of 63

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	KDB558074 D01 v03r01	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	KDB558074 D01 v03r01	PASS
Power Spectral Density	bectral Density 47 CFR Part 15, Subpart C Section KDB558074 D01 15.247 (e) v03r01		PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r01	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r01	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Report No.: SZEM140400167002 Page: 3 of 63

3 Contents

1	I COVER PAGE	1
2	2 TEST SUMMARY	2
3	3 CONTENTS	3
4	4 GENERAL INFORMATION	4
	 4.1 CLIENT INFORMATION	
5	4.10 EQUIPMENT LIST	-
	 5.1 ANTENNA REQUIREMENT	12 16 19 22 25 25 27 34 34 34
6	6 PHOTOGRAPHS - EUT TEST SETUP	51
-	 6.1 CONDUCTED EMISSION 6.2 RADIATED EMISSION 6.3 RADIATED SPURIOUS EMISSION 7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS 	51 52
7	PHUTUGRAPHS - EUT CONSTRUCTIONAL DETAILS	

Report No.: SZEM140400167002 Page: 4 of 63

4 General Information

4.1 Client Information

Applicant:	Creative Labs Inc
Address of Applicant:	1901, McCarthy Boulevard, Milpitas, CA 95035, United States
Manufacturer:	Creative Technology Ltd.
Address of Manufacturer:	31, International Business Park, #03-01 Creative Resource, Singapore 609921

4.2 General Description of EUT

Product Name:	Creative MUVO mini
Model No.:	MF8200
Trade Mark:	Creative
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0(with BLE mode)
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable production
Test Power Grade:	0 (manufacturer declare)
Test Software of EUT:	Bluetest3 (manufacturer declare)
Antenna Type:	Integral
Antenna Gain:	-0.84dBi
Power Supply:	DC 3.6V 2200mAh (Li-lon Rechargeable Battery); DC 5V 1000mA (USB)
Test Voltage:	AC 120V 60Hz
USB Cable:	60cm(Unshielded)

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140400167002 Page: 5 of 63

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

Report No.: SZEM140400167002 Page: 6 of 63

4.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1010mbar	

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
Adapter	Supply by SGS	Output: DC 5V 1A

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM140400167002 Page: 7 of 63

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM140400167002 Page: 8 of 63

4.10Equipment List

	Conducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2014-06-10	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2014-10-24	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2014-05-16	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2014-11-10	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2014-11-10	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2014-11-10	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2014-05-16	
8	Coaxial Cable	SGS	N/A	SEL0025	2014-05-29	
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24	
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24	
11	Barometer	Chang Chun	DYM3	SEL0088	2014-05-24	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140400167002 Page: 9 of 63

	RE in Chamber					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2014-06-10	
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2014-05-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-10-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2014-05-16	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24	
9	Coaxial cable	SGS	N/A	SEL0027	2014-05-29	
10	Coaxial cable	SGS	N/A	SEL0189	2014-05-29	
11	Coaxial cable	SGS	N/A	SEL0121	2014-05-29	
12	Coaxial cable	SGS	N/A	SEL0178	2014-05-29	
13	Band filter	Amindeon	82346	SEL0094	2014-05-16	
14	Barometer	Chang Chun	DYM3	SEL0088	2014-05-24	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2014-05-16	
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24	
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2014-06-04	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140400167002 Page: 10 of 63

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2014-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2014-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2014-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2014-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2014-05-24
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2014-05-16
8	Band filter	amideon	82346	SEL0094	2014-05-16
9	POWER METER	R & S	NRVS	SEL0144	2014-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2014-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2014-10-24

Note: The calibration interval is one year, all the instruments are valid.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

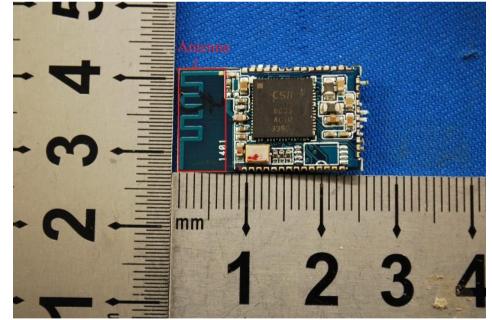
Report No.: SZEM140400167002 Page: 11 of 63

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

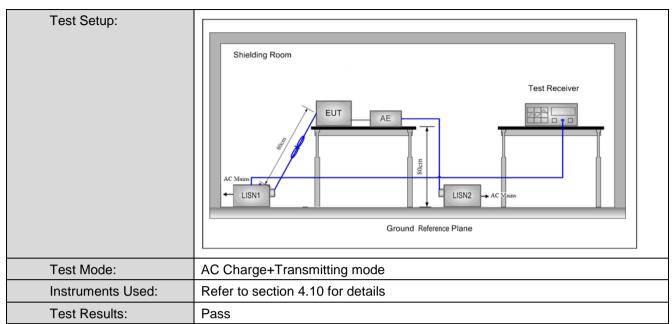

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.84dBi.


Report No.: SZEM140400167002 Page: 12 of 63

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2009				
Test Frequency Range:	150kHz to 30MHz	ЛНz			
Limit:		Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shield room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane plane. And for floor standing arrangement the EUT was placed upon a mon-metallic table 0.8m above the ground reference plane plane. 				
	 ground reference plane. And for floor-standing arrangement, the EUT is placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The real of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. 				

5.2 Conducted Emissions

Report No.: SZEM140400167002 Page: 13 of 63

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140400167002 Page: 14 of 63

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

11

12

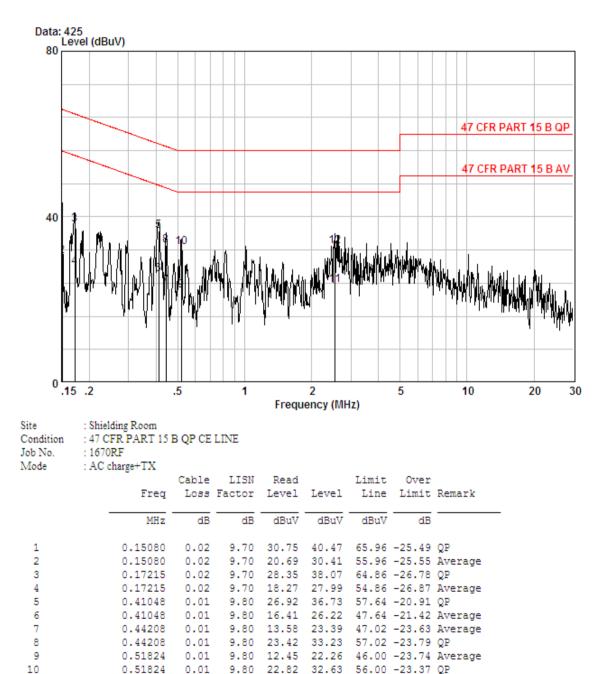
2.540

2.540

0.02

0.02

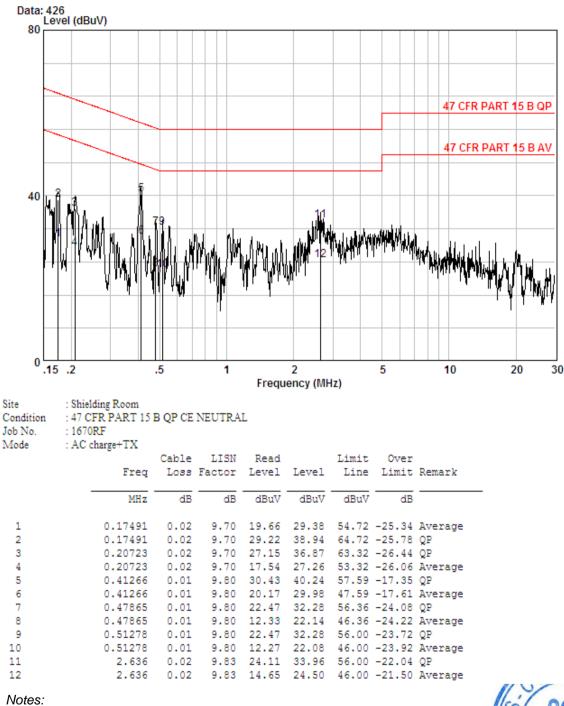
9.83


13.65

9.83 23.07

23.50

46.00 -22.50 Average


32.92 56.00 -23.08 QP

Report No.: SZEM140400167002 Page: 15 of 63

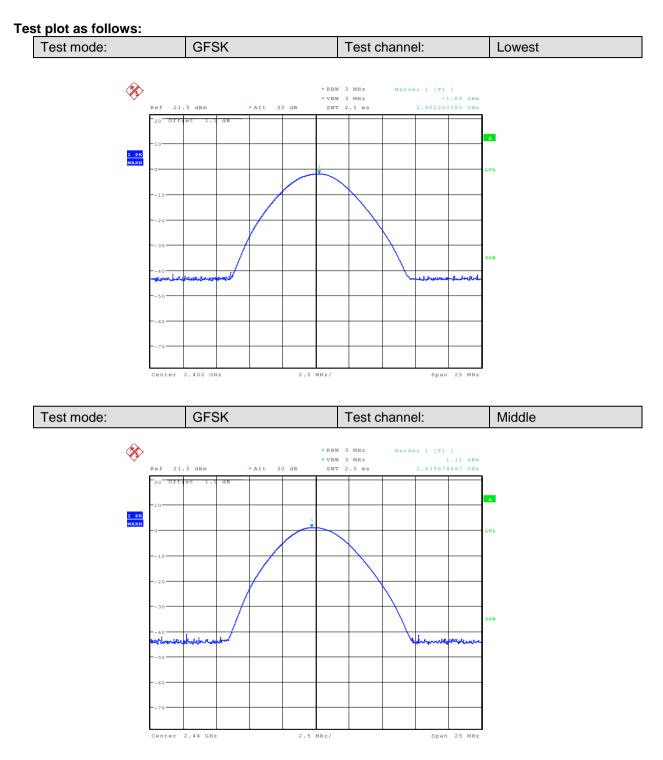
Neutral line:

1. The following Quasi-Peak and Average measurements were performed on the E

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

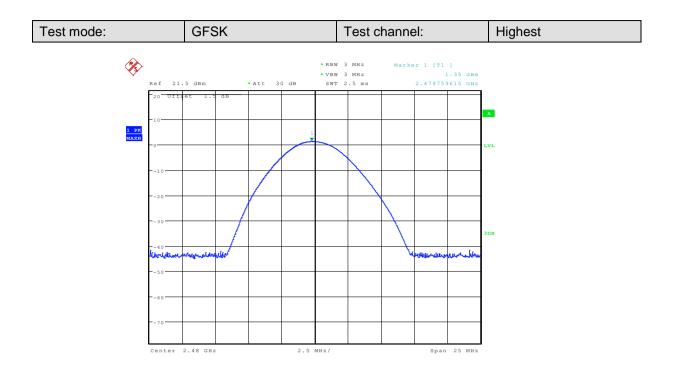
Report No.: SZEM140400167002 Page: 16 of 63

5.3 Conducted Peak Output Power


Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
Test Method:	KDB558074 D01 v03r01	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	
	Ground Reference Plane	
	Remark:	
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	30dBm	
Test Mode:	Non-hopping transmitting with GFSK modulation	
Instruments Used:	Refer to section 4.10 for details	
Test Results:	Pass	

Measurement Data

GFSK mode					
Test channel Peak Output Power (dBm) Limit (dBm) Result					
Lowest	-1.84	30.00	Pass		
Middle	1.11	30.00	Pass		
Highest	1.35	30.00	Pass		

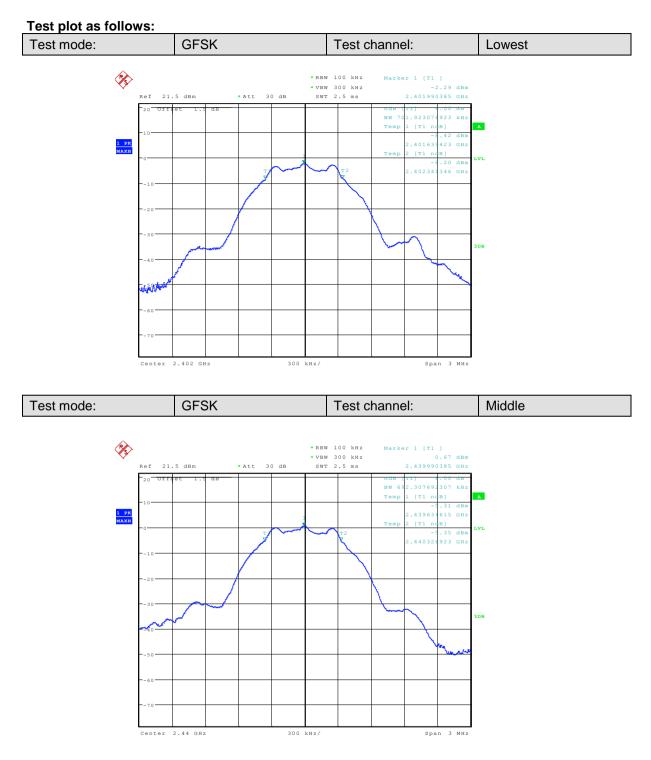


Report No.: SZEM140400167002 Page: 17 of 63

Report No.: SZEM140400167002 Page: 18 of 63

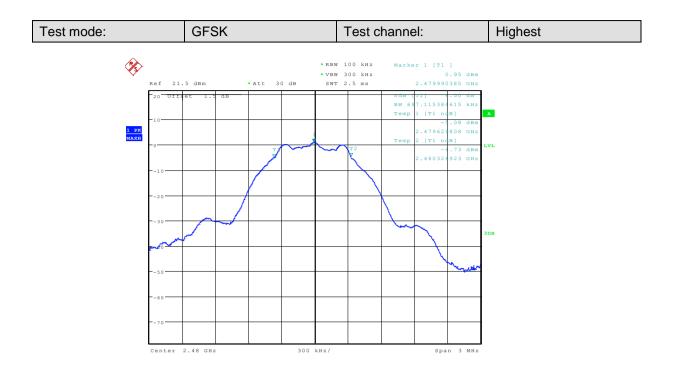
Report No.: SZEM140400167002 Page: 19 of 63

47 CFR Part 15C Section 15.247 (a)(2) **Test Requirement:** Test Method: KDB558074 D01 v03r01 Test Setup: Spectrum Analyzer E.U.T (Non-Conducted Table **Ground Reference Plane** Limit: ≥ 500 kHz Non-hopping transmitting with GFSK modulation Test Mode: Instruments Used: Refer to section 4.10 for details Test Results: Pass


5.4 6dB Occupy Bandwidth

Measurement Data

Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.701923076923	≥500	Pass
Middle	0.692307692307	≥500	Pass
Highest	0.697115384615	≥500	Pass

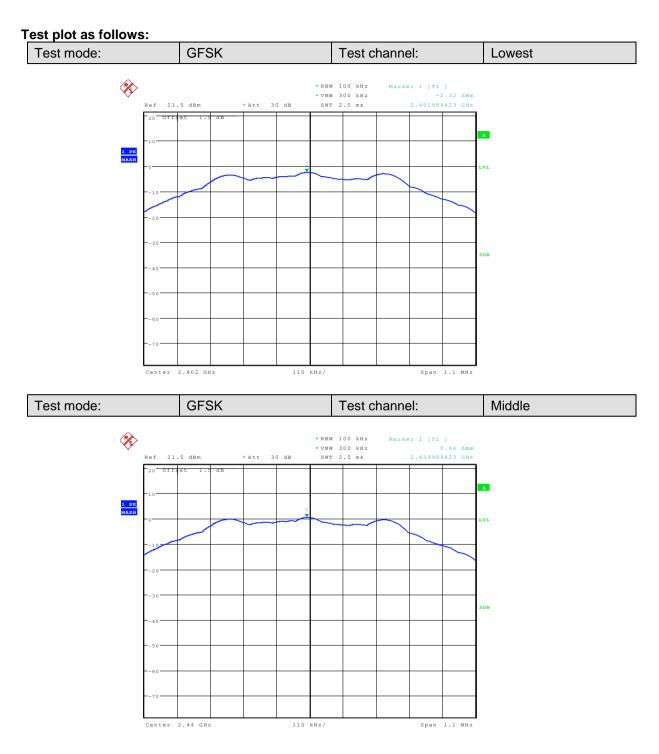


Report No.: SZEM140400167002 Page: 20 of 63

Report No.: SZEM140400167002 Page: 21 of 63

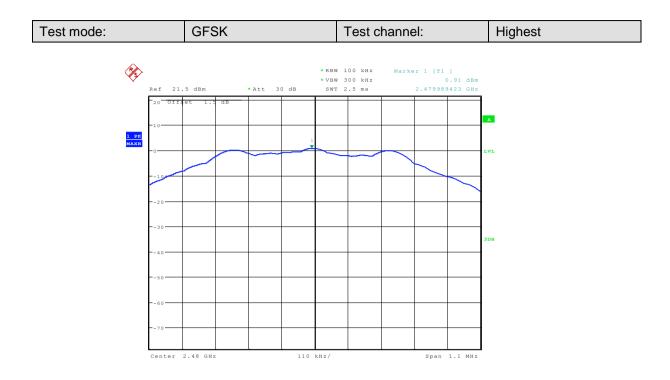
Report No.: SZEM140400167002 Page: 22 of 63

Test Requirement: 47 CFR Part 15C Section 15.247 (e) KDB558074 D01 v03r01 **Test Method:** Test Setup: Spectrum Analyzer E.U.T 6 Non-Conducted Table Ground Reference Plane Limit: ≤8.00dBm Exploratory Test Mode: Non-hopping transmitting with GFSK modulation Refer to section 4.10 for details Instruments Used: Test Results: Pass


5.5 Power Spectral Density

Measurement Data

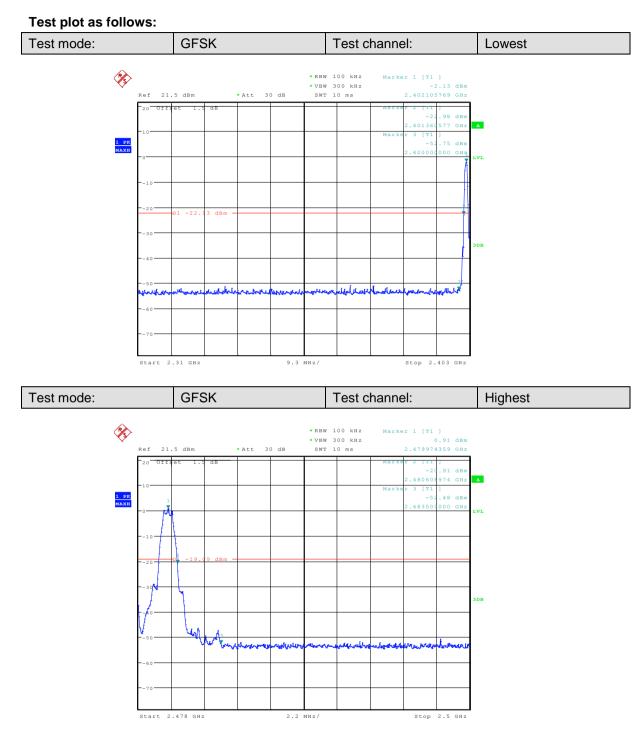
GFSK mode					
Test channel	Power Spectral Density (dBm)	Limit (dBm)	Result		
Lowest	-2.32	≤8.00	Pass		
Middle	0.64	≤8.00	Pass		
Highest	0.91	≤8.00	Pass		



Report No.: SZEM140400167002 Page: 23 of 63

Report No.: SZEM140400167002 Page: 24 of 63

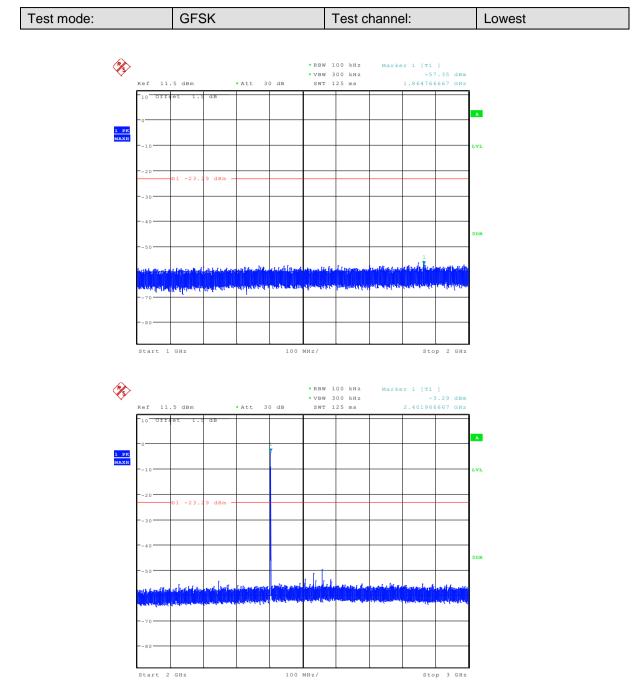
Report No.: SZEM140400167002 Page: 25 of 63


Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	KDB558074 D01 v03r01		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offact the High Fraguency cepto loss 1.5 dP in the encetrum analyzer		
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Mode:	Non-hopping transmitting with GFSK modulation		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		

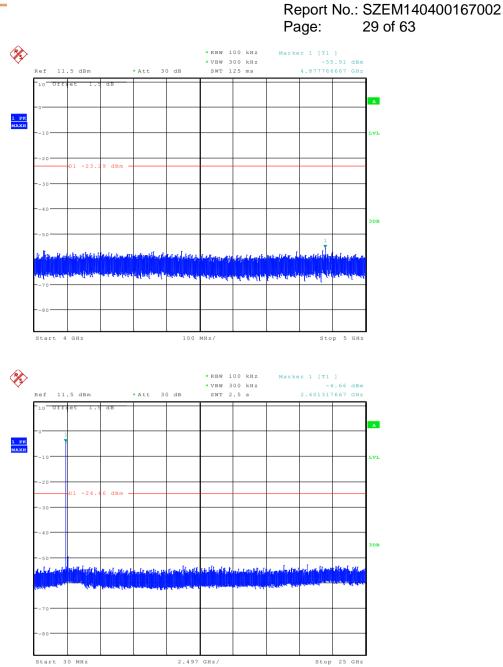
5.6 Band-edge for RF Conducted Emissions

Report No.: SZEM140400167002 Page: 26 of 63

Report No.: SZEM140400167002 Page: 27 of 63

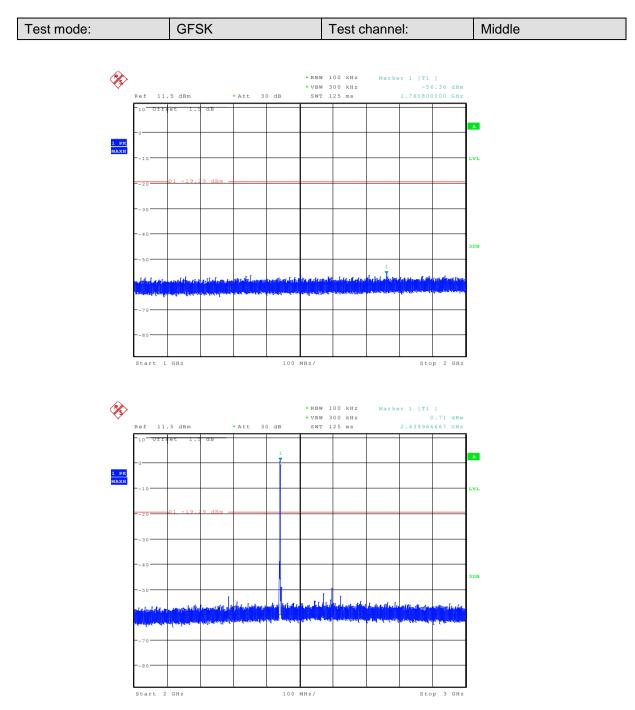

5.7 Spurious RF Conducted Emissions

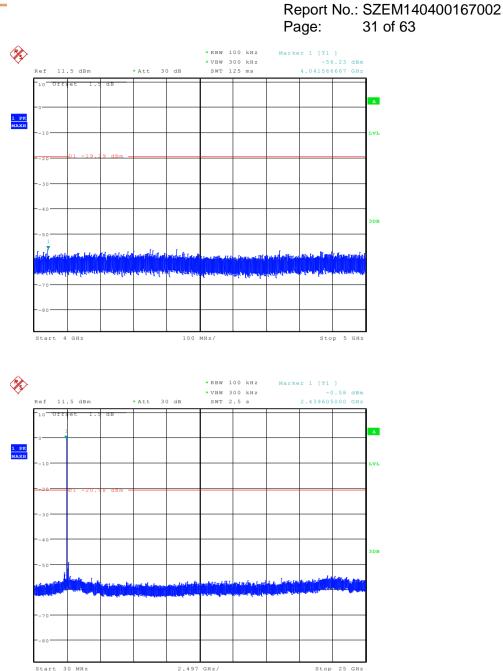
Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	KDB558074 D01 v03r01			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Mode:	Non-hopping transmitting with GFSK modulation			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			



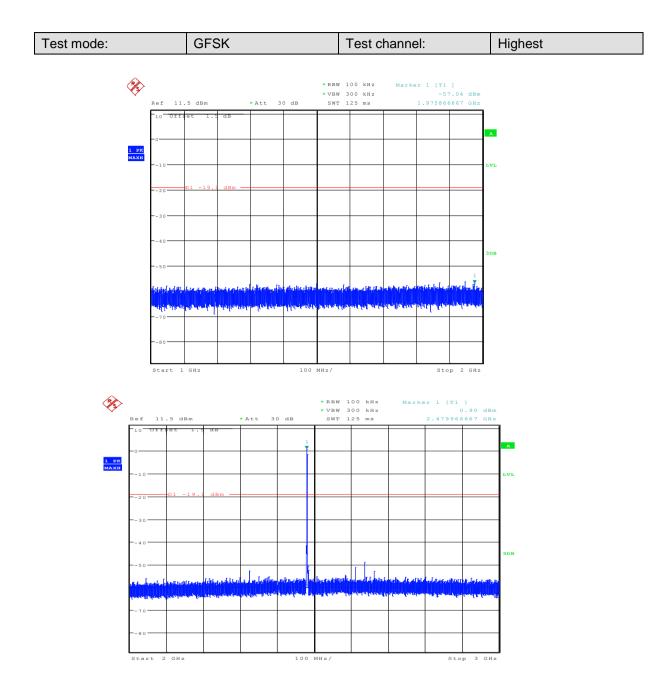
Report No.: SZEM140400167002 Page: 28 of 63

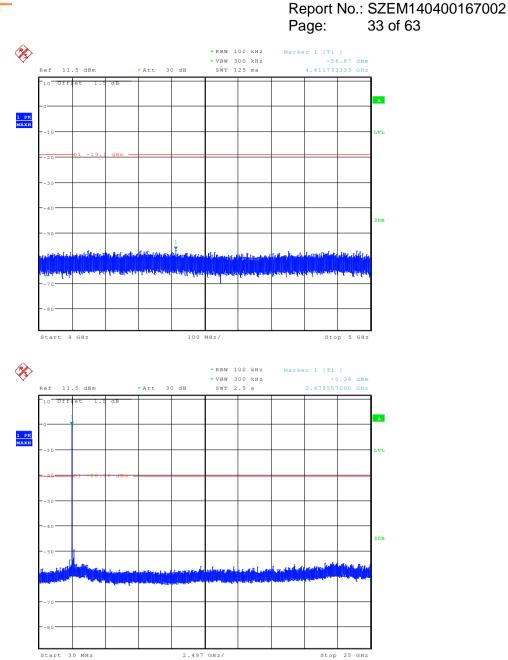
Test plot as follows:





Report No.: SZEM140400167002 Page: 30 of 63



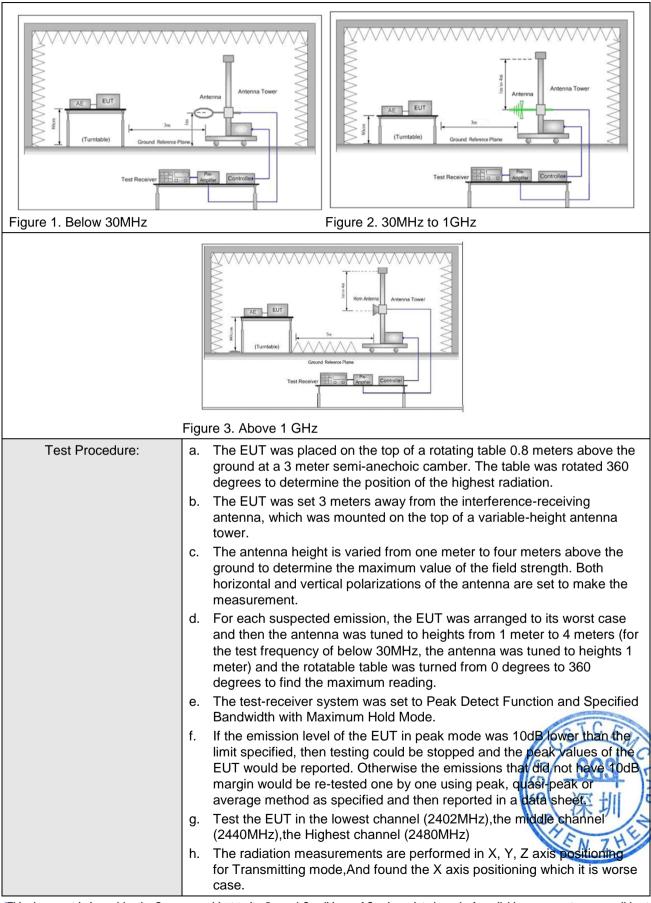


Report No.: SZEM140400167002 Page: 32 of 63

Date: 22.APR.2014 10:20:53

Remark:

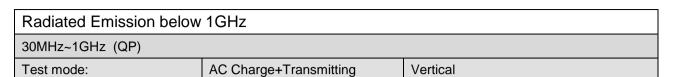
Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report.

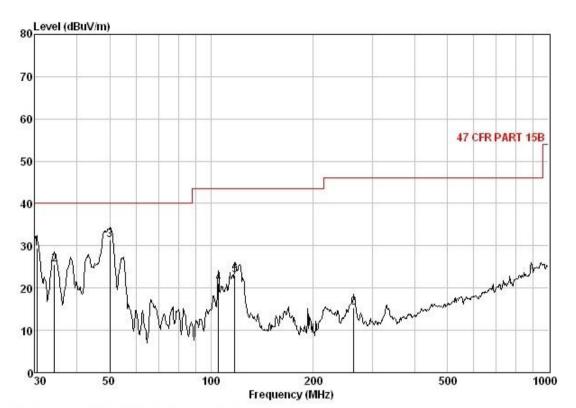

Report No.: SZEM140400167002 Page: 34 of 63

5.8 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2009							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark	
	0.009MHz-0.090MH	Z	Peak	10kHz	2	30kHz	Peak	
	0.009MHz-0.090MH	z	Average	10kHz	<u>-</u>	30kHz	Average	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	<u>r</u>	30kHz	Quasi-peak	
	0.110MHz-0.490MH	z	Peak	10kHz	<u>r</u>	30kHz	Peak	
	0.110MHz-0.490MH	z	Average	10kHz	2	30kHz	Average	
	0.490MHz -30MHz 30MHz-1GHz Above 1GHz		Quasi-peak	10kHz	2	30kHz	Quasi-peak	
			Quasi-peak	100 kH	z	300kHz	Quasi-peak	
			Peak	1MHz		3MHz	Peak	
			Peak	1MHz		10Hz	Average	
Limit:	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark		Measureme distance (n	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-		300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-		30	
	1.705MHz-30MHz		30	-	-		30	
	30MHz-88MHz		100	40.0	Quasi-peak		3	
	88MHz-216MHz		150	43.5	Quasi-peak		3	
	216MHz-960MHz		200	46.0	Quasi-peak		3	
		500		F 4 0	Quasi-peak		3	
	960MHz-1GHz		500	54.0		addi podit		
	960MHz-1GHz Above 1GHz		500 500	54.0 54.0		Average	3	
		20d quip	500 ess otherwise IB above the i oment under to	54.0 specified maximum est. This p	l, t per	Average the limit committed ave	n peak radio rage emissio	n

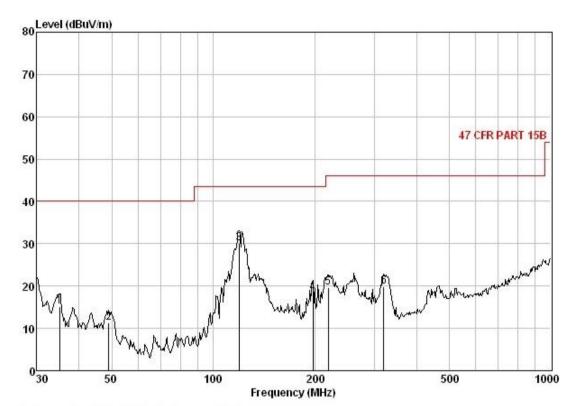
Report No.: SZEM140400167002 Page: 35 of 63




Report No.: SZEM140400167002 Page: 36 of 63

	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting with GFSK modulation Transmitting mode, AC Charge +Transmitting mode
Final Test Mode:	Pretest the EUT at Transmitting mode and AC Charge +Transmitting mode, found the AC Charge +Transmitting mode which it is worse case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass

Report No.: SZEM140400167002 Page: 37 of 63


Condition: 47 CFR PART 15B 3m 3142C VERTICAL Job No, : 1670RF Mode : AC Charge+TX

oue	. ne c Freq	120 <u>1</u> 1000 000 000 000	Antenna Factor		Read Level	Level	Limit Line	Over Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	30.42 34.28 50.06 104.90 117.36 264.75	0.60 0.60 0.80 1.21 1.25 1.74	17.57 14.46 7.20 6.90 7.59 9.40	27.36 27.34 27.29 27.17 27.09 26.49	38.66 37.84 50.56 40.25 41.35 30.82	29.47 25.56 31.27 21.19 23.10 15.47	40.00 40.00 43.50 43.50	-10.53 -14.44 -8.73 -22.31 -20.40 -30.53

Report No.: SZEM140400167002 Page: 38 of 63

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL Job No, : 1670RF Mode : AC ChargetTX

lode	: AC C Freq		Antenna Factor		Read Level	Level	Limit Line	Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	35.00 49.01 119.02 197.20 219.08 319.94	0.60 0.78 1.25 1.40 1.51 1.97	13.90 7.75 7.66 6.93 7.14 9.80	27.34 27.29 27.07 26.71 26.63 26.56	28.05 30.01 48.31 36.68 37.60 34.71	15.21 11.25 30.15 18.30 19.62 19.92	40.00 43.50 43.50 46.00	-24.79 -28.75 -13.35 -25.20 -26.38 -26.08

Report No.: SZEM140400167002 Page: 39 of 63

Transmitte	r Emissi	on above	1GHz					
Test mode:	Ģ	SFSK	Test	channel:	Lowest	Rema	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3033.908	5.12	33.39	40.33	45.16	43.34	74	-30.66	Vertical
3973.622	6.43	33.78	41.02	46.19	45.38	74	-28.62	Vertical
4804.000	7.44	34.70	41.63	46.32	46.83	74	-27.17	Vertical
7206.000	8.72	35.88	39.87	45.04	49.77	74	-24.23	Vertical
9608.000	9.68	37.30	37.80	40.94	50.12	74	-23.88	Vertical
12024.960	11.30	38.93	38.28	40.95	52.90	74	-21.10	Vertical
3010.828	5.07	33.40	40.31	46.01	44.17	74	-29.83	Horizontal
3963.520	6.41	33.76	41.01	46.12	45.28	74	-28.72	Horizontal
4804.000	7.44	34.70	41.63	46.02	46.53	74	-27.47	Horizontal
7206.000	8.72	35.88	39.87	44.79	49.52	74	-24.48	Horizontal
9608.000	9.68	37.30	37.80	40.91	50.09	74	-23.91	Horizontal
11633.540	11.02	38.54	38.13	41.23	52.66	74	-21.34	Horizontal

Test mode:		GFSK	Те	st channel:	Middle	Ren	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3003.173	5.07	33.40	40.30	45.05	43.22	74	-30.78	Vertical
3953.443	6.41	33.76	41.00	45.19	44.36	74	-29.64	Vertical
4880.000	7.48	34.59	41.68	45.67	46.06	74	-27.94	Vertical
7320.000	8.87	35.93	39.77	44.08	49.11	74	-24.89	Vertical
9760.000	9.74	37.46	37.66	41.04	50.58	74	-23.42	Vertical
12024.960	11.30	38.93	38.28	40.27	52.22	74	-21.78	Vertical
3026.195	5.09	33.39	40.33	45.13	43.28	74	-30.72	Horizontal
3973.622	6.43	33.78	41.02	45.50	44.69	74	-29.31	Horizontal
4880.000	7.48	34.59	41.68	46.17	46.56	74	-27.44	Horizontal
7320.000	8.87	35.93	39.77	44.71	49.74	74	-24.26	Horizontal
9760.000	9.74	37.46	37.66	40.92	50.46	74	-23.54	Horizontal
11872.880	11.20	38.78	38.22	40.96	52.72	74	-21.28	Horizontal

Report No.: SZEM140400167002 Page: 40 of 63

Test mode:		GFSK	Tes	t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3010.828	5.07	33.40	40.31	46.94	45.10	74	-28.90	Vertical
3933.367	6.38	33.74	40.98	46.81	45.95	74	-28.05	Vertical
4960.000	7.53	34.46	41.74	46.89	47.14	74	-26.86	Vertical
7440.000	9.01	35.98	39.67	44.05	49.37	74	-24.63	Vertical
9920.000	9.81	37.63	37.53	41.11	51.02	74	-22.98	Vertical
11994.380	11.28	38.90	38.28	41.38	53.28	74	-20.72	Vertical
3010.828	5.07	33.40	40.31	45.75	43.91	74	-30.09	Horizontal
3923.367	6.36	33.72	40.98	45.03	44.13	74	-29.87	Horizontal
4960.000	7.53	34.46	41.74	46.05	46.30	74	-27.70	Horizontal
7440.000	9.01	35.98	39.67	44.18	49.50	74	-24.50	Horizontal
9920.000	9.81	37.63	37.53	41.16	51.07	74	-22.93	Horizontal
12117.140	11.33	39.02	38.32	41.05	53.08	74	-20.92	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140400167002 Page: 41 of 63

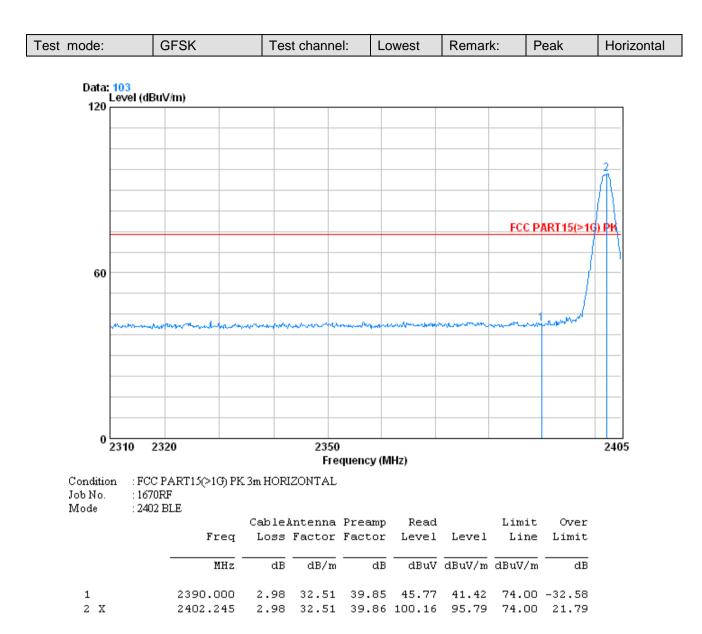
5.9 Restricted bands around fundamental frequency

5.9 Restricted band	ds around fundame	ntal frequency	
Test Requirement:	47 CFR Part 15C Section 15	5.209 and 15.205	
Test Method:	ANSI C63.10 2009		
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)
Limit:	Frequency	Limit (dBuV/m @3m)	Remark
	30MHz-88MHz	40.0	Quasi-peak Value
	88MHz-216MHz	43.5	Quasi-peak Value
	216MHz-960MHz	46.0	Quasi-peak Value
	960MHz-1GHz	54.0	Quasi-peak Value
	Above 1GHz	54.0	Average Value
		74.0	Peak Value
Test Setup:			
Figure 1. 30MHz to 1GHz	Amplifier Controller	AE EUT AE EUT Ground Relence Ple Test Receiver Uure 2. Above 1 GHz	Pro- Amplier Controller
Test Procedure:	 the ground at a 3 mm rotated 360 degrees radiation. b. The EUT was set 3 antenna, which was tower. c. The antenna height the ground to determ Both horizontal and make the measuren d. For each suspected case and then the a meters and the rotat degrees to find the reference. The test-receiver sy Specified Bandwidth f. Place a marker at the transmit frequency the missions in the rest set of the test-receiver set of the test set of test se	emission, the EUT was a ntenna was tuned to height table table was turned from table table was turned from table table was turned from table table was turned from the table was turned from table	er. The table was of the highest erference-receiving variable-height antenna to four meters above of the field strength. e antenna are set to rranged to its worst hts from 1 meter to 4 m 0 degrees to 360 ect Function and le. nd closest to the measure any pectrum analyzer plot.

Report No.: SZEM140400167002 Page: 42 of 63

	 g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting with GFSK modulation Transmitting mode, AC Charge +Transmitting mode
Final Test Mode:	Pretest the EUT at Transmitting mode and AC Charge +Transmitting mode, found the AC Charge +Transmitting mode which it is worse case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass

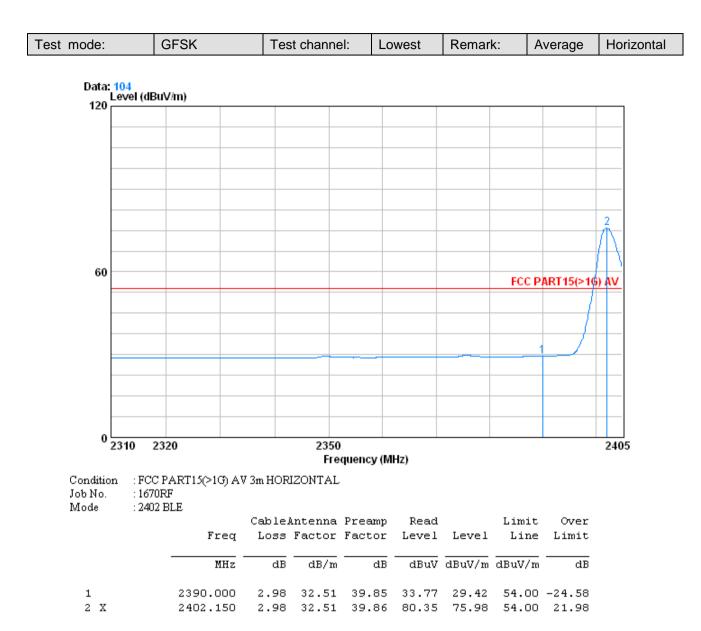
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140400167002 Page: 43 of 63

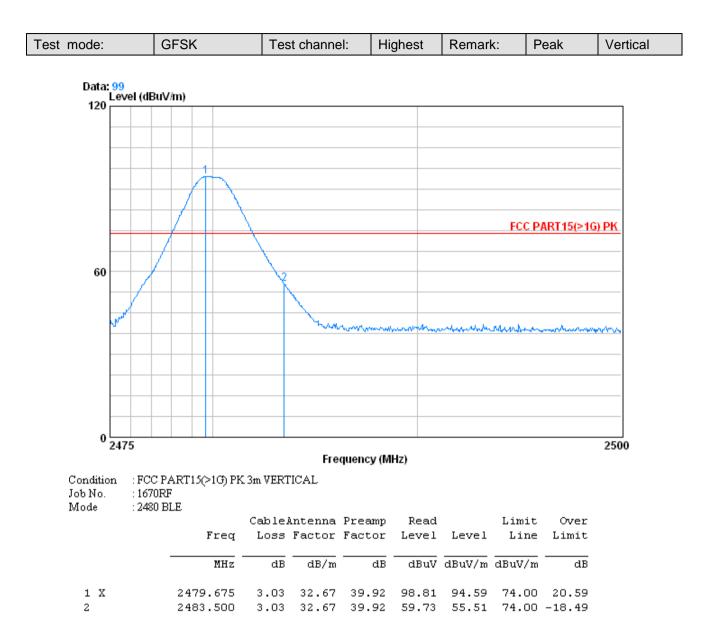
Test plot as follows:

t mode:	GFSK	Test channel	: Lowes	st Remark:	Peak	Vertical
Data: 101 Leve 120	ł (dBuV/m)					
						2
						HR -
						<u>/</u>]}
					FCC PART15(>1	<u>G) РК</u>
						<u> </u>
60						└ ──
					to and	
1 ⁰ -1-1-1	www.where.com	-Caral and the second	- Harrison and the second	water and the second second second		
0 2310) 2320	2350				2405
2510	2320		uency (MHz)			2405
Condition	: FCC PART15(>1G) H	YK 3m VERTICAL				
Job No.	: 1670RF : 2402 BLE					
Iviode	: 2402 BLE	CableAntenna I	Preamp F	lead 1	Limit Over	
	Freq	Loss Factor 1	-		Line Limit	
	MHz	dB dB/m	dB d	BuV dBuV/m dl	BuV/m dB	
1	2390.000	2.98 32.51	39.85 45	.15 40.80 °	74.00 -33.20	

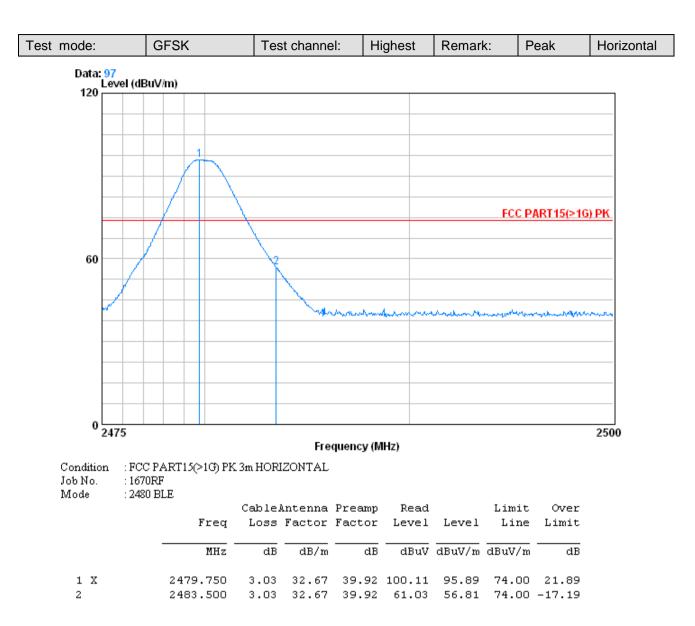
Report No.: SZEM140400167002 Page: 44 of 63


Report No.: SZEM140400167002 Page: 45 of 63

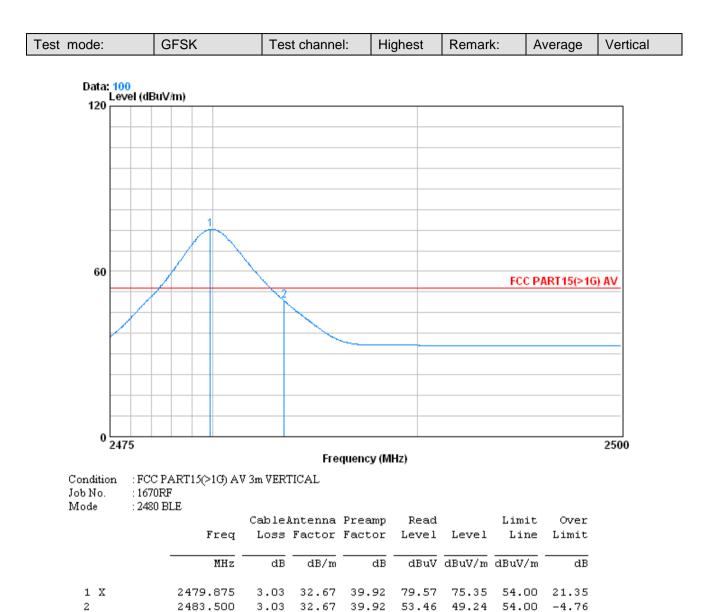
t mode:	GFSK	Tes	st channe	el: Lo	owest	Remar	k: /	Average	Vertica
Data: 102 Level	(dBuV/m)								
120									
									2
									π.
									<u> </u>
60									
							FCC	PART15(>1(i) AV
								/	
0 2310	2320		2350						2405
			Fre	quency (N	IHz)				
	FCC PART15(>1G) AV	/ 3m VERI	FICAL						
	1670RF 2402 BLE								
		Cablei	Intenna	Preamp	Read		Limit	. Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	e Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/n	dB	
1	2390.000	2.98	32.51	39.85	35.53	31.17	54.00) -22.83	
2 X	2402.150	2.98					54.00		



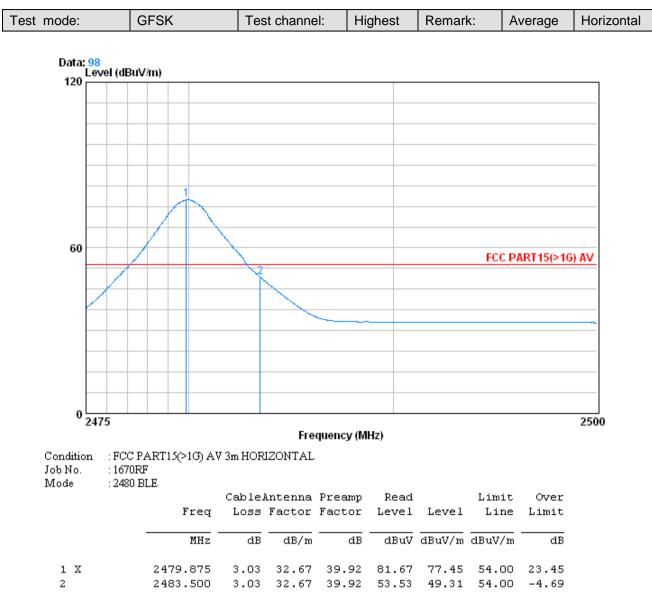
Report No.: SZEM140400167002 Page: 46 of 63



Report No.: SZEM140400167002 Page: 47 of 63



Report No.: SZEM140400167002 Page: 48 of 63



Report No.: SZEM140400167002 Page: 49 of 63

Report No.: SZEM140400167002 Page: 50 of 63

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

Report No.: SZEM140400167002 Page: 51 of 63

6 Photographs - EUT Test Setup

Test model No.: MF8200

6.1 Conducted Emission

6.2 Radiated Emission

Report No.: SZEM140400167002 Page: 52 of 63

6.3 Radiated Spurious Emission

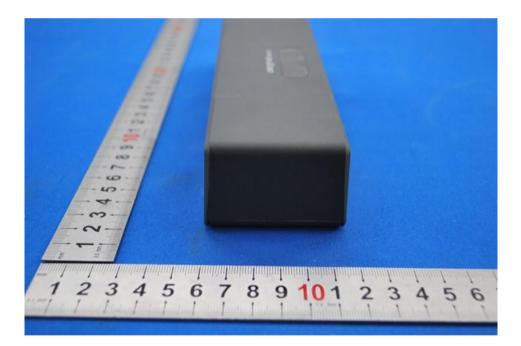
Report No.: SZEM140400167002 Page: 53 of 63

7 Photographs - EUT Constructional Details

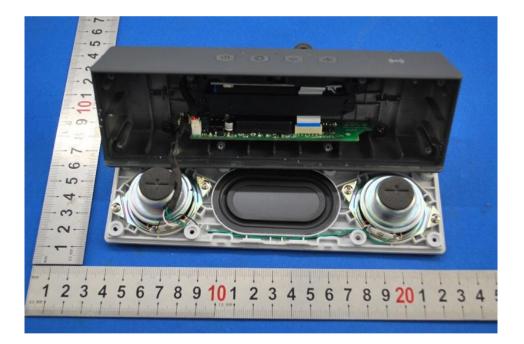
Test model No.: MF8200 N 9 20 1 4 5 Δ

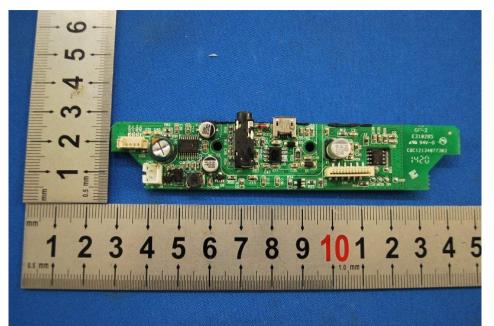
Report No.: SZEM140400167002 Page: 54 of 63

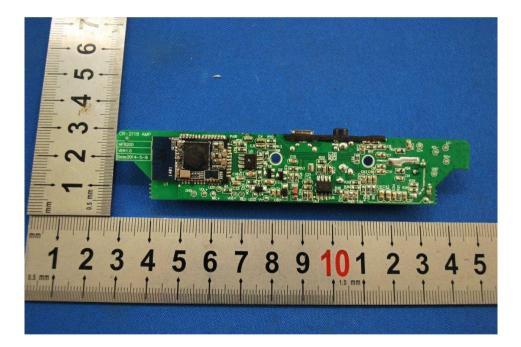
Report No.: SZEM140400167002 Page: 55 of 63

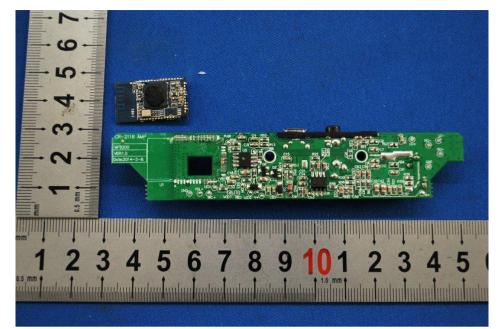


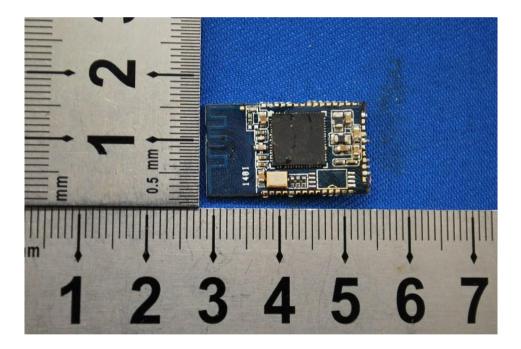
Report No.: SZEM140400167002 Page: 56 of 63

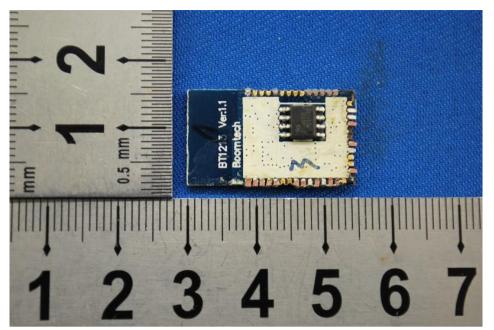


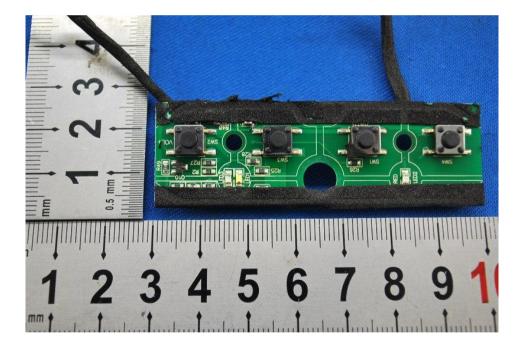

Report No.: SZEM140400167002 Page: 57 of 63

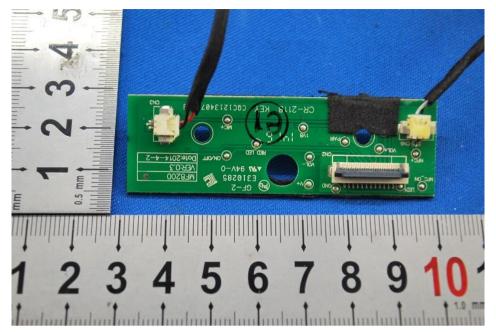


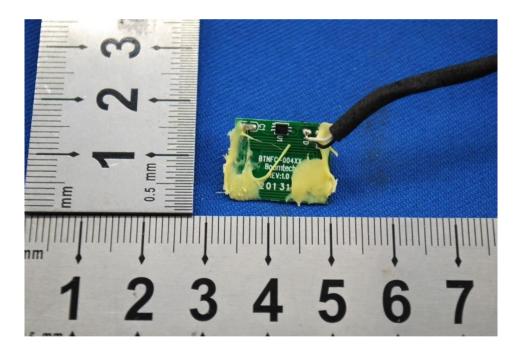

Report No.: SZEM140400167002 Page: 58 of 63

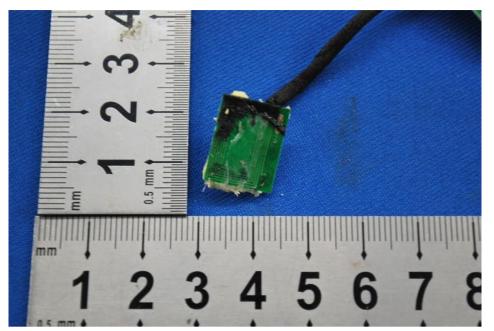



Report No.: SZEM140400167002 Page: 59 of 63




Report No.: SZEM140400167002 Page: 60 of 63




Report No.: SZEM140400167002 Page: 61 of 63

Report No.: SZEM140400167002 Page: 62 of 63

Report No.: SZEM140400167002 Page: 63 of 63

