

TEST REPORT

Applicant:	ST Engineering Telematics Wireless Ltd.		
Address of Applicant:	26 Hamelacha Street, Holon 5811801, Israel		
Manufacturer/Factory:	ST Engineering Telematics Wireless Ltd.		
Address of Manufacturer/Factory:	26 Hamelacha Street, Holon 5811801, Israel		
Equipment Under Test (E	UT)		
Product Name:	Meter Interface Unit		
Model No.:	MIU1USLB		
FCC ID:	NTAMIU1USLB		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	September 22, 2021		
Date of Test:	September 23, 2021-November 03, 2021		
Date of report issued:	November 03, 2021		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 33

2 Version

Version No.	Date	Description
00	November 03, 2021	Original
1 3 1 1 1 1 3 1 1 1	2 1 1 1 3 1 1 1 1 3	6 1 1 1 1 1 1 1 1 1
11111111	1 1 1 2 2 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1

Prepared By:

en

Date:

November 03, 2021

Project Engineer

Check By:

opinson lun Date:

ə:

November 03, 2021

Reviewer

D

Report No.: GTS202109000198F02

3 Contents

		age
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
7		
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	6
	5.3 DESCRIPTION OF SUPPORT UNITS	6
	5.4 DEVIATION FROM STANDARDS	6
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	6
	5.6 TEST FACILITY	6
	5.7 TEST LOCATION	6
	5.8 Additional Instructions	6
6		
7		
	7.1 ANTENNA REQUIREMENT	9
	7.2 CONDUCTED OUTPUT POWER	. 10
	7.3 CHANNEL BANDWIDTH	. 12
	7.4 Power Spectral Density	. 14
	7.5 BAND EDGES	. 16
	7.6 Spurious Emission	. 17
	7.6.1 Conducted Emission Method	. 17
	7.6.2 Radiated Emission Method	. 19
8	TEST SETUP PHOTO	. 33
9	EUT CONSTRUCTIONAL DETAILS	. 33

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	N/A	
Conducted Output Power	15.247 (b)(3)	Pass	
Channel Bandwidth	15.247 (a)(2)	Pass	
Power Spectral Density	15.247 (e)	Pass	
Band Edge	15.247(d)	Pass	
Spurious Emission	15.205/15.209	Pass	

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not applicable.
- 3. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Meter Interface Unit
Model No.:	MIU1USLB
Serial No.:	0B01001124
Hardware version:	Rev E
Software version:	Fc 02
Test sample(s) ID:	GTS202109000198-1
Sample(s) Status:	Engineer sample
Operation Frequency:	903MHz~927MHz
Channel Numbers:	16
Channel Separation:	1.6MHz
Modulation Type:	LORA
Antenna Type:	Internal Antenna
Antenna Gain:	1.5dBi
Power Supply:	DC 3.6V Li-ion Battery

Operation F	Operation Frequency each of channel						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	903	5	909.4	9	915.8	13	922.2
2	904.6	6	911	10	917.4	14	923.8
3	906.2	7	912.6	11	919	15	925.4
4	907.8	8	914.2	12	920.6	16	927

Note: in section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	903MHz
The middle channel	915.8MHz
The Highest channel	927MHz

5.2 Test mode

J.Z	Test mode					
	Transmitting mode	Transmitting mode Keep the EUT in transmitting mode.				
	nominal rated supply volt	Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.				
5.3	Description of Supp	Description of Support Units				
5	None.	たち だす たち だす たち だす たち だす たち たち				
5.4	Deviation from Star	ndards				
1 1	None.					
5.5	Abnormalities from	Standard Conditions				
1 2	None.					
5.6	Test Facility					
	 FCC—Registration No. Designation Number: CN Global United Technolog described in a report filed from the FCC is maintain IC—Registration No. CAB identifier: CN0091 The 3m Semi-anechoic c by Certification and Engin NVLAP (LAB CODE:6 Global United Technolog Accreditation Program (No. 	 I5029 Iy Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully d with the (FCC) Federal Communications Commission. The acceptance letter ned in files. : 9079A chamber of Global United Technology Services Co., Ltd. has been registered neering Bureau of Industry Canada for radio equipment testing :00179-0) Iy Services Co., Ltd., is accredited by the National Voluntary Laboratory 				
5.7	Test Location					
	All tests were performed					
		y Services Co., Ltd. ower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang enzhen, Guangdong, China 518102				

Tel: 0755-27798480

Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

GTS Report No.: GTS202109000198F02

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022	
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022	
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022	
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022	
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022	
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022	

GTS 2109000198F02

Report No.: (GTS202109	000198F02
---------------	-----------	-----------

RF Conducted Test:							
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022	

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022			
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022			

7 Test results and Measurement Data

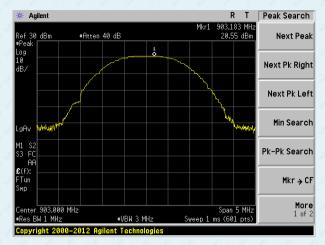
7.1 Antenna requirement

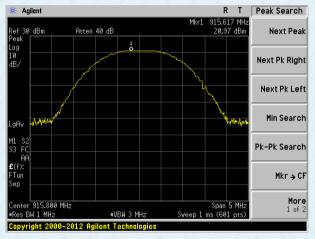
	Standard requirement:	CC Part15 C Section 15.203			
1	15.203 requirement:				
	responsible party shall be u antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or bited.			
10	E.U.T Antenna:				
5	The antenna is internal ante II for details.	enna, the best case gain of the antenna is 1.5dBi, reference to the appendix			

Test Requirement: FCC Part15 C Section 15.247 (b)(3) **Test Method:** ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 30dBm Limit: Test setup: Spectrum Analyzer E.U.T 0 Non-Conducted Table Ground Reference Plane **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Pass Test results:

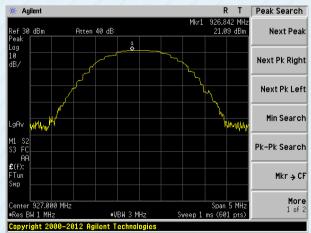
7.2 Conducted Output Power

Measurement Data


Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	20.55		
Middle	20.97	30.00	Pass
Highest	21.09	6 6 6 8 6 6 6 6	1111111


GTS

Report No.: GTS202109000198F02


Test plot as follows:

Lowest channel

Middle channel

Highest channel

<u>GTS</u>

7.3 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	FCC Part15 C Section 15.247 (a)(2)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02								
Limit:	Channel Bandwidth >500KHz	1							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table								
	Ground Reference Plane	1							
Test Instruments:	Refer to section 6.0 for details	5							
Test mode:	Refer to section 5.2 for details	1							
Test results:	Pass	1							

Measurement Data

Test channel	Channel Bandwidth (kHz)	Limit(KHz)	Result		
Lowest	534.321	1111111	11111111		
Middle	579.671	>500	Pass		
Highest	581.251	1111111			

Test channel	99% Bandwidth (kHz)	Result
Lowest	500.2915	11111111
Middle	503.4488	Report only
Highest	519.1888	11111111

GTS

0BW Span 2.00000000 MHz

> **x dB** -6.00 dB

Optimize RefLevel

Span 2 MH:

99.00 % -6.00 dE

Sweep 1 ms (601 pts)

Occ BW % Pwr x dB

Test plot as follows:

Center 927.000 MHz •Res BW 10 kHz

Transmit Freq Error × dB Bandwidth

Copyright 2000-2012 Agile

Occupied Bandwidth 519.1888 kHz

Page 13 of 33

Highest channel

OBW Span 2.00000000 MHz

> **x dB** –20.00 dB

Optimize RefLevel 927.000 MHz

Occupied Bandwidth

Transmit Freq Error 6.089 kHz

Res BW 100 kHz

x dB Ba

₩VBW 300 kHz

635.5443 kHz

607 802 kH

Span 2 MHz Sweep 19.12 ms (601 pts)

> 99.00% -20.00 dE

Осс BW % Рwr x dB

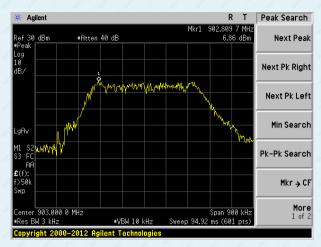
∗VBW 30 kHz

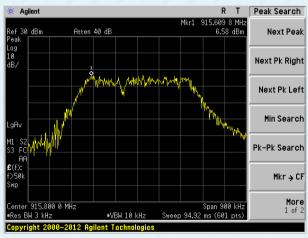
15.171 kHz 581.251 kHz

Test Requirement: FCC Part15 C Section 15.247 (e) **Test Method:** ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 Limit: 8dBm/3kHz Test setup: Spectrum Analyzer E.U.T G Non-Conducted Table Ground Reference Plane **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass

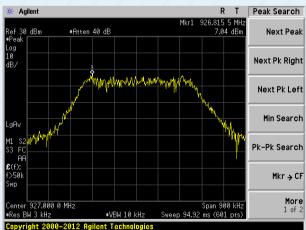
7.4 Power Spectral Density

Measurement Data


Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	6.86	1111111	63666666	
Middle	6.58	8.00	Pass	
Highest	7.04	1111111	11111111	


GTS

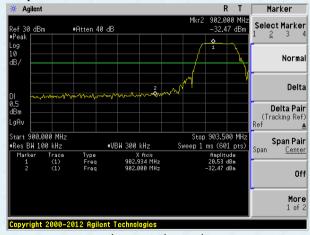
Report No.: GTS202109000198F02


Test plot as follows:

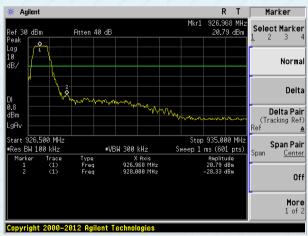
Lowest channel

Middle channel

Highest channel


Report No.: GTS202109000198F02

GTS


7.5 Band edges

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Test plot as follows:

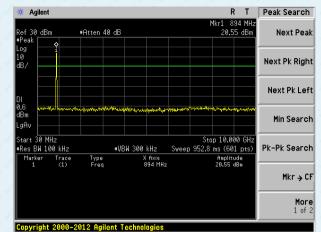
Lowest channel

Highest channel

7.6 Spurious Emission

7.6.1 Conducted Emission Method

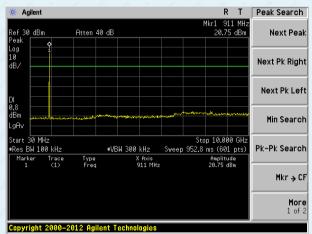
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	radiated measurement.						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

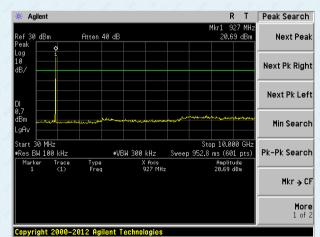


<u>GT</u>S

Report No.: GTS202109000198F02

Test plot as follows:


Lowest channel

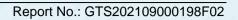

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz



GTS

FCC Part15 C Section	on 15	.209						
ANSI C63.10:2013								
9kHz to 10GHz								
Measurement Distar	Measurement Distance: 3m							
Frequency	Frequency Detector RBW							
9KHz-150KHz	Qu	asi-peak	200Hz	600H	z Quasi-peak			
150KHz-30MHz	Qu	asi-peak	9KHz	30KH	z Quasi-peak			
30MHz-1GHz	Qu	asi-peak	120KHz	300KH	Iz Quasi-peak			
	2 2	Peak	1MHz	3MH:	z Peak			
Above TGHZ		Peak	1MHz	10Hz	z Average			
Frequency		Limit (uV	//m)	Value	Measurement Distance			
0.009MHz-0.490M	Hz	2400/F(K	(Hz)	QP	300m			
0.490MHz-1.705M	Hz	24000/F(H	KHz)	QP	30m			
1.705MHz-30MH	z	30	6 1 2	QP	30m			
30MHz-88MHz	de la	100	1 1 1	QP	1111			
88MHz-216MHz	-	150	a se a	QP	3m			
216MHz-960MH	z	200	1.1	QP				
960MHz-1GHz	1	500	11	QP				
Above 1GHz	5	500	A	verage	1111			
Above Tonz	Above 1GHz 5000 Peak							
< 80cm >++++++++++++++++++++++++++++++++++++	in the second se		ttenna () 1m					
±			1					
For radiated emissio	ns tro	JIII JUMHZ	IOTGHZ		-1111			
< 3m > ++++++++++++++++++++++++++++++++++++								
	9kHz to 10GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz For radiated emission Image: state of the stat	9kHz to 10GHz Measurement Distance: 3 Frequency D 9KHz-150KHz Quality 150KHz-30MHz Quality 30MHz-1GHz Quality Above 1GHz Trequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 30MHz-88MHz 30MHz-88MHz 960MHz-1GHz 960MHz-1GHz 960MHz-1GHz Trepuency Above 1GHz Trepuency 960MHz-1GHz Trepuency 960MHz-1GHz Trepuency 960MHz-1GHz Trepuency 960MHz-1GHz Trepuency Above 1GHz Trepuency Yet 1000000000000000000000000000000000000	9kHz to 10GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009MHz-0.490MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 0.490MHz-1.705MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 Above 1GHz 500 Som> 5000 For radiated emissions from 9kHz to 500 Som> Tun Table Som> Cam Som> Cam Som> Cam Som> Cam Som> Cam	9kHz to 10GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Peak 1MHz 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-30MHz 30 30MHz-188MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 Above 1GHz 500 For radiated emissions from 9kHz to 30MHz	9kHz to 10GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600H 150KHz-30MHz Quasi-peak 9KHz 30KH 30MHz-1GHz Quasi-peak 120KHz 300KH Above 1GHz Peak 1MHz 30HHz Peak 1MHz 10Hz Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 24000/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 30MHz-88MHz 100 QP 88MHz-216MHz 150 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 Average 5000 Peak For radiated emissions from 9kHz to 30MHz For radiated emissions from 30MHz to1GHz For radiated emissions from 30MHz to1GHz			

7.6.2 Radiated Emission Method

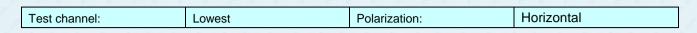
GTS

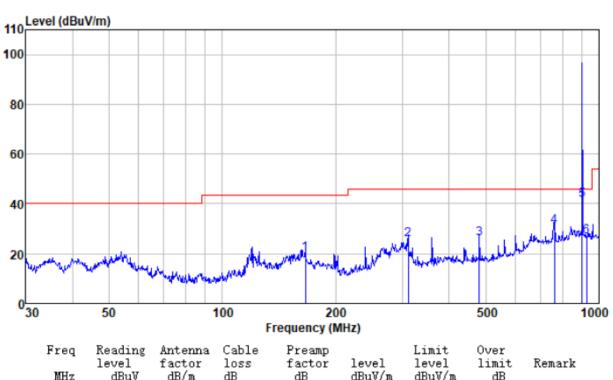
	For radiated	d emissions a	above 1GHz	111	1.1.1	1.1.1		
	Tum Table <150cm			-4m > Preamplifier*				
Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the high radiation.							
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.							
	ground to	o determine t al and vertica	varied from he maximum I polarization	value of the	field strengt	h. Both		
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.							
			tem was set t with Maximur			and		
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test Instruments:	Refer to see	ction 6.0 for c	details	6 1 1 1	1 1 1	1101		
Test mode:	Refer to see	ction 5.2 for c	details		1 8 8 2	1 2 6 8		
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							
Test results:	Pass	211	111	1 1 1	111	221		

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis which it is worse case.

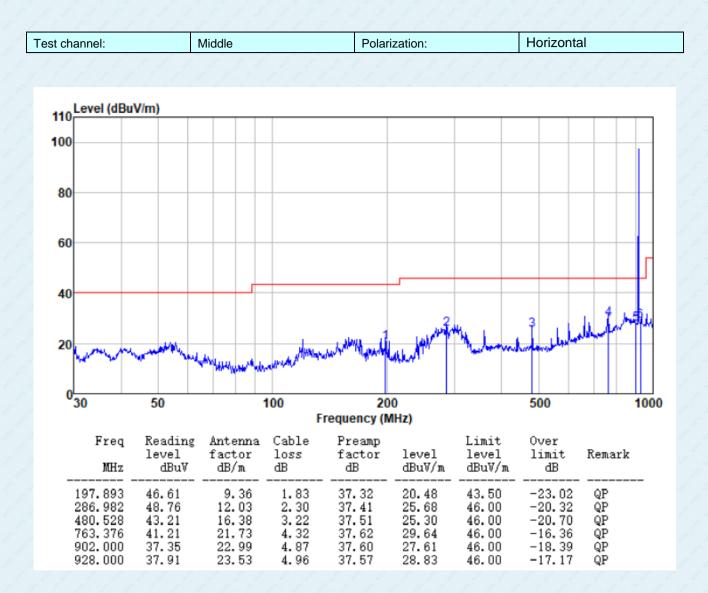
Measurement data:


■ 9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

MHz	dBu∛	dB/m	dB	dB	dBu∛/m	dBu∛/m	dB		
166.068	42.68	12.57	1.66	37.17	19.74	43.50	-23.76	QP	
311.087	48.04	12.71	2.42	37.43	25.74	46.00	-20.26	QP	
480.528	43.81	16.38	3.22	37.51	25.90	46.00	-20.10	QP	
760.704	42.54	21.70	4.32	37.62	30.94	46.00	-15.06	QP	
902.000	51.23	22.99	4.87	37.60	41.49	46.00	-4.51	QP	
928.000	35.96	23.53	4.96	37.57	26.88	46.00	-19.12	QP	



51.08 49.76 51.08

43.10

38.91

38.22

55.221

119.856 159.784 798.980

902.000

928.000

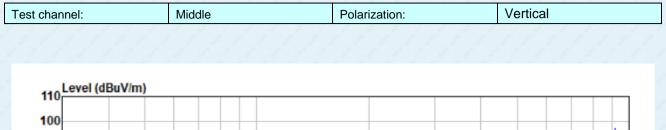
12.54 10.98

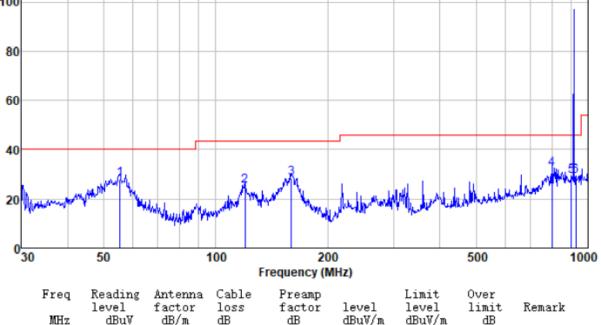
12.76 22.23 22.99

23.53

0.82 1.36

1.63


4.45


4.87

4.96

Report No.: GTS202109000198F02

36.26 36.88

37.13

37.62

37.60

37.57

28.18 25.22 28.34 32.16

29.17

29.14

40.00 43.50 43.50 46.00

46.00

46.00

-11.82 -18.28 -15.16 -13.84

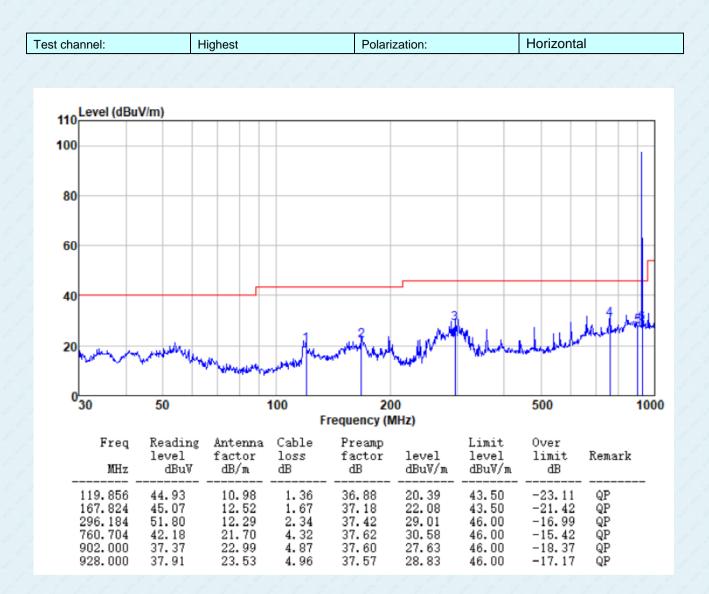
-16.83

-16.86

QP

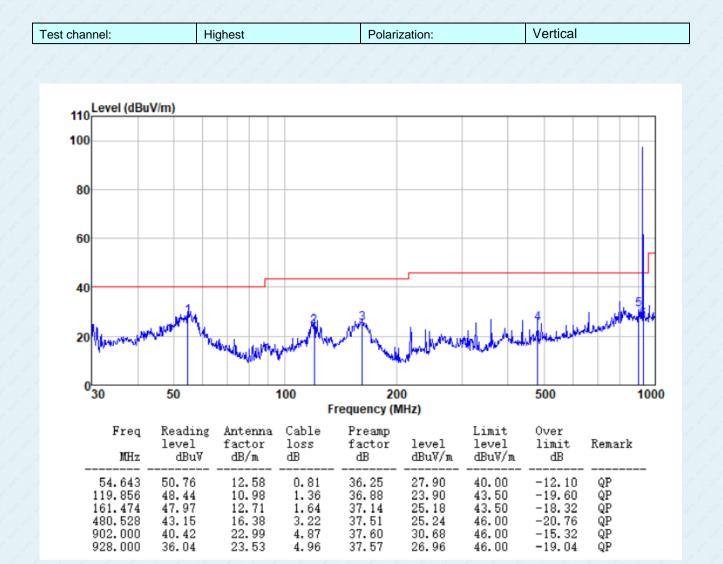
QΡ

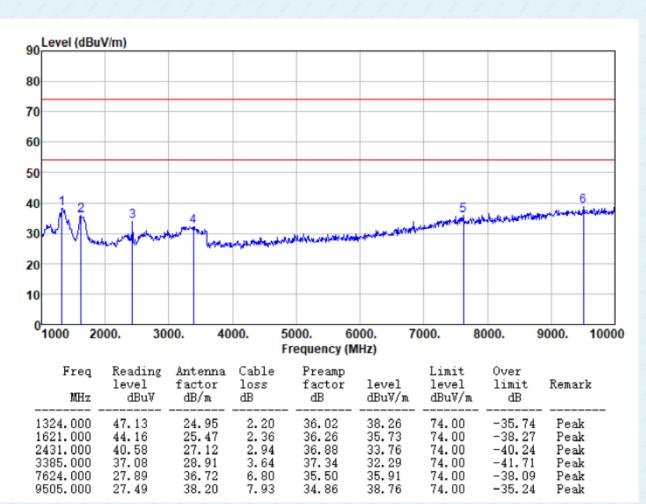
QP

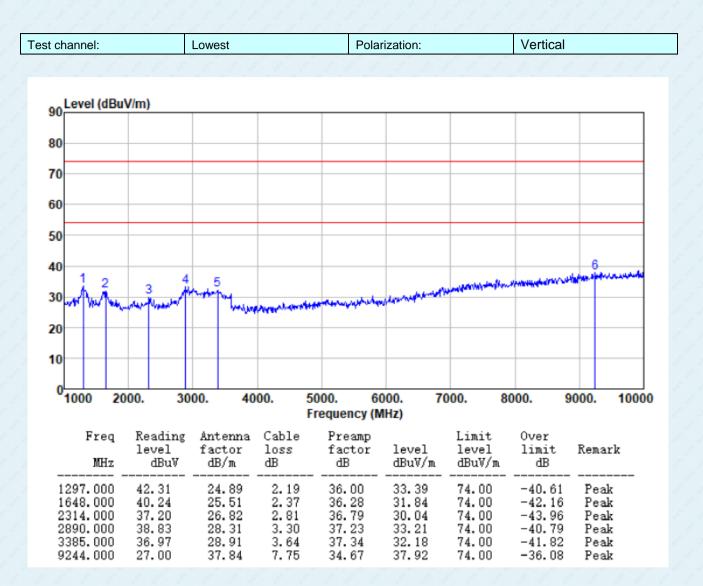

QΡ

QΡ

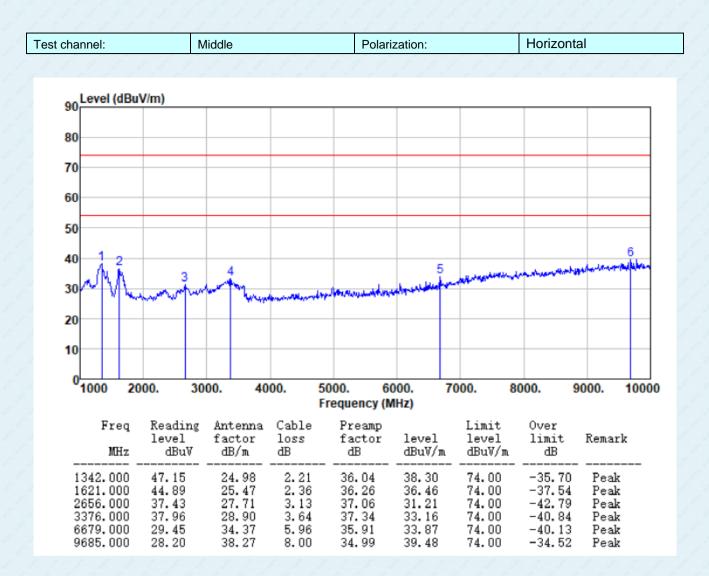
QP

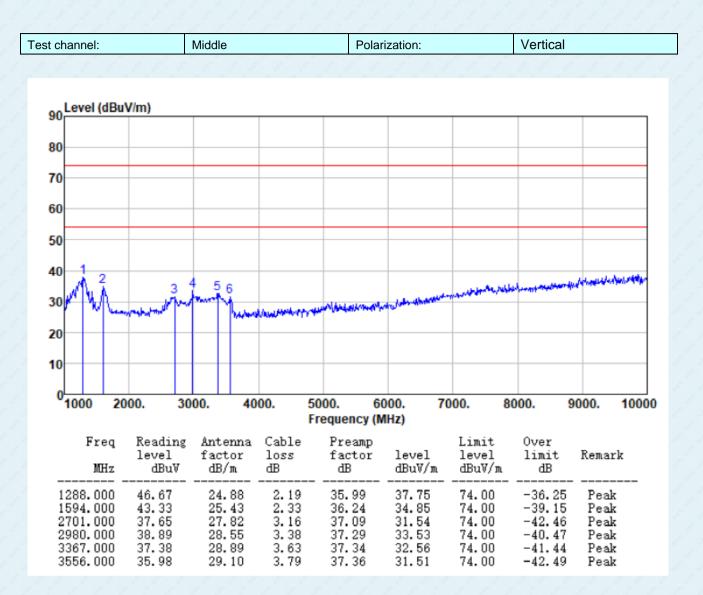


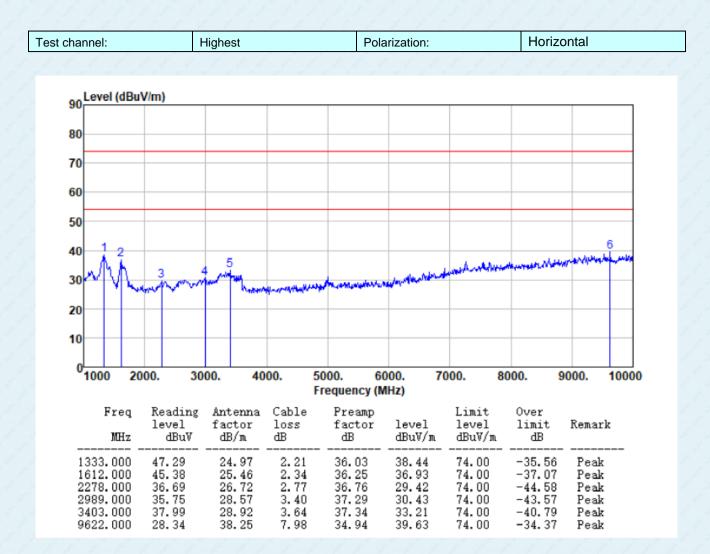


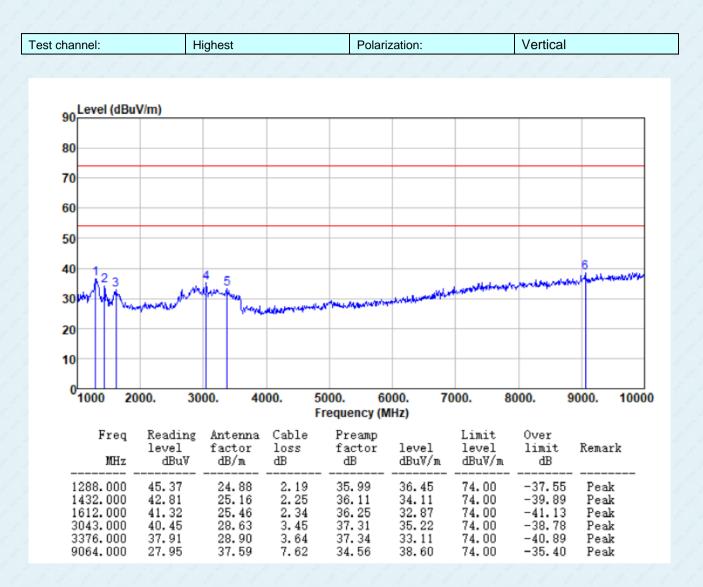

Above 1GHz

Test channel:	Lowest	Polarization:	Horizontal						









Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----