#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

| CALIBRATION CERTIFICATE /               |                                                         |                                                                                                                                                      |                                 |  |
|-----------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| Object                                  | D750V3 - SN:109                                         | <b>)7</b>                                                                                                                                            | ATM 11/10/20                    |  |
| Calibration procedure(s)                | QA CAL-05.v11<br>Calibration Proce                      | dure for SAR Validation Sources                                                                                                                      | between 0.7-3 GHz               |  |
|                                         |                                                         |                                                                                                                                                      | V ATM 9/8/2021                  |  |
| Calibration date:                       | September 08, 20                                        |                                                                                                                                                      |                                 |  |
| The measurements and the uncerta        | ainties with confidence p<br>ad in the closed laborator | onal standards, which realize the physical un<br>robability are given on the following pages ar<br>y facility: environment temperature (22 $\pm$ 3)° | nd are part of the certificate. |  |
| Primary Standards                       | ,<br>  ID #                                             | Cal Date (Certificate No.)                                                                                                                           | Scheduled Calibration           |  |
| Power meter NRP                         | SN: 104778                                              | 01-Apr-20 (No. 217-03100/03101)                                                                                                                      | Apr-21                          |  |
| Power sensor NRP-Z91                    | SN: 103244                                              | 01-Apr-20 (No. 217-03100)                                                                                                                            | Apr-21                          |  |
| Power sensor NRP-Z91                    | SN: 103245                                              | 01-Apr-20 (No. 217-03101)                                                                                                                            | Apr-21                          |  |
| Reference 20 dB Attenuator              | SN: BH9394 (20k)                                        | 31-Mar-20 (No. 217-03106)                                                                                                                            | Apr-21                          |  |
| Type-N mismatch combination             | SN: 310982 / 06327                                      | 31-Mar-20 (No. 217-03104)                                                                                                                            | Apr-21                          |  |
| Reference Probe EX3DV4                  | SN: 7349                                                | 29-Jun-20 (No. EX3-7349_Jun20)                                                                                                                       | Jun-21                          |  |
| DAE4                                    | SN: 601                                                 | 27-Dec-19 (No. DAE4-601_Dec19)                                                                                                                       | Dec-20                          |  |
| Secondary Standards                     | ID #                                                    | Check Date (in house)                                                                                                                                | Scheduled Check                 |  |
| Power meter E4419B                      | SN: GB39512475                                          | 30-Oct-14 (in house check Feb-19)                                                                                                                    | In house check: Oct-20          |  |
| Power sensor HP 8481A                   | SN: US37292783                                          | 07-Oct-15 (in house check Oct-18)                                                                                                                    | In house check: Oct-20          |  |
| Power sensor HP 8481A                   | SN: MY41092317                                          | 07-Oct-15 (in house check Oct-18)                                                                                                                    | In house check: Oct-20          |  |
| RF generator R&S SMT-06                 | SN: 100972                                              | 15-Jun-15 (in house check Oct-18)                                                                                                                    | In house check: Oct-20          |  |
| Network Analyzer Agilent E8358A         | SN: US41080477                                          | 31-Mar-14 (in house check Oct-19)                                                                                                                    | In house check: Oct-20          |  |
|                                         | Name                                                    | Function                                                                                                                                             | Signature                       |  |
| Calibrated by:                          | Jeton Kastrati                                          | Laboratory Technician                                                                                                                                | = 0 a                           |  |
| Approved by:                            | Katja Pokovic                                           | Technical Manager                                                                                                                                    | JUG -                           |  |
| This collibration contificate shall not | the reproduced executive                                | full without written approval of the laborator                                                                                                       | Issued: September 9, 2020       |  |

Certificate No: D750V3-1097\_Sep20

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity       | Conductivity     |
|-----------------------------------------|-----------------|--------------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9               | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 42.4 ± 6 %         | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | <b>10 مد 10</b> مد |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 2.08 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 8.21 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 1.35 W/kg                |

#### **Body TSL parameters**

The following parameters and calculations were applied.

| ······································  | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.3 ± 6 %   | 0.97 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.12 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.41 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.41 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 5.60 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.0 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.3 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.3 Ω - 3.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.9 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.034 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## Additional EUT Data

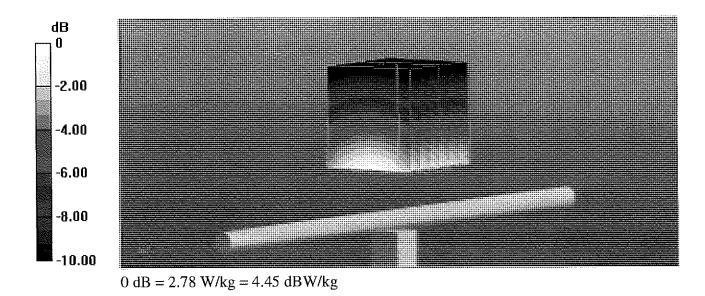
| Manufactured by | SPEAG |
|-----------------|-------|

## **DASY5 Validation Report for Head TSL**

Date: 08.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz;  $\sigma$  = 0.91 S/m;  $\epsilon_r$  = 42.4;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.97, 9.97, 9.97) @ 750 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.27 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.13 W/kg SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.35 W/kg Smallest distance from peaks to all points 3 dB below = 20.6 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 2.78 W/kg



# Impedance Measurement Plot for Head TSL

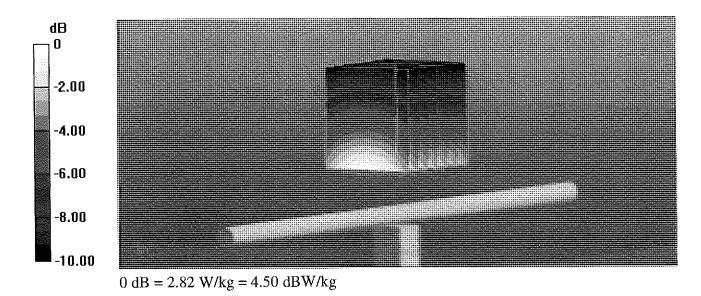
| Eile ⊻i                                                                                                | ew <u>C</u> hai       | nnel Sw <u>e</u> e     | p Calibration | <u>Trace S</u> cale M <u>a</u> rker | System W  | indow <u>H</u> elp                           |                  |
|--------------------------------------------------------------------------------------------------------|-----------------------|------------------------|---------------|-------------------------------------|-----------|----------------------------------------------|------------------|
|                                                                                                        |                       |                        |               |                                     |           | 750.000000 MH:<br>451.54 pf<br>50.000000 MH: | 469.97 mΩ        |
| Ch.                                                                                                    | Ch 17<br>1: Start 550 | 4wg = −20<br>1,000 MHz | ganune        | ······                              |           |                                              | Stop 950,000 MHz |
| 10.00<br>5.00<br>5.00<br>-10.00<br>-15.00<br>-25.00<br>-25.00<br>-30.00<br>-35.00<br>-00<br>-00<br>-00 | 6B 511                |                        |               |                                     |           | 750.00000 MH                                 | z -28.324 dB     |
| Statu                                                                                                  |                       | 1: <b>S11</b>          |               | C* 1-Port                           | Avg=20 De |                                              | LCL              |

## **DASY5 Validation Report for Body TSL**

Date: 08.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz;  $\sigma$  = 0.97 S/m;  $\epsilon_r$  = 55.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.98, 9.98, 9.98) @ 750 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17.5 mm Ratio of SAR at M2 to SAR at M1 = 67% Maximum value of SAR (measured) = 2.82 W/kg



# Impedance Measurement Plot for Body TSL

| Elle              | ⊻iew                                              | ⊆hannel                                                           | Sw <u>e</u> ep | Calibration | <u>Trace</u> <u>S</u> cale | e M <u>a</u> rker                                                                                                | System              | <u>∦</u> indow ⊦ | lelp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                     |
|-------------------|---------------------------------------------------|-------------------------------------------------------------------|----------------|-------------|----------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|
|                   |                                                   |                                                                   |                |             |                            | and the second |                     | ; 750.           | 000000 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 49.306 Ω            |
|                   |                                                   |                                                                   |                |             |                            |                                                                                                                  | 7                   |                  | 53,859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | -3,9400 Ω           |
|                   |                                                   |                                                                   |                |             | 6                          | $\land$                                                                                                          | `\_~~~f             | <u>4 - N</u> 50. | 000000 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HZ    | 40.254 mU           |
|                   |                                                   |                                                                   |                |             | $-/\gamma$                 | ~/``                                                                                                             | $\wedge$            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -97.715 °           |
|                   |                                                   |                                                                   |                |             | ······                     |                                                                                                                  |                     | sér)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
|                   |                                                   |                                                                   |                |             |                            |                                                                                                                  | $\overline{\nabla}$ | 7-A-             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
|                   |                                                   |                                                                   |                |             | freeman                    | $\setminus X$                                                                                                    | VX_I                | -M               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
|                   |                                                   |                                                                   |                |             |                            | $\times$                                                                                                         | $\rightarrow$       | ]                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
|                   |                                                   | Ch 1 Avra -                                                       | 20             |             | ~                          | $\langle -$                                                                                                      |                     | S.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
|                   | Ch1: St                                           | Ch 1 Avg =<br>art 550,000 h                                       |                | 680.000     |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Stop 950.000 MHz    |
|                   | .00 [                                             | HB \$11                                                           | I              | 1           | I                          | l                                                                                                                |                     | 1 750            | daaaaa w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | -27.904 dB          |
| 5.0               |                                                   |                                                                   | <u> </u>       |             |                            |                                                                                                                  |                     | 1. J (           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1.6 | 21,007.001          |
| 0.                | 00                                                | an a b da a ' a sa a da b da a ' a a sa a sa a ' a a sa a sa a sa |                |             |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
| -5.               |                                                   |                                                                   |                |             |                            |                                                                                                                  |                     | -                | 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 1100 - 11 |       |                     |
|                   | 9.00                                              |                                                                   |                |             |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
|                   |                                                   |                                                                   |                |             |                            |                                                                                                                  |                     | all and a second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
| 11                | 5.00<br>0.00                                      |                                                                   |                |             |                            |                                                                                                                  |                     | ******           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
| -20               | 9.09 🙀                                            |                                                                   |                |             |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
| -20<br>-25        | 0.09 👷                                            |                                                                   |                |             |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
| -20<br>-25<br>-30 | 9.09 🙀                                            |                                                                   |                |             |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                     |
| -20<br>-25<br>-30 | 0.00 <sub>w</sub><br>5.00<br>0.00<br>5.00<br>0.00 | Ch 1 Avg =                                                        |                |             |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Ctop, 950 600 b.U22 |
| -20<br>-25<br>-30 | 0.00 <sub>w</sub><br>5.00<br>0.00<br>5.00<br>0.00 | Ch 1 Avg =<br>art 550,000 h                                       |                |             |                            |                                                                                                                  |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Stop 950.000 MHz    |





# **Certification of Calibration**

Object

D750V3 - SN: 1097

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

September 8, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 750 MHz.

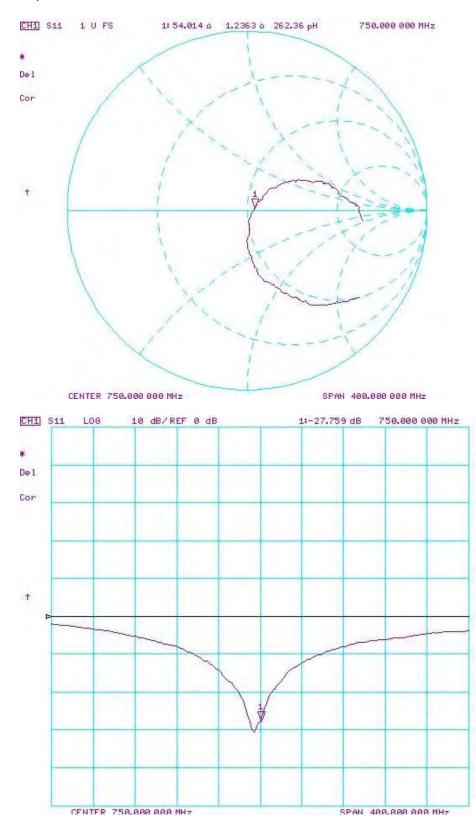
#### Calibration Equipment used:

| Manufacturer       | Model     | Description                                   | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|-----------|-----------------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES    | S-Parameter Network Analyzer                  | 4/14/2021  | Annual       | 4/14/2022  | US39170118    |
| Agilent            | E4438C    | ESG Vector Signal Generator                   | 9/29/2020  | Annual       | 9/29/2021  | MY45093852    |
| Amplifier Research | 15S1G6    | Amplifier                                     | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | ML2495A   | Power Meter                                   | 1/18/2021  | Annual       | 1/18/2022  | 0941001       |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu            | MA2411B   | Pulse Power Sensor                            | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Control Company    | 4040      | Therm./ Clock/ Humidity Monitor               | 3/12/2021  | Biennial     | 3/12/2023  | 210201956     |
| Control Company    | 4353      | Long Stem Thermometer                         | 10/28/2020 | Biennial     | 10/28/2022 | 200670653     |
| Agilent            | 85033E    | 3.5mm Standard Calibration Kit                | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| Mini-Circuits      | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits      | NLP-2950+ | Low Pass Filter DC to 2700 MHz                | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3    | Attenuator (3dB)                              | CBT        | N/A          | CBT        | 9406          |
| Pasternack         | PE2208-6  | Bidirectional Coupler                         | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | NC-100    | Torque Wrench                                 | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAK-3.5   | Dielectric Assessment Kit                     | 5/12/2021  | Annual       | 5/12/2022  | 1070          |
| SPEAG              | EX3DV4    | SAR Probe                                     | 4/19/2021  | Annual       | 4/19/2022  | 7532          |
| SPEAG              | DAE4      | Data Acquisition Electronics                  | 4/13/2021  | Annual       | 4/13/2022  | 501           |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

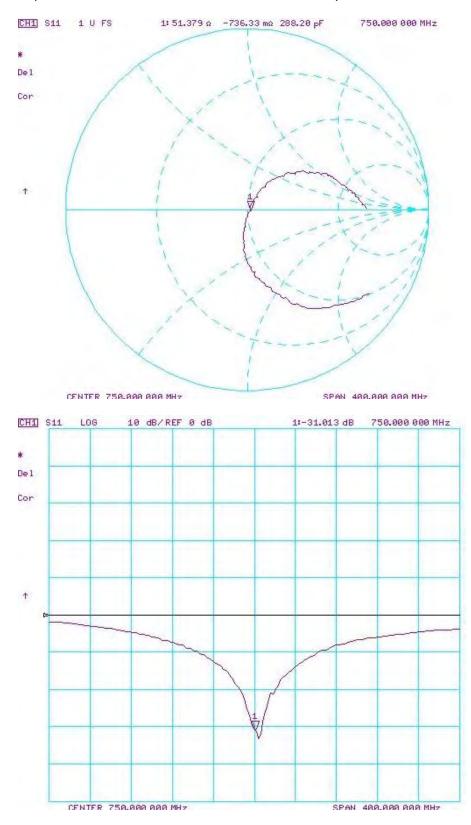
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

# **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Head SAR (1g)<br>W/kg @ 23.0<br>dBm | (9/)  |      | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|------|-------------------------------------------------|-------|------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 9/8/2020            | 9/8/2021          | 1.034                                   | 1.64 | 1.70                                            | 3.53% | 1.07 | 1.11         | 3.93%                | 54.0                                           | 54.0                                        | 0                        | -0.5                                                | 1.2                                              | 1.7                              | -28.3                                   | -27.8                                | 1.90%         | PASS      |
|                     |                   |                                         |      |                                                 |       |      |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Body SAR (1g)<br>W/kg @ 23.0<br>dBm | (9/)  |      | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 9/8/2020            | 9/8/2021          | 1.034                                   | 1.68 | 1.75                                            | 4.04% | 1.12 | 1.16         | 3.57%                | 49.3                                           | 51.4                                        | 2.1                      | -3.9                                                | -0.7                                             | 3.2                              | -27.9                                   | -31.0                                | -11.20%       | PASS      |

| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D750V3 – SN: 1097 | 09/08/2021   | Page 2 of 4 |



#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:           | Date Issued: | Page 3 of 4 |
|-------------------|--------------|-------------|
| D750V3 – SN: 1097 | 09/08/2021   | Fage 5 01 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:           | Date Issued: | Page 4 of 4 |
|-------------------|--------------|-------------|
| D750V3 – SN: 1097 | 09/08/2021   | Page 4 of 4 |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerlscher Kalibrierdienst

- C Service suisse d'étaionnage
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

| Client PC Test                     |                                    | Certif                                                                           | cate No: D835V2-4d040_Jun19                                                                                                                              |
|------------------------------------|------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CALIBRATIONIC                      | ERTIFICATE                         |                                                                                  |                                                                                                                                                          |
| Object                             | D835V2 - SN:4d0                    | 040                                                                              |                                                                                                                                                          |
| Calibration procedure(s)           | QA CAL-05.v11<br>Calibration Proce | dure for SAR Validation Sc                                                       | ען ארא<br>purces between 0.7-3 GHz (אין אין)                                                                                                             |
| Callbration date:                  | June 20, 2019                      |                                                                                  | TATM<br>16/20                                                                                                                                            |
|                                    |                                    | onal standards, which reatize the phy<br>robability are given on the following p |                                                                                                                                                          |
| All calibrations have been conduct | ad in the closed laborator         | y facility: environment temperature (2                                           | 22 ± 3)°C and humidity < 70%.<br>7/10/2021                                                                                                               |
| Calibration Equipment used (M&TE   | E critical for calibration)        |                                                                                  | 7/10/2021                                                                                                                                                |
| Primary Standards                  | ID #                               | Cal Date (Certificate No.)                                                       | Scheduled Calibration                                                                                                                                    |
| Power meter NRP                    | SN: 104778                         | 03-Apr-19 (No, 217-02892/02893)                                                  | Apr-20                                                                                                                                                   |
| Power sensor NRP-Z91               | SN: 103244                         | 03-Apr-19 (No. 217-02892)                                                        | Apr-20                                                                                                                                                   |
| Power sensor NRP-Z91               | SN: 103245                         | 03-Apr-19 (No. 217-02893)                                                        | Apr-20                                                                                                                                                   |
| Reference 20 dB Attenuator         | SN: 5058 (20k)                     | 04-Apr-19 (No. 217-02894)                                                        | Apr-20                                                                                                                                                   |
| Type-N mismatch combination        | SN: 5047.2 / 06327                 | 04-Apr-19 (No. 217-02895)                                                        | Apr-20                                                                                                                                                   |
| Reference Probe EX3DV4             | SN: 7349                           | 29-May-19 (No. EX3-7349_May19                                                    | ) May-20                                                                                                                                                 |
| DAE4                               | SN: 601                            | 30-Apr-19 (No, DAE4-601_Apr19)                                                   | Apr-20                                                                                                                                                   |
|                                    | lus «                              | 0                                                                                |                                                                                                                                                          |
| Secondary Standards                | ID #                               | Check Date (in house)                                                            | Scheduled Check                                                                                                                                          |
| Power meter E4419B                 | SN: GB39512475                     | 30-Oct-14 (in house check Feb-19                                                 |                                                                                                                                                          |
| Power sensor HP 8481A              | SN: US37292783                     | 07-Oct-15 (in house check Oct-18)                                                |                                                                                                                                                          |
| Power sensor HP 8481A              | SN: MY41092317                     | 07-Oct-15 (In house check Oct-18)                                                | ·                                                                                                                                                        |
| RF generator R&S SMT-06            | SN: 100972                         | 15-Jun-15 (in house check Oct-18)                                                | ·                                                                                                                                                        |
| Network Analyzer Agilent E8358A    | SN: US41080477                     | 31-Mar-14 (in house check Oct-18                                                 | ) In house check: Oct-19                                                                                                                                 |
|                                    | Name                               | Function                                                                         | Signature                                                                                                                                                |
| Callbrated by:                     | Manu Seltz                         | Laboratory Technician                                                            | e for helde were die besteligte beite de verken en de besteligte were en anderen. Die stat die stat were de besteligte were die sone die besteligte were |
|                                    |                                    | anana ang akang ang ang ang ang ang ang ang ang ang                              | Z                                                                                                                                                        |
| Approved by:                       | Katja Pokovic                      | Technical Manager                                                                | Alle                                                                                                                                                     |
|                                    |                                    |                                                                                  | Issued: June 21, 2019                                                                                                                                    |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |
|       |                                 |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | <b>V</b> 52.10.2 |
|------------------------------|------------------------|------------------|
| Extrapolation                | Advanced Extrapolation |                  |
| Phantom                      | Modular Flat Phantom   |                  |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer      |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |                  |
| Frequency                    | 835 MHz ± 1 MHz        |                  |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.8 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          | ······································ |
|-------------------------------------------------------|--------------------|----------------------------------------|
| SAR measured                                          | 250 mW input power | 2.39 W/kg                              |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.50 W/kg ± 17.0 % (k=2)               |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.54 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.13 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity       |
|-----------------------------------------|-----------------|--------------|--------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.9 <b>7</b> mho/m |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.4 ± 6 %   | 0.98 mho/m ± 6 %   |
| Body TSL temperature change during test | < 0.5 °C        |              |                    |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.40 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.53 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.57 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.24 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.6 Ω - 4.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.7 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.6 Ω - 6.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.4 dB       |

## General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.393 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

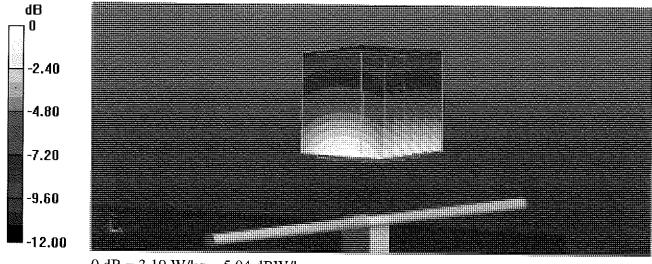
| Manufactured by | SPEAG  |  |
|-----------------|--------|--|
| Mandiactured by | of EAG |  |

## **DASY5 Validation Report for Head TSL**

Date: 20.06.2019

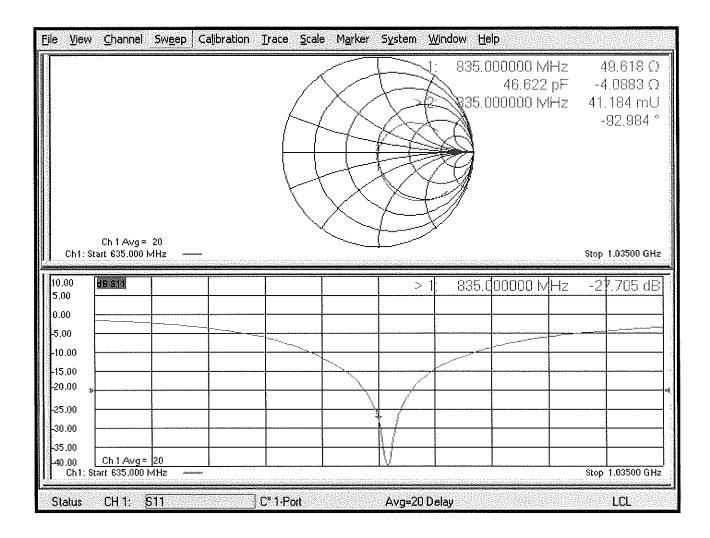
Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  S/m;  $\epsilon_r = 41.8$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)


# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.05 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.19 W/kg



0 dB = 3.19 W/kg = 5.04 dBW/kg

## Impedance Measurement Plot for Head TSL

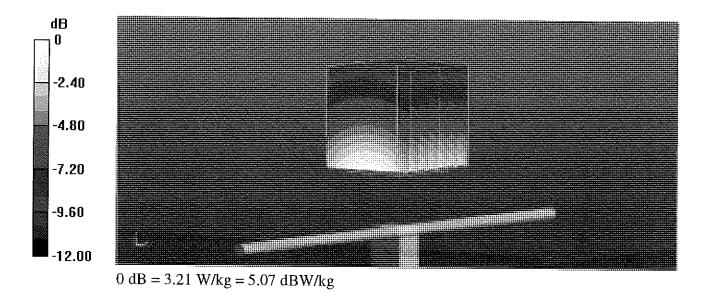


## **DASY5 Validation Report for Body TSL**

Date: 13.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d040


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz;  $\sigma = 0.98$  S/m;  $\epsilon_r = 55.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.73 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.21 W/kg



| <u>File V</u> iew                                                                           | Channel                        | Sw <u>e</u> ep C                        | alibration | Trace <u>S</u> cali | e M <u>a</u> rker | System | <u>W</u> indow <u>I</u> | <u>-t</u> elp                      |               |                                               |
|---------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|------------|---------------------|-------------------|--------|-------------------------|------------------------------------|---------------|-----------------------------------------------|
|                                                                                             |                                |                                         |            | A                   | XXX               |        | $\Delta$                | .000000 Mi<br>29.294<br>.000000 Mi | рЕ -<br>Hz 75 | 48.605 Ω<br>6.5067 Ω<br>5.801 mU<br>-113.70 ° |
| Cht:S                                                                                       | Ch 1 Avg = 2<br>tart 635,000 M | 20<br>Ha:                               |            |                     | ·                 |        |                         |                                    | Stor          | p 1.03500 GHz                                 |
| 1 10.00                                                                                     |                                |                                         | Т          |                     |                   | l .    |                         | 1                                  |               |                                               |
| 5,00                                                                                        | <b>HB</b> S11                  |                                         |            |                     |                   | > '    | l <u>: 835</u>          | . dooooo M                         | Hz -2         | 22.407 dB                                     |
| 5,00<br>0,00                                                                                |                                |                                         |            |                     |                   |        | l; 835.                 | .000000 MI                         | Hz -2         | 2.407 dB                                      |
| 5,00                                                                                        |                                |                                         |            |                     |                   |        | : 835                   | .000000 M                          | Hz -2         | 2.407 dB                                      |
| 5.00<br>0.00<br>-5.00                                                                       |                                | *************************************** |            |                     |                   |        | 835                     | .000000 M                          | Hz -2         | 2.407 dB                                      |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00                                         |                                |                                         |            |                     |                   |        | 835                     | .000000 Mi                         | <u>Hz</u> -2  | <u>2.407 dB</u>                               |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00                                         |                                | ······································  |            |                     |                   |        | 835                     |                                    | Hz -2         | <u>2.407 dB</u>                               |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00<br>-25.00<br>-30.00                     |                                |                                         |            |                     |                   |        | 835                     |                                    | Hz -2         | <u>2.407 dB</u>                               |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00<br>-25.00<br>-30.00<br>-35.00<br>-40.00 | Ch 1 Avg = 2<br>tart 635.000 M | 20<br>Hz                                |            |                     |                   |        | 835                     |                                    |               | 22.407 dB                                     |





# **Certification of Calibration**

Object

D835V2 - SN: 4d040

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 20, 2020

Extended Calibration date:

Description:

SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

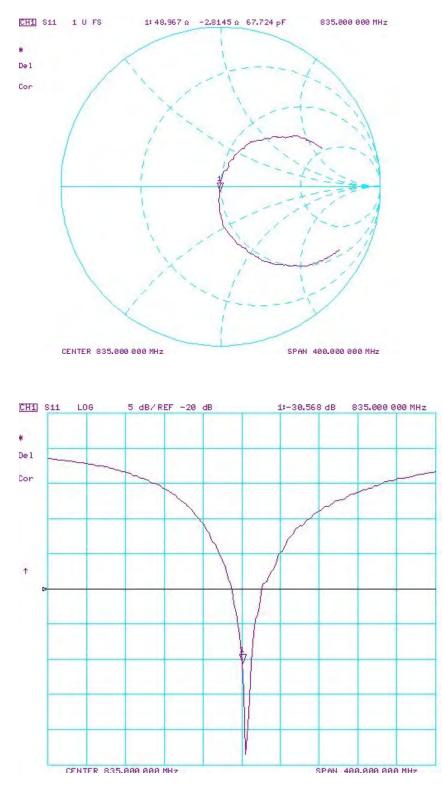
| Manufacturer          | Model     | Description                                             | Cal Date  | Cal Interval | Cal Due   | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|-----------|--------------|-----------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 1/16/2020 | Annual       | 1/16/2021 | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 8/19/2019 | Annual       | 8/19/2020 | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT       | N/A          | CBT       | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 1/15/2020 | Annual       | 1/15/2021 | 1328004       |
| Control Company       | 62344-734 | Therm./ Clock/ Humidity Monitor                         | 3/18/2019 | Biennial     | 3/18/2021 | 192038436     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 8/2/2018  | Biennial     | 8/2/2020  | 181292000     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019  | Annual       | 7/2/2020  | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT       | N/A          | CBT       | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT       | N/A          | CBT       | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT       | N/A          | CBT       | 9406          |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT       | N/A          | CBT       | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/18/2019 | Annual       | 7/18/2020 | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/14/2020 | Annual       | 1/14/2021 | 793           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/19/2020 | Annual       | 3/19/2021 | 604           |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2020 | Annual       | 5/12/2021 | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/20/2020 | Annual       | 1/20/2021 | 3837          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 3/20/2020 | Annual       | 3/20/2021 | 7421          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

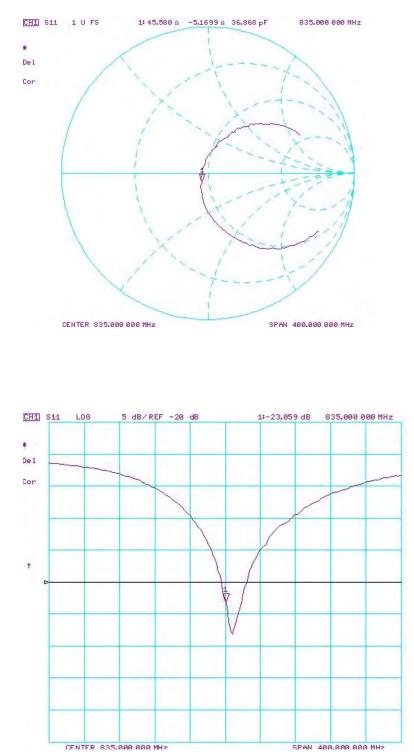
| Object:            | Date Issued: | Dogo 1 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2020    | Page 1 of 4 |

# **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | Measured<br>Head SAR (1g)<br>W/kg @ 23.0<br>dBm | (9()  | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 23.0<br>dBm | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|----------------|-----------------------------------------|-------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/20/2019           | 6/20/2020      | 1.393                                   | 1.900 | 2                                               | 5.26% | 1.226                                                         | 1.31         | 6.85%                | 49.6                                           | 49                                          | 0.6                      | -4.1                                                | -2.8                                             | 1.3                              | -27.7                                   | -30.6                                | -10.50%       | PASS      |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | Measured<br>Body SAR (1g)<br>W/kg @ 23.0<br>dBm | (0()  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 23.0<br>dBm | (40-) 10/0 @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 6/20/2019           | 6/20/2020      | 1.393                                   | 1.906 | 2.04                                            | 7.03% | 1.248                                                         | 1.34         | 7.37%                | 46.6                                           | 45.6                                        | 1                        | -6.5                                                | -5.2                                             | 1.3                              | -22.4                                   | -23.1                                | -3.10%        | PASS      |

| Object:            | Date Issued: | Dogo 2 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2020    | Page 2 of 4 |



#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:            | Date Issued: | Daga 2 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2020    | Page 3 of 4 |



## Impedance & Return-Loss Measurement Plot for Body TSL

| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2020    | Page 4 of 4 |





# **Certification of Calibration**

Object

D835V2 - SN: 4d040

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 20, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

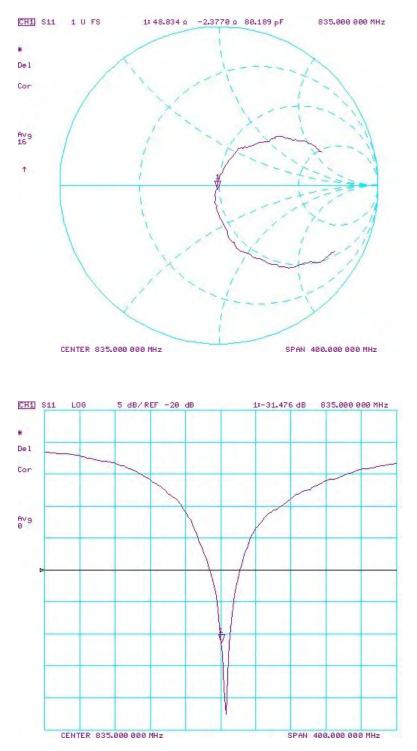
| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 4/14/2021  | Annual       | 4/14/2022  | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 12/1/2020  | Annual       | 12/1/2021  | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 3/4/2021   | Annual       | 3/4/2022   | 1328004       |
| Control Company       | 4353      | Long Stem Thermometer                                   | 10/28/2020 | Biennial     | 10/28/2022 | 200670635     |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 6/29/2019  | Biennial     | 6/29/2021  | 192291463     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 9/1/2020   | Annual       | 9/1/2021   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/30/2020  | Biennial     | 7/30/2022  | 22217         |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 10/12/2020 | Annual       | 10/12/2021 | 1213          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 5/11/2021  | Annual       | 5/11/2022  | 701           |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 10/21/2020 | Annual       | 10/21/2021 | 7420          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 6/22/2020  | Annual       | 6/22/2021  | 7416          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2021  | Annual       | 5/12/2022  | 1070          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

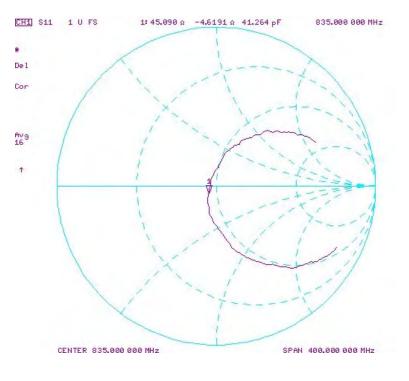
| Object:            | Date Issued: | Page 1 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2021    | Fage 1 014  |

# **DIPOLE CALIBRATION EXTENSION**

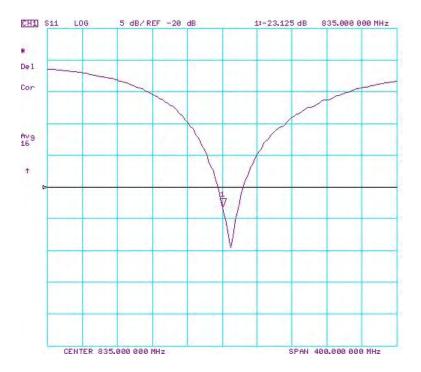

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | Measured<br>Head SAR (1g)<br>W/kg @ 23.0<br>dBm | (9()  | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 23.0<br>dBm | (10a) W/ka @      | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|----------------|-----------------------------------------|-------|-------------------------------------------------|-------|---------------------------------------------------------------|-------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/20/2019           | 6/20/2021      | 1.393                                   | 1.900 | 2.02                                            | 6.32% | 1.226                                                         | 1.31              | 6.85%                | 49.6                                           | 48.8                                        | 0.8                      | -4.1                                                | -2.4                                             | 1.7                              | -27.7                                   | -31.5                                | -13.60%       | PASS      |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |       | Measured<br>Body SAR (1g)<br>W/kg @ 23.0<br>dBm | (0()  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 23.0<br>dBm | (40-) Million (2) | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 6/20/2019           | 6/20/2021      | 1.393                                   | 1.906 | 1.96                                            | 2.83% | 1.248                                                         | 1.28              | 2.56%                | 46.6                                           | 45.1                                        | 1.5                      | -6.5                                                | -4.6                                             | 1.9                              | -22.4                                   | -23.1                                | -3.20%        | PASS      |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2021    | Faye 2 01 4 |




## Impedance & Return-Loss Measurement Plot for Head TSL

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2021    | Page 3 of 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D835V2 – SN: 4d040 | 6/20/2021    | rage 4 01 4 |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kallbrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Certificate No: D1750V2-1083\_Jun19 PC Test Client CALIBRATION CERTIFICATE D1750V2 - SN:1083 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz June 19, 2019 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. 7/10/2b21 Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date (Certificate No.) Scheduled Calibration SN: 104778 03-Apr-19 (No. 217-02892/02893) Power meter NRP Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 SN: 5058 (20k) Reference 20 dB Attenuator 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 Reference Probe EX3DV4 SN: 7349 29-May-19 (No. EX3-7349\_May19) May-20 30-Apr-19 (No. DAE4-601\_Apr19) SN: 601 DAE4 Apr-20 ID # Scheduled Check Secondary Standards Check Date (in house) Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (In house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (In house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (In house check Oct-18) In house check: Oct-19 Name Function Signature Claudio Leubler Laboratory Technician Calibrated by: Kalja Pokovic Approved by: Technical Manager Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage C

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **Glossarv:**

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## **Additional Documentation:**

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed 6 point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. 6 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.0 ± 6 %   | 1.34 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 8.91 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 36.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.70 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.0 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.9 ± 6 %   | 1.46 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.14 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 37.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 $cm^3$ (10 g) of Body TSL | condition          |                          |
|------------------------------------------------|--------------------|--------------------------|
| SAR measured                                   | 250 mW input power | 4.88 W/kg                |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 19.7 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.6 Ω - 1.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 38.0 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.1 Ω - 2.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.0 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.220 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

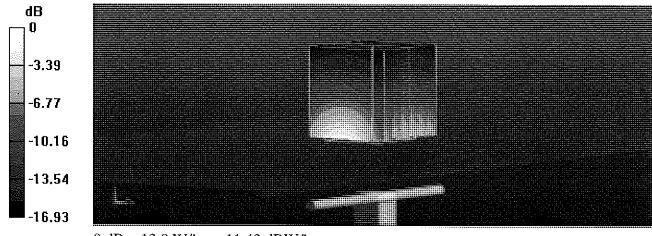
| Manufactured by | SPEAG |  |
|-----------------|-------|--|

## **DASY5 Validation Report for Head TSL**

Date: 19.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz;  $\sigma = 1.34$  S/m;  $\epsilon_r = 40$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.8 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 8.91 W/kg; SAR(10 g) = 4.7 W/kg Maximum value of SAR (measured) = 13.9 W/kg



0 dB = 13.9 W/kg = 11.43 dBW/kg

## Impedance Measurement Plot for Head TSL

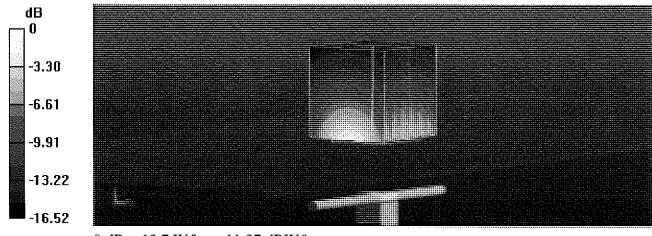
| Eile                                                                        | View                                                       | Channel                  | Sw <u>e</u> ep | Calibration | <u>Trace S</u> ca | le M <u>a</u> rker | System | <u>W</u> indow <u>F</u> | lelp                           |    |                 |        |
|-----------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|----------------|-------------|-------------------|--------------------|--------|-------------------------|--------------------------------|----|-----------------|--------|
|                                                                             |                                                            |                          |                |             | A                 |                    |        | S.                      | 750000 G<br>79.977<br>750000 G | рF | -1.13<br>12.831 |        |
|                                                                             | Ch1: Sta                                                   | Ch 1 Avg =<br>at 1,55000 | 20<br>GHz      | 7805        |                   | ·                  |        |                         |                                | ę  | Stop 1.950      | 00 GHz |
| AU-LANSING COURSE                                                           |                                                            | Charles States           |                |             |                   |                    |        |                         |                                |    |                 |        |
| 10.0<br>5.0<br>-5.0<br>-10.<br>-15.<br>-20.<br>-25.<br>-30.<br>-35.<br>-40. | 0 - 0<br>0 - 0<br>00 - 000 -<br>000 - 000 -<br>000 - 000 - | 18 311                   | 20<br>GHz      |             |                   |                    | > '    | : 1.                    | 750000 G                       |    | -37.97          |        |

## **DASY5 Validation Report for Body TSL**

Date: 13.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz;  $\sigma$  = 1.46 S/m;  $\epsilon_r$  = 53.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.45, 8.45, 8.45) @ 1750 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 101.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.88 W/kg Maximum value of SAR (measured) = 13.7 W/kg



0 dB = 13.7 W/kg = 11.37 dBW/kg

## Impedance Measurement Plot for Body TSL

| File <u>V</u> iew <u>C</u> i                                                                                                    | nannel Sw <u>e</u> ep C   | alibration <u>T</u> race <u>S</u> ca | le M <u>a</u> rker S <u>v</u> stem | <u>W</u> indow <u>H</u> elp     |                  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|------------------------------------|---------------------------------|------------------|
|                                                                                                                                 |                           |                                      |                                    | 1: 1.750000<br>56.8<br>1.750000 | 96 pF -1.5985 Ω  |
|                                                                                                                                 | t Avg = 20<br>1.55000 GHz |                                      |                                    |                                 | Stop 1.95000 GH≥ |
| 10.00<br>5.00<br>-5.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00<br>-25.00<br>-30.00<br>-35.00<br>-40.00<br>-40.00<br>-41: Start 1 | 1 Avg = 20<br>1.55000 GHz |                                      |                                    |                                 | ) CHz -28.044 dB |
| Status Cł                                                                                                                       | H 1: <b>51</b> 1          | C* 1-Port                            | Avg=20                             | Delay                           | LCL              |





# **Certification of Calibration**

Object

D1750V2 - SN: 1083

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 19, 2020

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

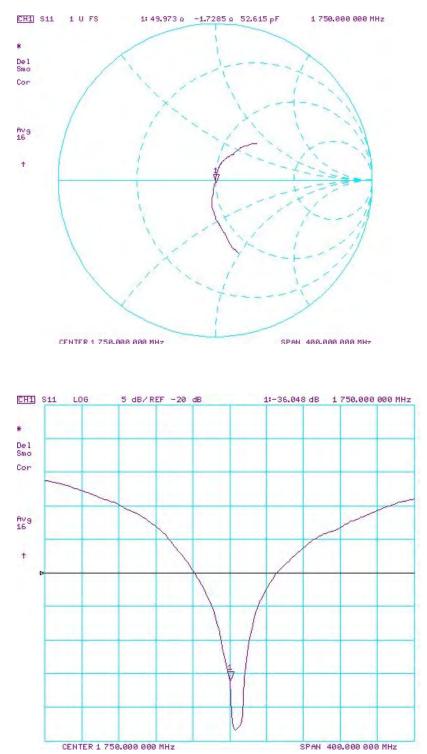
| Manufacturer          | Model     | Description                                             | Cal Date  | Cal Interval | Cal Due   | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|-----------|--------------|-----------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 1/16/2020 | Annual       | 1/16/2021 | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 8/19/2019 | Annual       | 8/19/2020 | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT       | N/A          | CBT       | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 1/15/2020 | Annual       | 1/15/2021 | 1328004       |
| Control Company       | 62344-734 | Therm./ Clock/ Humidity Monitor                         | 3/18/2019 | Biennial     | 3/18/2021 | 192038436     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 8/2/2018  | Biennial     | 8/2/2020  | 181292000     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019  | Annual       | 7/2/2020  | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT       | N/A          | CBT       | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT       | N/A          | CBT       | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT       | N/A          | CBT       | 9406          |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT       | N/A          | CBT       | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/18/2019 | Annual       | 7/18/2020 | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/14/2020 | Annual       | 1/14/2021 | 793           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 8/12/2019 | Annual       | 8/12/2020 | 1408          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2020 | Annual       | 5/12/2021 | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/20/2020 | Annual       | 1/20/2021 | 3837          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 8/29/2019 | Annual       | 8/29/2020 | 3949          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

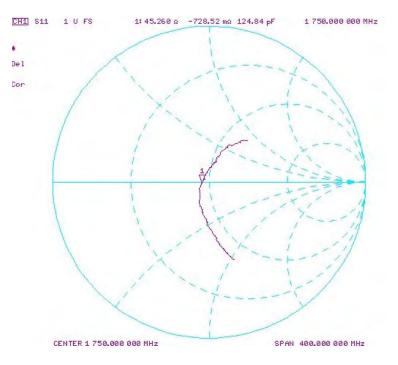
| Object:            | Date Issued: | Dogo 1 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1083 | 6/19/2020    | Page 1 of 4 |

## **DIPOLE CALIBRATION EXTENSION**

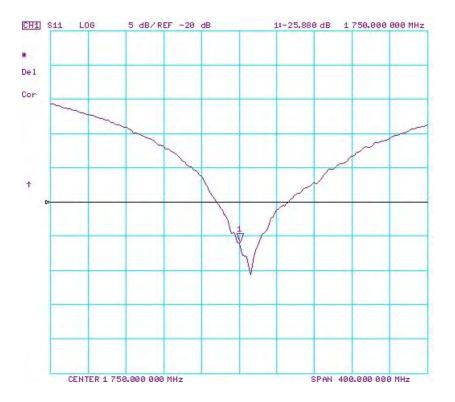

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)   | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | (10g) W/kg @<br>20.0 dBm |                      | Head (Ohm)<br>Real                             | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB)                            | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|--------------------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/19/2019           | 6/19/2020      | 1.22                                    | 3.61               | 3.69                                            | 2.22% | 1.9                                                           | 1.94                     | 2.11%                | 50.6                                           | 50                                          | 0.6                      | -1.1                                                | -1.7                                             | 0.6                              | -38                                     | -36                                  | 5.30%         | PASS      |
|                     |                |                                         |                    |                                                 |       |                                                               |                          |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                    | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/)  |                                                               | (40-) M(0 @              | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 6/19/2019           | 6/19/2020      | 1.22                                    | 3.71               | 3.83                                            | 3.23% | 1.97                                                          | 2.04                     | 3.55%                | 46.1                                           | 45.3                                        | 0.8                      | -2.4                                                | -0.7                                             | 1.7                              | -28                                     | -25.9                                | 7.50%         | PASS      |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1083 | 6/19/2020    | Fage 2 01 4 |




#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:            | Date Issued: | Daga 2 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1083 | 6/19/2020    | Page 3 of 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Daga 4 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1083 | 6/19/2020    | Page 4 of 4 |





# **Certification of Calibration**

Object

D1750V2 - SN: 1083

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 19, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

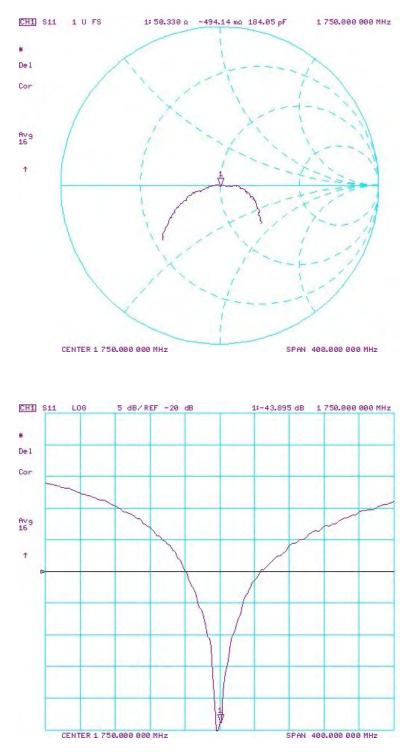
| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 4/14/2021  | Annual       | 4/14/2022  | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 12/1/2020  | Annual       | 12/1/2021  | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 3/4/2021   | Annual       | 3/4/2022   | 1328004       |
| Control Company       | 4353      | Long Stem Thermometer                                   | 10/28/2020 | Biennial     | 10/28/2022 | 200670635     |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 6/29/2019  | Biennial     | 6/29/2021  | 192291463     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 9/1/2020   | Annual       | 9/1/2021   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/30/2020  | Biennial     | 7/30/2022  | 22217         |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 10/12/2020 | Annual       | 10/12/2021 | 1213          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/13/2021  | Annual       | 1/13/2022  | 793           |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 10/21/2020 | Annual       | 10/21/2021 | 7420          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/18/2021  | Annual       | 1/18/2022  | 3837          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2021  | Annual       | 5/12/2022  | 1070          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

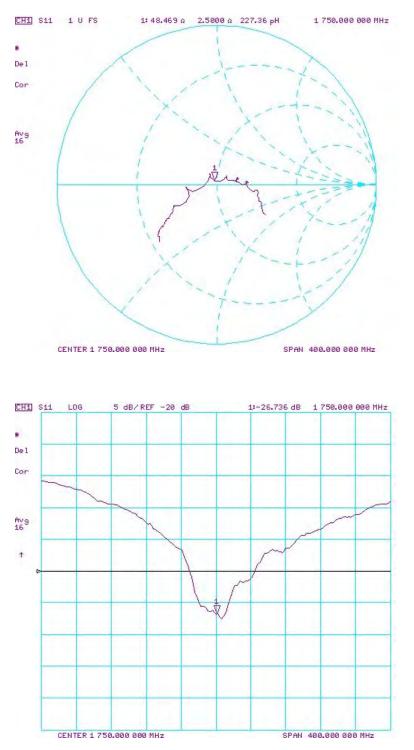
| Object:            | Date Issued: | Page 1 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1083 | 6/19/2021    | Fage 1 014  |

## **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (9()   | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | (10a) W/ka @             | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|--------|---------------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/19/2019           | 6/19/2021      | 1.22                                    | 3.61                            | 3.46                                            | -4.16% | 1.90                                                          | 1.85                     | -2.63%               | 50.6                                           | 50.3                                        | 0.3                      | -1.1                                                | -0.5                                             | 0.6                              | -38                                     | -43.9                                | -15.50%       | PASS      |
| Date                | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)    | vv/кg @ 20.0<br>dBm                                           | (10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) |               |           |
| 6/19/2019           | 6/19/2021      | 1.22                                    | 3.71                            | 3.80                                            | 2.43%  | 1.97                                                          | 2.02                     | 2.54%                | 46.1                                           | 48.5                                        | 2.4                      | -2.4                                                | 2.5                                              | 4.9                              | -28                                     | -26.7                                | 4.50%         | PASS      |

| Object:            | Date Issued: | Page 2 of 4  |
|--------------------|--------------|--------------|
| D1750V2 – SN: 1083 | 6/19/2021    | r age 2 01 4 |



Impedance & Return-Loss Measurement Plot for Head TSL

| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1083 | 6/19/2021    | Page 3 of 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1083 | 6/19/2021    | Faye 4 01 4 |

### **Calibration Laboratory of** Schmid & Partner

PC Test

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1750V2-1104\_Sep20

| A    |      | AL OF |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|------|-------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LALI | SHAL | ON CE |                                                                                                                 | AIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |      |       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |      |       | and 10 | A Contraction of the second seco |

| Object                               | D1750V2 - SN:11                | 04                                                     | VATM                      |
|--------------------------------------|--------------------------------|--------------------------------------------------------|---------------------------|
|                                      |                                |                                                        | V ATM<br>11/10/20         |
| Calibration procedure(s)             | QA CAL-05.v11                  |                                                        |                           |
|                                      |                                | dure for SAR Validation Sources bet                    | ween 0.7-3 GHz            |
|                                      |                                |                                                        |                           |
|                                      |                                |                                                        | I ATM.                    |
|                                      |                                |                                                        |                           |
| Calibration date:                    | September 09, 20               | )20                                                    | 9/09/2021                 |
|                                      |                                |                                                        |                           |
| This calibration certificate documer | its the traceability to nation | onal standards, which realize the physical units of    | measurements (SI).        |
|                                      | -                              | robability are given on the following pages and are    |                           |
|                                      |                                |                                                        |                           |
| All calibrations have been conducte  | ed in the closed laborator     | y facility: environment temperature (22 $\pm$ 3)°C and | humidity < 70%.           |
|                                      |                                |                                                        |                           |
| Calibration Equipment used (M&TE     | critical for calibration)      |                                                        |                           |
| Primary Standards                    | ID#                            | Cal Date (Certificate No.)                             | Scheduled Calibration     |
| Power meter NRP                      | SN: 104778                     | 01-Apr-20 (No. 217-03100/03101)                        | Apr-21                    |
| Power sensor NRP-Z91                 | SN: 103244                     | 01-Apr-20 (No. 217-03100)                              | Apr-21                    |
| Power sensor NRP-Z91                 | SN: 103245                     | 01-Apr-20 (No. 217-03101)                              | Apr-21                    |
| Reference 20 dB Attenuator           | SN: BH9394 (20k)               | 31-Mar-20 (No. 217-03106)                              | Apr-21                    |
| Type-N mismatch combination          | SN: 310982 / 06327             | 31-Mar-20 (No. 217-03104)                              | Apr-21                    |
| Reference Probe EX3DV4               | SN: 7349                       | 29-Jun-20 (No. EX3-7349_Jun20)                         | Jun-21                    |
| DAE4                                 | SN: 601                        | 27-Dec-19 (No. DAE4-601_Dec19)                         | Dec-20                    |
|                                      |                                |                                                        |                           |
| Secondary Standards                  | ID #                           | Check Date (in house)                                  | Scheduled Check           |
| Power meter E4419B                   | SN: GB39512475                 | 30-Oct-14 (in house check Feb-19)                      | In house check: Oct-20    |
| Power sensor HP 8481A                | SN: US37292783                 | 07-Oct-15 (in house check Oct-18)                      | In house check: Oct-20    |
| Power sensor HP 8481A                | SN: MY41092317                 | 07-Oct-15 (in house check Oct-18)                      | In house check: Oct-20    |
| RF generator R&S SMT-06              | SN: 100972                     | 15-Jun-15 (in house check Oct-18)                      | In house check: Oct-20    |
| Network Analyzer Agilent E8358A      | SN: US41080477                 | 31-Mar-14 (in house check Oct-19)                      | In house check: Oct-20    |
|                                      | Nemo                           | Eurotien                                               | Pieneture                 |
|                                      | Name                           | Function                                               | Signature                 |
| Calibrated by:                       | Michael Weber                  | Laboratory Technician                                  | Miller                    |
|                                      |                                |                                                        | 1                         |
| Approved by:                         | Katja Pokovic                  | Technical Manager                                      | All -                     |
|                                      |                                |                                                        |                           |
|                                      | h                              |                                                        | Issued: September 9, 2020 |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst

С

S Swiss Calibration Service

Accreditation No.: SCS 0108

S Service suisse d'étalonnage

Servizio svizzero di taratura

#### Calibration Laboratory of

Schmid & Partner Enaineerina AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end 0 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. 0
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna 0 connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4             |
|------------------------------|------------------------|----------------------|
| Extrapolation                | Advanced Extrapolation | e 3 Within and Array |
| Phantom                      | Modular Flat Phantom   |                      |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer          |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |                      |
| Frequency                    | 1750 MHz ± 1 MHz       | AAAAAA,              |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.5 ± 6 %   | 1.36 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL                            | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 8.86 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 35.7 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 4.68 W/kg                |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22,0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.8 ± 6 %   | 1.47 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL | Condition          |                          |
|----------------------------------------------|--------------------|--------------------------|
| SAR measured                                 | 250 mW input power | 8.98 W/kg                |
| SAR for nominal Body TSL parameters          | normalized to 1W   | 36.3 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.80 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.3 W/kg ± 16.5 % (k=2) |

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.8 Ω + 0.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 42.0 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.4 Ω - 0.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.5 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.216 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |  |
|-----------------|-------|--|
|                 |       |  |

#### **DASY5 Validation Report for Head TSL**

Date: 09.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz;  $\sigma = 1.36$  S/m;  $\epsilon_r = 40.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.58, 8.58, 8.58) @ 1750 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.7 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.86 W/kg; SAR(10 g) = 4.68 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 13.6 W/kg



### Impedance Measurement Plot for Head TSL

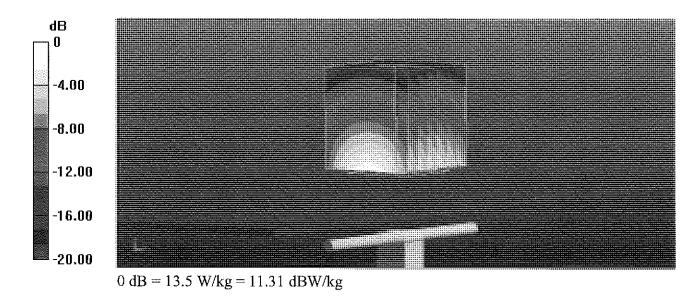
| File                                                                 | ⊻iew                                 | Channel                     | Sw <u>e</u> ep | Calibration | <u>Trace</u> <u>S</u> cale | Marker                                | System <u>V</u> | lindow ∐ | elp                            |    |              |                                    |
|----------------------------------------------------------------------|--------------------------------------|-----------------------------|----------------|-------------|----------------------------|---------------------------------------|-----------------|----------|--------------------------------|----|--------------|------------------------------------|
|                                                                      |                                      |                             |                |             | A                          |                                       |                 |          | 750000 C<br>9.4848<br>750000 C | pН | 104.<br>7.93 | .793 Ω<br>29 mΩ<br>19 mU<br>4363 ° |
|                                                                      | Ch1:St                               | Ch 1 Avg =<br>art 1.55000 ( | 3Hz            |             | <u>An Antonio an A</u>     | · · · · · · · · · · · · · · · · · · · |                 |          |                                |    | Stop 1       | 95000 GMz                          |
| 10.1<br>5.0<br>-5.0<br>-10<br>-15<br>-20<br>-25<br>-30<br>-35<br>-40 | 0<br>0<br>00<br>00<br>00<br>00<br>00 | 6B 311                      | 20<br>GHz      |             |                            |                                       | > 1             | . 1.     |                                |    |              | 012 dB                             |
| Sta                                                                  | atus                                 | CH 1:                       | 511            |             | C* 1-Port                  |                                       | Avg=20 D        | elay     |                                |    |              | LCL                                |

#### **DASY5 Validation Report for Body TSL**

Date: 09.09.2020

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz;  $\sigma = 1.47$  S/m;  $\epsilon_r = 53.8$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.36, 8.36, 8.36) @ 1750 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.42 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 8.98 W/kg; SAR(10 g) = 4.8 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 57.7% Maximum value of SAR (measured) = 13.5 W/kg



### Impedance Measurement Plot for Body TSL

| <u>Eile View Channel Swe</u> ep Calibra                                                                                                                     | ation <u>T</u> race <u>S</u> cale M <u>a</u> rker System <u>W</u> | indow <u>H</u> elp                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                                                                                             |                                                                   | 1.750000 GHz 46.424 Ω<br>142.51 pF -638.17 mΩ<br>1.750000 GHz 37.671 mU<br>-169.50 ° |
| Ch 1 Avg = 20<br>Ch1: Start 1.55000 GHz                                                                                                                     |                                                                   | Stop 1.95000 GHz                                                                     |
| 10.00 <b>dB \$11</b><br>5.00<br>0.00<br>5.00<br>-10.00<br>-15.00<br>-20.00<br>-25.00<br>-25.00<br>-30.00<br>-30.00<br>-35.00<br>-40.00 <u>Ch 1 Avg = 20</u> |                                                                   | 1.750000 CHz -28.480 dB                                                              |
| Ch1: Start 1.55000 GHz<br>Status CH 1: \$11                                                                                                                 | C*1-Port Avg=20.De                                                | Stop 1.95000 GHz                                                                     |

•





# **Certification of Calibration**

Object

D1750V2-SN: 1104

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

Description:

September 9, 2021

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

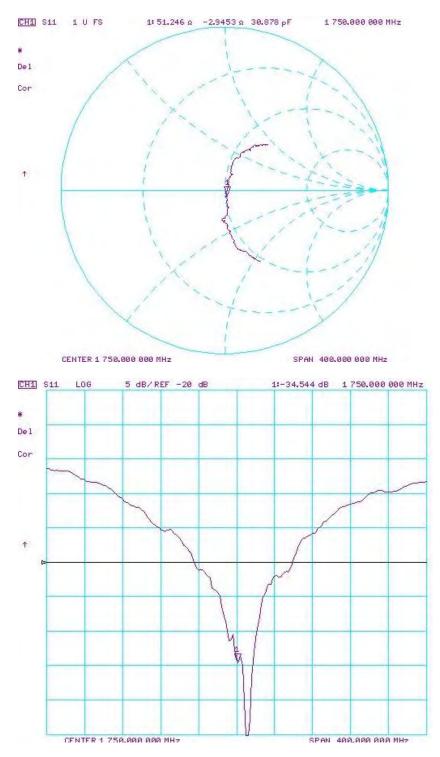
| Manufacturer       | Model     | Description                     | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|-----------|---------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES    | S-Parameter Network Analyzer    | 10/2/2020  | Annual       | 10/2/2021  | US39170118    |
| Agilent            | E4438C    | ESG Vector Signal Generator     | 6/27/2021  | Annual       | 6/27/2022  | MY45093852    |
| Amplifier Research | 15S1G6    | Amplifier                       | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | ML2495A   | Power Meter                     | 1/18/2021  | Annual       | 1/18/2022  | 0941001       |
| Anritsu            | MA2411B   | Pulse Power Sensor              | 10/30/2020 | Annual       | 10/30/2021 | 1207470       |
| Anritsu            | MA2411B   | Pulse Power Sensor              | 11/20/2020 | Annual       | 11/20/2021 | 1339007       |
| Control Company    | 4040      | Therm./ Clock/ Humidity Monitor | 2/28/2020  | Biennial     | 2/28/2022  | 150761911     |
| Control Company    | 4352      | Ultra Long Stem Thermometer     | 2/28/2020  | Biennial     | 2/28/2022  | 170330160     |
| Agilent            | 85033E    | 3.5mm Standard Calibration Kit  | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| Mini-Circuits      | NLP-2950+ | Low Pass Filter DC to 2700 MHz  | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3    | Attenuator (3dB)                | CBT        | N/A          | CBT        | 9406          |
| Pasternack         | PE2208-6  | Bidirectional Coupler           | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | NC-100    | Torque Wrench                   | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAK-3.5   | Dielectric Assessment Kit       | 5/12/2021  | Annual       | 5/12/2022  | 1070          |
| SPEAG              | EX3DV4    | SAR Probe                       | 4/19/2021  | Annual       | 4/19/2022  | 7532          |
| SPEAG              | DAE4      | Data Acquisition Electronics    | 4/13/2021  | Annual       | 4/13/2022  | 501           |

Measurement Uncertainty = ±23% (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

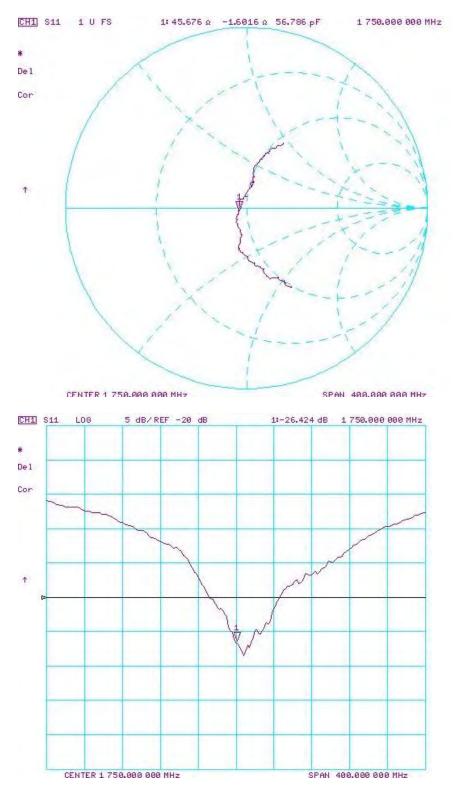
| Object:            | Date Issued: | Page 1 of 4 |  |
|--------------------|--------------|-------------|--|
| D1750V2 – SN: 1104 | 09/09/2021   | Page 1 of 4 |  |

## **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/)  |      | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|------|-------------------------------------------------|-------|------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 9/9/2020            | 9/9/2021          | 1.216                                   | 3.57 | 3.8                                             | 6.44% | 1.88 | 2.01         | 6.91%                | 50.8                                           | 51.2                                        | 0.4                      | 0.1                                                 | -2.9                                             | 3                                | -42.0                                   | -34.5                                | 17.80%        | PASS      |
|                     |                   |                                         |      | [                                               |       |      |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/ ) |      | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 9/9/2020            | 9/9/2021          | 1.216                                   | 3.63 | 3.8                                             | 4.68% | 1.93 | 2.03         | 5.18%                | 46.4                                           | 45.7                                        | 0.7                      | -0.6                                                | -1.6                                             | 1                                | -28.5                                   | -26.4                                | 7.30%         | PASS      |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1104 | 09/09/2021   | Page 2 of 4 |



#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:            | Date Issued: | Daga 2 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1104 | 09/09/2021   | Page 3 of 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:            | Date Issued: | Page 4 of 4 |  |
|--------------------|--------------|-------------|--|
| D1750V2 – SN: 1104 | 09/09/2021   | Page 4 of 4 |  |

**Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





S

С

Schweizerischer Kalibrierdienst Service suisse d'étaionnage Servizio svizzero di taratura S Swiss Calibration Service

١

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

| Client PC Test                                                          |                                                           | C                                                                       | ertilicate No: D1900V2-5d030_Jun19                                                   |
|-------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| CALIBRATION C                                                           | ERNIEIGANE                                                |                                                                         |                                                                                      |
| Dbjeot                                                                  | D1900V2 - SN:50                                           | 1030                                                                    | / ATH<br>6128/19                                                                     |
| Cailbration procedure(s)                                                | QA CAL-05.v11<br>Calibration Proce                        | dure for SAR Validation                                                 | (7.3)///<br>Sources between 0.7-3 GHz                                                |
| Calibration date:                                                       | June 19, 2019                                             |                                                                         | AIM<br>7/3/20                                                                        |
| This calibration certificate documer<br>The measurements and the uncert | nts the traceability to nati<br>aintles with confidence p | onal standards, which realize the<br>robability are given on the follow | e physical units of measurements (SI).<br>Ing pages and are part of the certificate. |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE |                                                           | ry facility: environment temperate                                      | ure (22 $\pm$ 3)°C and humidity < 70%. 7/10/202                                      |
| Primary Standards                                                       | 1D#                                                       | Cal Date (Certificate No.)                                              | Scheduled Calibration                                                                |
| Power meter NRP                                                         | SN: 104778                                                | 03-Apr-19 (No. 217-02892/02                                             | 893) Apr-20                                                                          |
| Power sensor NRP-Z91                                                    | SN: 103244                                                | 03-Apr-19 (No. 217-02892)                                               | Apr-20                                                                               |
| Power sensor NRP-Z91                                                    | SN: 103245                                                | 03-Apr-19 (No. 217-02893)                                               | Apr-20                                                                               |
| Reference 20 dB Attenuator                                              | SN: 5058 (20k)                                            | 04-Apr-19 (No. 217-02894)                                               | Apr-20                                                                               |
| Type-N mismatch combination                                             | SN: 5047.2 / 06327                                        | 04-Apr-19 (No. 217-02895)                                               | Apr-20                                                                               |
| Reference Probe EX3DV4                                                  | SN: 7349                                                  | 29-May-19 (No. EX3-7349_M                                               | av19) May-20                                                                         |
| DAE4                                                                    | SN: 601                                                   | 30-Apr-19 (No. DAE4-601_Ap                                              |                                                                                      |
| Secondary Standards                                                     | ID #                                                      | Check Date (In house)                                                   | Scheduled Check                                                                      |
| Power meter E4419B                                                      | SN: GB39512476                                            | 30-Oct-14 (in house check Fe                                            | eb-19) In house check: Oct-20                                                        |
| Power sensor HP 8481A                                                   | SN: US37292783                                            | 07-Oct-15 (in house check O                                             | ol-18) In house check: Oct-20                                                        |
| Power sensor HP 8481A                                                   | SN: MY41092317                                            | 07-Oct-15 (in house check O                                             | ct-18) In house check: Oct-20                                                        |
| RF generator R&S SMT-06                                                 | SN: 100972                                                | 15-Jun-15 (in house check O                                             | ct-18) In house check: Oct-20                                                        |
| Network Analyzer Agllent E8358A                                         | SN: US41080477                                            | 31-Mar-14 (in house check O                                             | ct-18) In house check: Oct-19                                                        |
| Calibrated by:                                                          | Name<br>Claudic Leubler                                   | Function<br>Laboratory Techi                                            | nician:                                                                              |
| Approved by:                                                            | Kalja Pokovic                                             | Technical Manag                                                         | jer (1997)                                                                           |
| Appiovea by.                                                            |                                                           |                                                                         | Al 45                                                                                |

#### **Calibration Laboratory of**

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 6 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2                               |
|------------------------------|------------------------|----------------------------------------|
| Extrapolation                | Advanced Extrapolation | ,                                      |
| Phantom                      | Modular Flat Phantom   |                                        |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer                            |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Frequency                    | 1900 MHz ± 1 MHz       |                                        |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.4 ± 6 %   | 1.39 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          | •                        |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.85 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 39.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.19 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.2 ± 6 %   | 1.50 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.86 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 39.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.24 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.1 W/kg ± 16.5 % (k=2) |

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.0 Ω + 4.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.6 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.0 Ω + 5.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.0 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.191 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

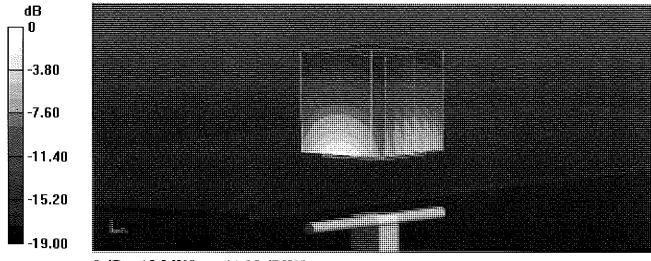
| Manufactured by | SPEAG |
|-----------------|-------|

#### **DASY5 Validation Report for Head TSL**

Date: 19.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d030


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma = 1.39$  S/m;  $\varepsilon_r = 41.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.44, 8.44, 8.44) @ 1900 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 15.3 W/kg



### Impedance Measurement Plot for Head TSL

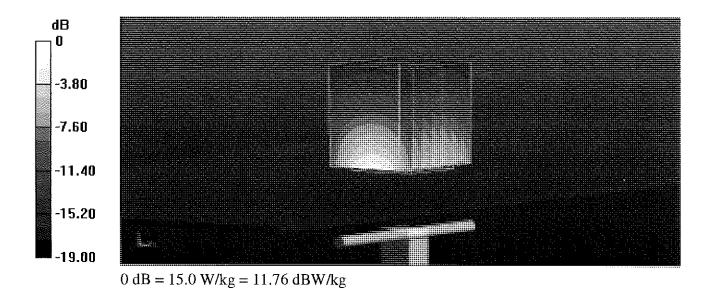
| <u>File Vie</u> i                                                                 | w <u>C</u> hannel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sw <u>e</u> ep C | alibration | <u>T</u> race <u>S</u> cale | e M <u>a</u> rker | System         | <u>W</u> indow | <u>H</u> elp                            |               |                                          |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----------------------------|-------------------|----------------|----------------|-----------------------------------------|---------------|------------------------------------------|
|                                                                                   | Ch 1 Avg =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20               |            | A                           | XXX               |                | A              | 1.900000 GH<br>351.42 pt<br>1.900000 GH | H 4<br>Iz 41. | 0.050 Ω<br>.1953 Ω<br>898 mU<br>86.911 ° |
| Ch1:                                                                              | Start 1.70000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GHz              |            |                             |                   |                |                |                                         | Stop ;        | 2.10000 GHz                              |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |            |                             |                   |                |                |                                         |               |                                          |
| 10.00<br>5.00                                                                     | dB S11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |            |                             |                   | > `            | 1.             | 1.900000 GH                             | lz -2         | 7.556 dB                                 |
| 5.00<br>0.00                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |            |                             |                   | > `            |                | 1.900000 GH                             | .z -27        | '.556 dB                                 |
| 5.00                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |            |                             |                   |                |                | 1.900000 GH                             | z -27         | '.556 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |            |                             |                   |                |                | 1.900000 CH                             | z -2          | '.556 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00                               | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |            |                             |                   | > <sup>·</sup> |                | 1.900000 GH                             | z -27         | '.556 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00                                         | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |            |                             |                   |                |                | 1.900000 GH                             | z -27         | <u>2.556 dB</u>                          |
| 5.00<br>0.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00<br>-25.00<br>-30.00<br>-35.00 | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |            |                             |                   | >              |                |                                         | z -27         | '.556 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-15.00<br>-20.00<br>-25.00<br>-30.00<br>-35.00<br>-40.00 | Image: Start Image: Start< | 20<br>GHz        |            |                             |                   | > '            |                |                                         |               | 2.10000 GHz                              |

#### **DASY5 Validation Report for Body TSL**

Date: 19.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d030


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.5 S/m;  $\epsilon_r$  = 54.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.42, 8.42, 8.42) @ 1900 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 104.1 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.86 W/kg; SAR(10 g) = 5.24 W/kg Maximum value of SAR (measured) = 15.0 W/kg



### Impedance Measurement Plot for Body TSL

| Eile 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>View C</u> hannel              | Sw <u>e</u> ep C | alibration <u>T</u> ra | ce <u>S</u> cale M | arker S <u>y</u> stem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>W</u> indow | <u>H</u> elp                         |                  |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                  |                        |                    | THE REAL PROPERTY IN THE REAL PROPERTY INTO THE | À              | .900000 GH<br>448.94 p<br>.900000 GH | iH 5.<br>Hz 83.1 | 7.009 Ω<br>3594 Ω<br>169 mU<br>116.00 ° |
| Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ch 1 Avg ≃<br>Ch 1: Start 1.70000 | 20<br>GHz        |                        | ~                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                      | Stop 2           | 10000 GHz                               |
| T in the second s |                                   |                  |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                      |                  |                                         |
| 19.00<br>5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                  |                        |                    | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | .900000 GH                           | lz -2\$          | .990 dB                                 |
| 5.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                  |                        |                    | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | .900000 GH                           | lz -23           | .990 dB                                 |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                  |                        |                    | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | .900000 GH                           | lz -23           | .990 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.0<br>-15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                  |                        |                    | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | .900000 GH                           | lz -23           | .990 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.0<br>-15.0<br>-15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                  |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | .900000 GH                           | lz -23           | .990 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.0<br>-15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                  |                        |                    | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | .900000 GH                           | lz -23           | .990 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.0<br>-15.0<br>-25.0<br>-25.0<br>-30.0<br>-35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                  |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                      | lz -23           | .990 dB                                 |
| 5.00<br>0.00<br>-5.00<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-25.0<br>-30.0<br>-35.0<br>-40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 20<br>GHz        |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                      |                  | 10000 GHz                               |





# **Certification of Calibration**

Object

D1900V2 - SN: 5d030

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 19, 2020

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

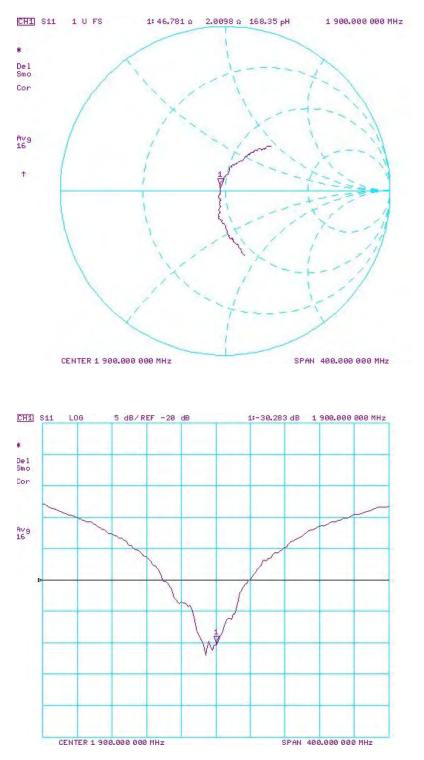
Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date  | Cal Interval | Cal Due   | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|-----------|--------------|-----------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 1/16/2020 | Annual       | 1/16/2021 | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 8/19/2019 | Annual       | 8/19/2020 | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT       | N/A          | CBT       | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 1/15/2020 | Annual       | 1/15/2021 | 1328004       |
| Control Company       | 62344-734 | Therm./ Clock/ Humidity Monitor                         | 3/18/2019 | Biennial     | 3/18/2021 | 192038436     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 8/2/2018  | Biennial     | 8/2/2020  | 181292000     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019  | Annual       | 7/2/2020  | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT       | N/A          | CBT       | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT       | N/A          | CBT       | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT       | N/A          | CBT       | 9406          |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT       | N/A          | CBT       | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/18/2019 | Annual       | 7/18/2020 | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/14/2020 | Annual       | 1/14/2021 | 793           |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2020 | Annual       | 5/12/2021 | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/20/2020 | Annual       | 1/20/2021 | 3837          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

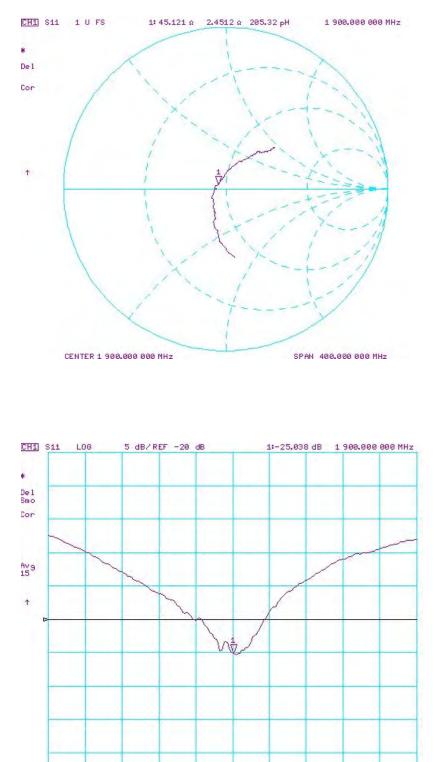
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

## **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)   | W/kg @ 20.0<br>dBm | (10g) W/kg @<br>20.0 dBm |                      | Head (Ohm)<br>Real                             | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB)                            | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|--------------------|-------------------------------------------------|-------|--------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/19/2019           | 6/19/2020      | 1.191                                   | 3.99               | 4.3                                             | 7.77% | 2.09               | 2.2                      | 5.26%                | 50                                             | 46.8                                        | 3.2                      | 4.2                                                 | 2                                                | 2.2                              | -27.6                                   | -30.3                                | -9.80%        | PASS      |
|                     |                |                                         |                    |                                                 |       |                    |                          |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                    | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/)  |                    | (40-) Million (2)        | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 6/19/2019           | 6/19/2020      | 1.191                                   | 3.99               | 4.29                                            | 7.52% | 2.11               | 2.2                      | 4.27%                | 47                                             | 45.1                                        | 1.9                      | 5.4                                                 | 2.5                                              | 2.9                              | -24                                     | -25                                  | -4.20%        | PASS      |

| Object:             | Date Issued: | Page 2 of 4 |
|---------------------|--------------|-------------|
| D1900V2 – SN: 5d030 | 6/19/2020    | raye 2 01 4 |



#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:             | Date Issued: | Page 3 of 4 |
|---------------------|--------------|-------------|
| D1900V2 – SN: 5d030 | 6/19/2020    | Fage 5 01 4 |



CENTER 1 900.000 000 MHz

#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:             | Date Issued: | Dogo 4 of 4 |
|---------------------|--------------|-------------|
| D1900V2 – SN: 5d030 | 6/19/2020    | Page 4 of 4 |

SPAN 400.000 000 MHz





# **Certification of Calibration**

Object

D1900V2 - SN: 5d030

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 19, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

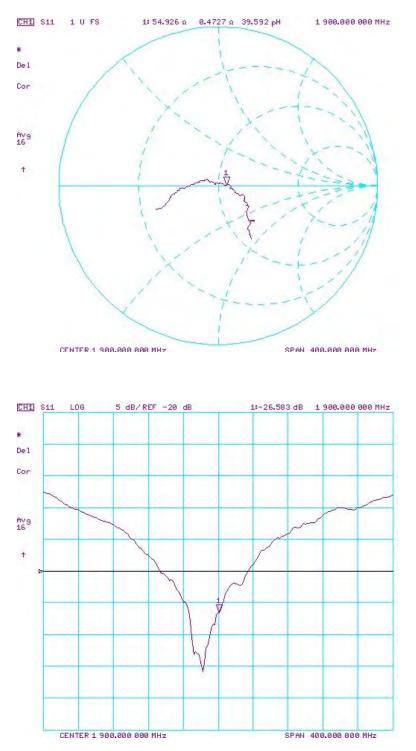
| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 4/14/2021  | Annual       | 4/14/2022  | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 12/1/2020  | Annual       | 12/1/2021  | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 3/4/2021   | Annual       | 3/4/2022   | 1328004       |
| Control Company       | 4353      | Long Stem Thermometer                                   | 10/28/2020 | Biennial     | 10/28/2022 | 200670635     |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 6/29/2019  | Biennial     | 6/29/2021  | 192291463     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 9/1/2020   | Annual       | 9/1/2021   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/30/2020  | Biennial     | 7/30/2022  | 22217         |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 10/12/2020 | Annual       | 10/12/2021 | 1213          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/13/2021  | Annual       | 1/13/2022  | 793           |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 10/21/2020 | Annual       | 10/21/2021 | 7420          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/18/2021  | Annual       | 1/18/2022  | 3837          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2021  | Annual       | 5/12/2022  | 1070          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

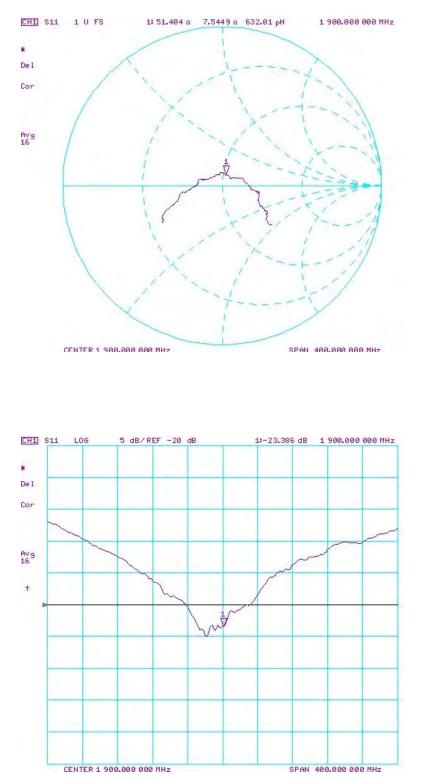
| Object:             | Date Issued: | Page 1 of 4 |
|---------------------|--------------|-------------|
| D1900V2 – SN: 5d030 | 6/19/2021    | raye i 014  |

## **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


| Date      | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (19)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)   | Head (10g)<br>W/kg @ 20.0<br>dBm | (10g) W/kg @<br>20.0 dBm |        | Head (Ohm)<br>Real                             | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB) | Deviation (%) |      |
|-----------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|-------|----------------------------------|--------------------------|--------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|-----------|---------------|------|
| 6/19/2019 | 6/19/2021      | 1.191                                   | 3.99                            | 4.09                                            | 2.51% | 2.09                             | 2.08                     | -0.48% | 50                                             | 54.9                                        | 4.9                      | 4.2                                                 | 0.5                                              | 3.7                              | -27.6                                   | -26.6     | 3.70%         | PASS |
| Date      | Extension Date | Certificate<br>Electrical<br>Delay (ns) | W/kg @ 20.0<br>dBm              | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)   | W/kg @ 20.0<br>dBm               | (10g) W/kg @<br>20.0 dBm |        | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Body (dB) | Deviation (%) |      |
| 6/19/2019 | 6/19/2021      | 1.191                                   | 3.99                            | 4.11                                            | 3.01% | 2.11                             | 2.11                     | 0.00%  | 47                                             | 51.4                                        | 4.4                      | 5.4                                                 | 7.5                                              | 2.1                              | -24                                     | -23.4     | 2.60%         | PASS |

| Object:             | Date Issued: | Page 2 of 4 |  |
|---------------------|--------------|-------------|--|
| D1900V2 – SN: 5d030 | 6/19/2021    | raye 2 014  |  |



Impedance & Return-Loss Measurement Plot for Head TSL

| Object:             | Date Issued: | Page 3 of 4 |  |
|---------------------|--------------|-------------|--|
| D1900V2 – SN: 5d030 | 6/19/2021    | Fage 5 01 4 |  |



#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:             | Date Issued: | Dogo 4 of 4 |  |
|---------------------|--------------|-------------|--|
| D1900V2 – SN: 5d030 | 6/19/2021    | Page 4 of 4 |  |

#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura

Accreditation No.: SCS 0108

S **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **PC Test** Client

| Certificate No: D1900V2-5d180_A | lug20 |
|---------------------------------|-------|
|---------------------------------|-------|

## **CALIBRATION CERTIFICATE**

| Object                                 | D1900V2 - SN:50                                         | 1180                                                                                                                                                        | 19/9/20 ATM                     |
|----------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Calibration procedure(s)               | QA CAL-05.v11<br>Calibration Proce                      | dure for SAR Validation Sources                                                                                                                             | s between 0.7-3 GHz             |
|                                        |                                                         |                                                                                                                                                             | V ATM                           |
| Calibration date:                      | August 10, 2020                                         |                                                                                                                                                             | 8/10/2021                       |
| The measurements and the uncerta       | ainties with confidence p<br>ed in the closed laborator | onal standards, which realize the physical ur<br>robability are given on the following pages a<br>ry facility: environment temperature $(22 \pm 3)^{\circ}$ | nd are part of the certificate. |
| Primary Standards                      | ID #                                                    | Cal Date (Certificate No.)                                                                                                                                  | Scheduled Calibration           |
| Power meter NRP                        | SN: 104778                                              | 01-Apr-20 (No. 217-03100/03101)                                                                                                                             | Apr-21                          |
| Power sensor NRP-Z91                   | SN: 103244                                              | 01-Apr-20 (No. 217-03100)                                                                                                                                   | Apr-21                          |
| Power sensor NRP-Z91                   | SN: 103245                                              | 01-Apr-20 (No. 217-03101)                                                                                                                                   | Apr-21                          |
| Reference 20 dB Attenuator             | SN: BH9394 (20k)                                        | 31-Mar-20 (No. 217-03106)                                                                                                                                   | Apr-21                          |
| Type-N mismatch combination            | SN: 310982 / 06327                                      | 31-Mar-20 (No. 217-03104)                                                                                                                                   | Apr-21                          |
| Reference Probe EX3DV4                 | SN: 7349                                                | 29-Jun-20 (No. EX3-7349_Jun20)                                                                                                                              | Jun-21                          |
| DAE4                                   | SN: 601                                                 | 27-Dec-19 (No. DAE4-601_Dec19)                                                                                                                              | Dec-20                          |
| Secondary Standards                    | ID #                                                    | Check Date (in house)                                                                                                                                       | Scheduled Check                 |
| Power meter E4419B                     | SN: GB39512475                                          | 30-Oct-14 (in house check Feb-19)                                                                                                                           | In house check: Oct-20          |
| Power sensor HP 8481A                  | SN: US37292783                                          | 07-Oct-15 (in house check Oct-18)                                                                                                                           | In house check: Oct-20          |
| Power sensor HP 8481A                  | SN: MY41092317                                          | 07-Oct-15 (in house check Oct-18)                                                                                                                           | In house check: Oct-20          |
| RF generator R&S SMT-06                | SN: 100972                                              | 15-Jun-15 (in house check Oct-18)                                                                                                                           | In house check: Oct-20          |
| Network Analyzer Agilent E8358A        | SN: US41080477                                          | 31-Mar-14 (in house check Oct-19)                                                                                                                           | In house check: Oct-20          |
|                                        | Name                                                    | Function                                                                                                                                                    | Signature                       |
| Calibrated by:                         | Jeffrey Katzman                                         | Laboratory Technician                                                                                                                                       | A. Latur                        |
| Approved by:                           | Katja Pokovic                                           | Technical Manager                                                                                                                                           | My                              |
| This calibration certificate shall not | be reproduced except in                                 | full without written approval of the laborator                                                                                                              | Issued: August 11, 2020<br>v.   |

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz  = 5 mm     |             |
| Frequency                    | 1900 MHz ± 1 MHz       |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.2 ± 6 %   | 1.39 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 $\text{cm}^3$ (1 g) of Head TSL | Condition          |                          |
|-----------------------------------------------------|--------------------|--------------------------|
| SAR measured                                        | 250 mW input power | 9.84 W/kg                |
| SAR for nominal Head TSL parameters                 | normalized to 1W   | 39.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.16 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.8 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.9 ± 6 %   | 1.49 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.60 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 39.0 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.10 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.6 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 52.8 Ω + 5.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.3 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.1 Ω + 5.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.0 dB       |

### General Antenna Parameters and Design

| Electrical Delay (one direction) 1.203 ns | Electrical Delay (one direction) | 1.203 ns |
|-------------------------------------------|----------------------------------|----------|
|-------------------------------------------|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## Additional EUT Data

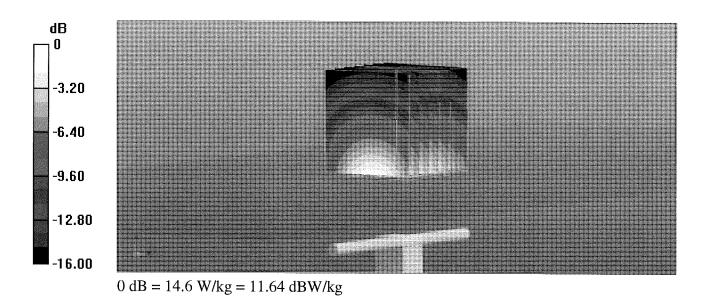
| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

## **DASY5 Validation Report for Head TSL**

Date: 10.08.2020

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d180


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.39 S/m;  $\epsilon_r$  = 41.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.6 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 18.1 W/kg **SAR(1 g) = 9.84 W/kg; SAR(10 g) = 5.16 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 56% Maximum value of SAR (measured) = 14.6 W/kg



## Impedance Measurement Plot for Head TSL

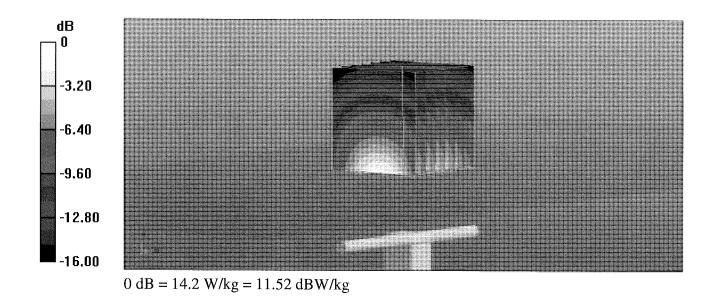
| Eile                 | ⊻iew       | <u>C</u> hannel             | Sw <u>e</u> ep | Calibration                            | <u>Trace</u> <u>S</u> cale              | e M <u>a</u> rker     | S <u>v</u> stem | <u>W</u> indow       | Help                                    |                |                                         |
|----------------------|------------|-----------------------------|----------------|----------------------------------------|-----------------------------------------|-----------------------|-----------------|----------------------|-----------------------------------------|----------------|-----------------------------------------|
|                      |            |                             |                |                                        |                                         |                       |                 |                      | 1.900000 GH<br>486.90 pł<br>1.900000 GH | H 5.<br>z 60.7 | 2.833 Ω<br>5739 Ω<br>713 mU<br>i9.957 ° |
|                      | Ch1: Sta   | Ch 1 Avg =<br>art 1.70000 ( |                | State                                  |                                         |                       |                 | didani she ima e ida |                                         | Stop 2         | .10000 GHz                              |
| 10.0<br>5.0<br>0.0   | 0 -<br>0 - | 1B S11                      |                |                                        |                                         |                       | >               |                      | 1.900000 GH                             | z -24.         | 334 dB                                  |
| -10.<br>-15.<br>-20. | .00 -      |                             |                | ************************************** | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                       |                 |                      |                                         |                |                                         |
| -25.<br>-30.         | .00 -      |                             |                |                                        |                                         | $\overline{\langle }$ |                 |                      |                                         |                |                                         |
| -35.                 | .00 -      |                             | 20             |                                        |                                         | $\langle \rangle$     | 1               |                      |                                         | ·····          |                                         |

## **DASY5 Validation Report for Body TSL**

Date: 10.08.2020

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d180


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.49 S/m;  $\epsilon_r$  = 53.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.21, 8.21, 8.21) @ 1900 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.6 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.7 W/kg **SAR(1 g) = 9.60 W/kg; SAR(10 g) = 5.10 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 58.5% Maximum value of SAR (measured) = 14.2 W/kg



## Impedance Measurement Plot for Body TSL

| CONTRACTOR OF                                                                                                                                                                                                                                                                                                                                                             |                                           | Channel                     | Sw <u>e</u> ep | Calibration                             | Trace                                  | <u>S</u> cale | M <u>a</u> rker | System | <u>W</u> indow | v <u>H</u> e | ۶lp                            |                                                               |             | an an an an an an<br>An an |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|----------------|-----------------------------------------|----------------------------------------|---------------|-----------------|--------|----------------|--------------|--------------------------------|---------------------------------------------------------------|-------------|----------------------------------------------------------------|
| and fill store assumed to the first structure assume to summary weights of the summary weights of the summary summary assume to the summary summary assume to the summary summary summary assume to the summary s |                                           |                             |                |                                         |                                        |               |                 |        |                |              | 300000 (<br>497.4)<br>300000 ( | 8 pH                                                          | 5<br>63.    | 8.100 C<br>.9390 C<br>447 mL<br>104.28                         |
|                                                                                                                                                                                                                                                                                                                                                                           | Ch1: Sta                                  | Ch 1 Avg =<br>art 1.70000 ( |                | ona                                     | ······································ | ~             | ···             |        |                |              |                                |                                                               | Stop (      | 2.10000 GH                                                     |
| 10.0<br>5.0                                                                                                                                                                                                                                                                                                                                                               |                                           | dB S11                      |                |                                         |                                        | -             |                 | 2      | 1              | 1 0          | 000000                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             | 1.952 dE                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                         |                                           |                             |                |                                         |                                        |               |                 |        |                |              |                                |                                                               | ,<br>       |                                                                |
| 0.0<br>-5.0                                                                                                                                                                                                                                                                                                                                                               | 0                                         |                             |                |                                         |                                        |               |                 |        |                |              |                                |                                                               |             | · /                                                            |
| -5.0<br>-10.                                                                                                                                                                                                                                                                                                                                                              | 0<br>10 -<br>.00 -                        |                             |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                        |               |                 |        |                | ····         |                                |                                                               | ، کے "<br>م |                                                                |
| -5.0<br>-10.<br>-15.                                                                                                                                                                                                                                                                                                                                                      | 0<br>10 -<br>00 -                         |                             |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                        |               |                 |        |                | <            |                                |                                                               | ، ے ۔<br>   |                                                                |
| -5.0<br>-10.<br>-15.<br>-20.<br>-25.                                                                                                                                                                                                                                                                                                                                      | 0 . 00<br>.00 - 00<br>.00                 |                             |                |                                         |                                        |               |                 |        |                | · · · ·      |                                |                                                               |             |                                                                |
| -5.0                                                                                                                                                                                                                                                                                                                                                                      | 0<br>00 -<br>00 -<br>00 -<br>00 -<br>00 - |                             |                |                                         |                                        |               |                 |        |                |              |                                |                                                               |             |                                                                |





# **Certification of Calibration**

Object

D1900V2 - SN: 5d180

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

Description:

August 10, 2021

SAR Validation Dipole at 1900 MHz.

### Calibration Equipment used:

| Manufacturer       | Model                                      | Description                                   | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|--------------------------------------------|-----------------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES                                     | S-Parameter Network Analyzer                  | 9/16/2020  | Annual       | 9/16/2021  | MY40000670    |
| Agilent            | Agilent N5182A MXG Vector Signal Generator |                                               |            |              | 9/25/2021  | US46240505    |
| Amplifier Research | 15S1G6                                     | Amplifier                                     | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | M424106A                                   | Pulse Power Sensor                            | 2/25/2021  | Annual       | 2/25/2022  | 1520503       |
| Anritsu            | M424106A                                   | Pulse Power Sensor                            | 2/25/2021  | Annual       | 2/25/2022  | 1520501       |
| Anritsu            | ML2495A                                    | Power Meter                                   | 11/3/2020  | Annual       | 11/3/2021  | 1039008       |
| Control Company    | 4040                                       | Therm./ Clock/ Humidity Monitor               | 3/6/2020   | Biennial     | 3/6/2022   | 200170313     |
| Control Company    | ontrol Company 4353 Long Stem Thermometer  |                                               | 10/28/2020 | Biennial     | 10/28/2022 | 200670653     |
| Pasternack         | PE2208-6                                   | Bidirectional Coupler                         | CBT        | N/A          | CBT        | N/A           |
| Agilent            | 85033E                                     | 3.5mm Standard Calibration Kit                | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| MiniCircuits       | VLF-6000+                                  | Low Pass Filter                               | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits      | BW-N20W5+                                  | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3                                     | Attenuator (3dB)                              | CBT        | N/A          | CBT        | 9406          |
| Pasternack         | NC-100                                     | Torque Wrench                                 | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAE4                                       | Dasy Data Acquisition Electronics             | 1/11/2021  | Annual       | 1/11/2022  | 1646          |
| SPEAG              | DAE4                                       | Dasy Data Acquisition Electronics             | 4/13/2021  | Annual       | 4/13/2022  | 501           |
| SPEAG              | DAK-3.5                                    | Dielectric Assessment Kit                     | 10/14/2020 | Annual       | 10/14/2021 | 1091          |
| SPEAG              | EX3DV4                                     | SAR Probe                                     | 4/19/2021  | Annual       | 4/19/2022  | 7532          |
| SPEAG              | EX3DV4                                     | SAR Probe                                     | 3/3/2021   | Annual       | 3/3/2022   | 7639          |

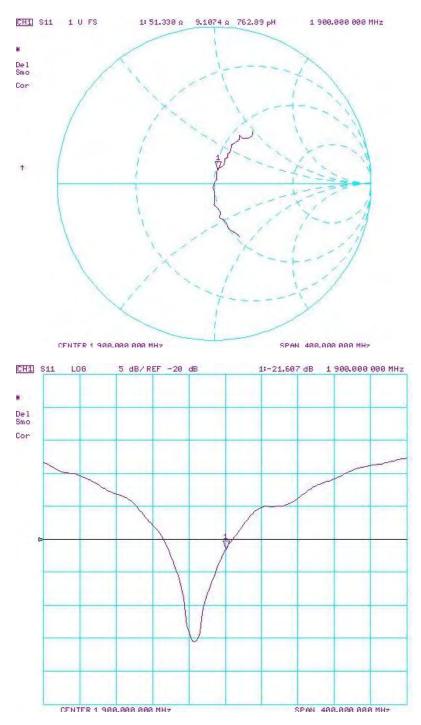
### Measurement Uncertainty = ±23% (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | XOK-         |

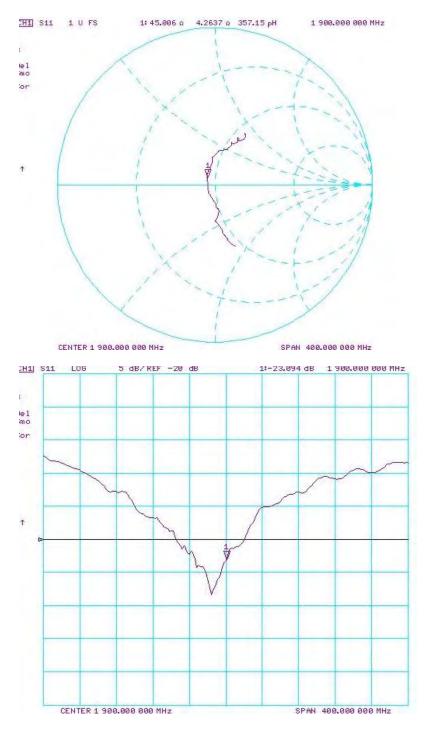
| Object:             | Date Issued: | Dago 1 of 4 |
|---------------------|--------------|-------------|
| D1900V2 – SN: 5d180 | 08/10/2021   | Page 1 of 4 |

## **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension<br>Date |                                         | W/kg @ 20.0<br>dBm                                           | asm                                             | (%)   | W/kg @ 20.0<br>dBm                                            | (10g) W/kg @<br>20.0 dBm                         |                      | Head (Ohm)<br>Real                             | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Imaginary                        | Certificate<br>Return Loss<br>Head (dB) | Head (dB)                            | Deviation (%) |           |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 8/10/2020           | 8/10/2021         | 1.203                                   | 3.98                                                         | 4.28                                            | 7.54% | 2.08                                                          | 2.18                                             | 4.81%                | 52.8                                           | 51.3                                        | 1.5                      | 5.6                                                 | 9.1                                              | 3.5                              | -24.3                                   | -21.6                                | 11.10%        | PASS      |
|                     |                   |                                         |                                                              |                                                 |       |                                                               |                                                  |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/)  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 8/10/2020           | 8/10/2021         | 1.203                                   | 3.90                                                         | 4.05                                            | 3.85% | 2.06                                                          | 2.08                                             | 0.97%                | 48.1                                           | 45.0                                        | 3.1                      | 5.9                                                 | 4.3                                              | 1.6                              | -24.0                                   | -23.1                                | 3.80%         | PASS      |

| Object:             | Date Issued: | Page 2 of 4 |
|---------------------|--------------|-------------|
| D1900V2 – SN: 5d180 | 08/10/2021   | Page 2 of 4 |





| Object:             | Date Issued: | Page 3 of 4 |
|---------------------|--------------|-------------|
| D1900V2 - SN: 5d180 | 08/10/2021   | Fage 5 01 4 |



## Impedance & Return-Loss Measurement Plot for Body TSL

| Object:             | Date Issued: | Page 4 of 4 |
|---------------------|--------------|-------------|
| D1900V2 – SN: 5d180 | 08/10/2021   | Fage 4 01 4 |

| Calibration Laboratory of<br>Schmid & Partner<br>Engineering AG<br>Zeughausstrasse 43, 8004 Zurich, S              |                                        | HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MRA<br>HAC-MR | Schweizerischer Kalibrierdienst<br>Service suisse d'étalonnage<br>Servizio svizzero di taratura<br>Swiss Calibration Service |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Accredited by the Swiss Accreditatior<br>The Swiss Accreditation Service is<br>Multilateral Agreement for the reco | one of the signatories                 | s to the EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | creditation No.: SCS 0108                                                                                                    |
| Client PC Test                                                                                                     |                                        | 2002 Certificate No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : D2300V2-1064_Nov20                                                                                                         |
| CALIBRATION CE                                                                                                     | RTIFICATE                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |
| Object                                                                                                             | D2300V2 - SN:10                        | 064 ATM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | √KT<br>121 02/08/22                                                                                                          |
|                                                                                                                    | QA CAL-05.v11<br>Calibration Proce     | II 5<br>dure for SAR Validation Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /                                                                                                                            |
| Calibration date:                                                                                                  | November 10, 20                        | <b>20</b> - <sup>1</sup> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |
| Calibration Equipment used (M&TE                                                                                   | critical for calibration)              | y facility: environment temperature (22 $\pm$ 3)°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |
| Primary Standards                                                                                                  | ID #                                   | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scheduled Calibration                                                                                                        |
| Power meter NRP                                                                                                    | SN: 104778                             | 01-Apr-20 (No. 217-03100/03101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Apr-21                                                                                                                       |
| Power sensor NRP-Z91                                                                                               | SN: 103244                             | 01-Apr-20 (No. 217-03100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr-21                                                                                                                       |
| Power sensor NRP-Z91                                                                                               | SN: 103245                             | 01-Apr-20 (No. 217-03101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr-21                                                                                                                       |
| Reference 20 dB Attenuator                                                                                         | SN: BH9394 (20k)<br>SN: 310982 / 06327 | 31-Mar-20 (No. 217-03106)<br>31-Mar-20 (No. 217-03104)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apr-21                                                                                                                       |
| Type-N mismatch combination<br>Reference Probe EX3DV4                                                              | SN: 7405                               | 29-Jun-20 (No. EX3-7405_Jun20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apr-21<br>Jun-21                                                                                                             |
| DAE4                                                                                                               | SN: 601                                | 02-Nov-20 (No. DAE4-601_Nov20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nov-21                                                                                                                       |
| Secondary Standards                                                                                                | ID #                                   | Check Date (in house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scheduled Check                                                                                                              |
| Power meter E4419B                                                                                                 | SN: GB39512475                         | 30-Oct-14 (in house check Oct-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In house check: Oct-22                                                                                                       |
| Power sensor HP 8481A                                                                                              | SN: US37292783                         | 07-Oct-15 (in house check Oct-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In house check: Oct-22                                                                                                       |
| Power sensor HP 8481A                                                                                              | SN: MY41092317                         | 07-Oct-15 (in house check Oct-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In house check: Oct-22                                                                                                       |
| RF generator R&S SMT-06                                                                                            | SN: 100972                             | 15-Jun-15 (in house check Oct-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In house check: Oct-22                                                                                                       |
| Network Analyzer Agilent E8358A                                                                                    | ) SN: US41080477                       | 31-Mar-14 (in house check Oct-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In house check: Oct-21                                                                                                       |
|                                                                                                                    | Name                                   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Signature                                                                                                                    |
| Calibrated by:                                                                                                     | Michael Weber                          | Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M. Heser                                                                                                                     |
| Approved by:                                                                                                       | Katja Pokovic                          | Technical Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M.M.S.C.F                                                                                                                    |
| 1                                                                                                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Aller                                                                                                                      |

į

٠

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage C

Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- 0 Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed 6 point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 8 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna 8 connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the 6 nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Fiat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2300 MHz ± 1 MHz       |             |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.5         | 1.67 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.7 ± 6 %   | 1.70 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.4 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 48.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.91 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.4 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.9         | 1.81 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.2 ± 6 %   | 1.86 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.3 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 48.4 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.88 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.3 W/kg ± 16.5 % (k=2) |

### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.2 Ω - 3.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 30.2 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.6 Ω - 4.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.1 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.168 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

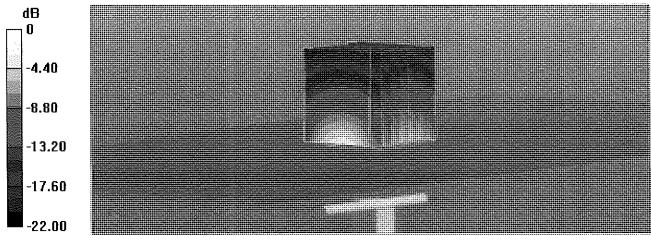
| Manufactured by                       | SPEAG |
|---------------------------------------|-------|
| · · · · · · · · · · · · · · · · · · · |       |

## **DASY5 Validation Report for Head TSL**

Date: 10.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1064


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz;  $\sigma$  = 1.7 S/m;  $\epsilon_r$  = 38.7;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7405; ConvF(8.03, 8.03, 8.03) @ 2300 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.1 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 24.6 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.91 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.8% Maximum value of SAR (measured) = 20.4 W/kg



0 dB = 20.4 W/kg = 13.10 dBW/kg

## Impedance Measurement Plot for Head TSL

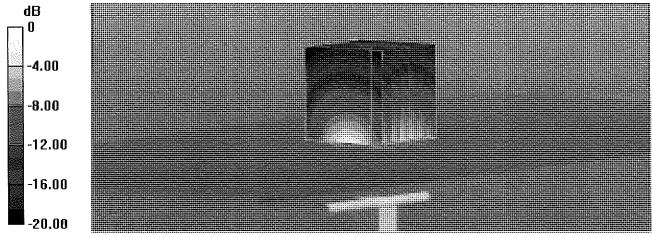
| File                            | ⊻iew                                                                     | <u>C</u> hannel                          | Sw <u>e</u> ep | Calibration | <u>Trace</u> <u>S</u> cale | M <u>a</u> rker                        | System <u>V</u> | <u>Vindow H</u> | elp                            | Similaritation |             |                                      |
|---------------------------------|--------------------------------------------------------------------------|------------------------------------------|----------------|-------------|----------------------------|----------------------------------------|-----------------|-----------------|--------------------------------|----------------|-------------|--------------------------------------|
|                                 |                                                                          |                                          |                |             | A                          | XXX                                    |                 |                 | 300000 C<br>23.261<br>300000 C | рF             | 2.9<br>30.9 | .229 Ω<br>3748 Ω<br>58 mU<br>02.91 ° |
|                                 | Ch1: St                                                                  | Ch 1 Avg =<br>art 2,10000 (              |                |             |                            | ************************************** | J               |                 |                                |                | Stop 2.     | 50000 GHz                            |
| -15<br>-20<br>-25<br>-30<br>-35 | 00 00<br>00 00<br>1.00 0<br>1.00 0<br>1.00 0<br>1.00 0<br>1.00 0<br>1.00 | dB \$11<br><br>Ch 1 Awg ≈<br>art 2.10000 | 20<br>GH2      |             |                            |                                        | > 1             | : 2.            |                                |                | Stop 2      | 195 dB                               |
| St                              | alus                                                                     | CH 1:                                    | 511            |             | C* 1-Port                  |                                        | Avg=20 D        | elay            |                                |                |             | LCL                                  |

## **DASY5 Validation Report for Body TSL**

Date: 10.11.2020

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz;  $\sigma$  = 1.86 S/m;  $\epsilon_r$  = 52.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7405; ConvF(7.94, 7.94, 7.94) @ 2300 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.7 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 24.4 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.88 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 52.2% Maximum value of SAR (measured) = 19.5 W/kg



0 dB = 19.5 W/kg = 12.90 dBW/kg

## Impedance Measurement Plot for Body TSL

| File                              | ⊻iew                  | Channel                                | Sw <u>e</u> ep | Calibration | <u>Trace</u> <u>S</u> cale | M <u>a</u> rker                         | System   | Window | <u>H</u> elp                  |      |              | in the second second |
|-----------------------------------|-----------------------|----------------------------------------|----------------|-------------|----------------------------|-----------------------------------------|----------|--------|-------------------------------|------|--------------|----------------------|
|                                   |                       |                                        |                |             |                            | XXX                                     |          | A.     | 2.300000<br>15.83<br>2.300000 | 2 pF |              | ιΩ İ<br>nU İ         |
|                                   | Ch1; St               | Ch { Avg =<br>art 2,10900 J            |                |             |                            | ·····                                   |          |        |                               |      | Stop 2.50000 | GHz                  |
| 10.0<br>5.0<br>0.0<br>-5.0        | 0<br>0<br>10          | dB S11                                 |                |             |                            |                                         |          |        | 2.300000                      | GHz  | -27.131      | <u>dB</u> .          |
| -10.<br>-13.<br>-20<br>-25<br>-30 | .00<br>.00 ½.         |                                        |                |             |                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |        |                               |      |              |                      |
| -35<br>-40                        | .00<br>.00<br>Ch1: St | Ch 1 Awg =<br>art 2.10000 (<br>CH 1: ] | iHz            |             | C* 1-Port                  |                                         | Avg=20.[ |        |                               |      | Step 2.50000 | GHa                  |





# **Certification of Calibration**

Object

D2300V2 - SN: 1064

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

November 10, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 2300 MHz.

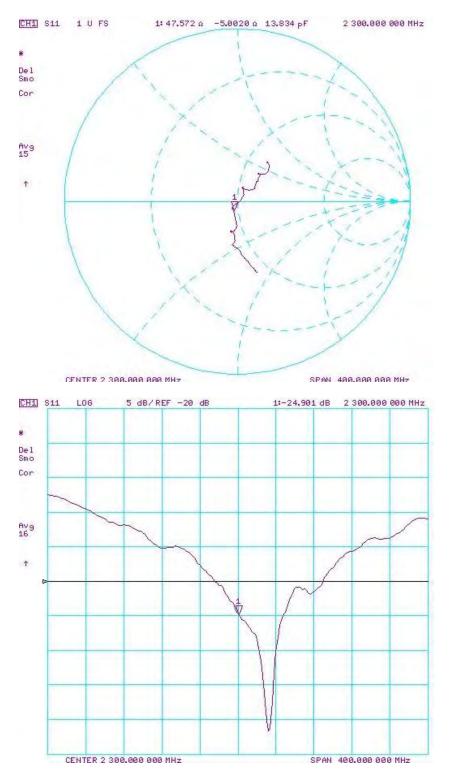
#### Calibration Equipment used:

| Manufacturer       | Model         | Description                         | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8753ES        | S-Parameter Vector Network Analyzer | 2/2/2021   | Annual       | 2/2/2022   | US39170122    |
| Agilent            | E4438C        | ESG Vector Signal Generator         | 10/17/2021 | Annual       | 10/17/2022 | MY45093852    |
| Amplifier Research | 15S1G6        | Amplifier                           | CBT        | N/A          | CBT        | 343972        |
| Anritsu            | ML2495A       | Power Meter                         | 1/18/2021  | Annual       | 1/18/2022  | 0941001       |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 2/5/2021   | Annual       | 2/5/2022   | 0846215       |
| Anritsu            | MA2411B       | Pulse Power Sensor                  | 8/10/2021  | Annual       | 8/10/2022  | 1207364       |
| Control Company    | 4040          | Therm./ Clock/ Humidity Monitor     | 2/23/2021  | Annual       | 2/23/2022  | 160574418     |
| Control Company    | 4352          | Ultra Long Stem Thermometer         | 10/25/2021 | Biennial     | 10/25/2022 | 200645916     |
| Agilent            | 85033E        | 3.5mm Standard Calibration Kit      | 7/7/2021   | Annual       | 7/7/2022   | MY53402352    |
| Mini-Circuits      | NLP-2950+     | Low Pass Filter DC to 2700 MHz      | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3        | Attenuator (3dB)                    | CBT        | N/A          | CBT        | 9406          |
| Mini-Circuits      | ZHDC-16-63-S+ | Bidirectional Coupler               | CBT        | N/A          | CBT        | F709401716    |
| Pasternack         | NC-100        | Torque Wrench                       | 8/4/2020   | Biennial     | 8/4/2022   | N/A           |
| SPEAG              | DAK-3.5       | Dielectric Assessment Kit           | 5/12/2021  | Annual       | 5/12/2022  | 1070          |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 1/13/2021  | Annual       | 1/13/2022  | 793           |
| SPEAG              | DAE4          | Dasy Data Acquisition Electronics   | 7/14/2021  | Annual       | 7/14/2022  | 1402          |
| SPEAG              | EX3DV4        | SAR Probe                           | 1/18/2021  | Annual       | 1/18/2022  | 3837          |
| SPEAG              | EX3DV4        | SAR Probe                           | 7/21/2021  | Annual       | 7/21/2022  | 7546          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

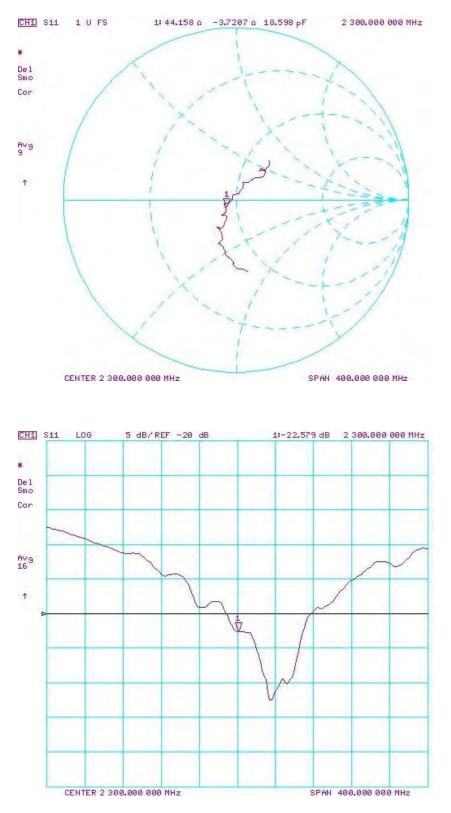
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Department Manager | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

## **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/ ) |      | Measured<br>Head SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|------|-------------------------------------------------|-------|------|--------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 11/10/2020          | 11/10/2021        | 1.168                                   | 4.89 | 5.1                                             | 4.29% | 2.34 | 2.35                                             | 0.43%                | 49.2                                           | 47.6                                        | 1.6                      | -3                                                  | -5                                               | 2                                | -30.2                                   | -24.9                                | 17.50%        | PASS      |
|                     |                   |                                         |      |                                                 |       |      |                                                  |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |      | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (9/ ) |      | Measured<br>Body SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 11/10/2020          | 11/10/2021        | 1.168                                   | 4.84 | 5.09                                            | 5.17% | 2.33 | 2.41                                             | 3.43%                | 49.6                                           | 44.2                                        | 5.4                      | -4.4                                                | -3.7                                             | 0.7                              | -27.1                                   | -22.6                                | 16.70%        | PASS      |

| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| DV2300 – SN: 1064 | 11/10/2021   | rage 2 014  |



#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:           | Date Issued: | Page 3 of 4 |
|-------------------|--------------|-------------|
| DV2300 – SN: 1064 | 11/10/2021   | Fage 5 01 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:           | Date Issued: | Dogo 4 of 4 |
|-------------------|--------------|-------------|
| DV2300 – SN: 1064 | 11/10/2021   | Page 4 of 4 |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kallbrierdienst Service eulese d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

i à

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Cartificate No: D2450V2-750 Jun19 Client PC Test CALIBRATION CERTIFICATE D2450V2 - SN:750 Object 6128119 @A CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 G Calibration date: June 14, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate, 7/10/2021 All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards 1D # Cal Date (Certificate No.) Scheduled Calibration SN: 104778 Power meter NRP 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047,2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 May-20 **Reference Probe EX3DV4** SN: 7349 29-May-19 (No. EX3-7349\_May19) SN: 601 DAE4 30-Apr-19 (No. DAE4-801\_Apr19) Apr-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (In house check Oct-18) In house check; Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (In house check Oct-18) In house check: Oct-20 SN: US41080477 Network Analyzer Aglient E8358A 31-Mar-14 (In house check Ocl-18) In house check: Oct-19 Name Function Signature Calibrated by: Michael Weber Laboratory Technician Approved by: Kalla Pokovic Technical Manager issued; June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **Glossary:**

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed . point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- 6 Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2                               |
|------------------------------|------------------------|----------------------------------------|
| Extrapolation                | Advanced Extrapolation |                                        |
| Phantom                      | Modular Flat Phantom   |                                        |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer                            |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      | ······································ |
| Frequency                    | 2450 MHz ± 1 MHz       |                                        |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.9 ± 6 %   | 1.86 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.6 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 53.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.34 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.0 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.0 ± 6 %   | 2.03 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.1 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 51.0 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.12 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.1 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.7 Ω + 3.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.7 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.3 Ω + 6.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.2 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.154 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## Additional EUT Data

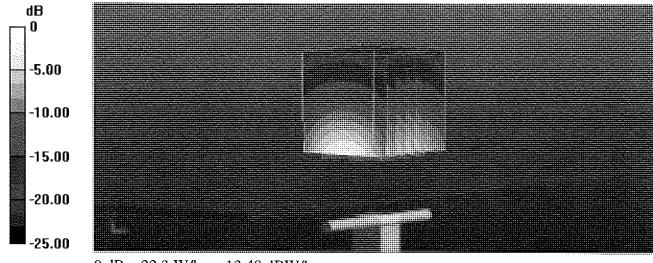
| Manufactured by | SPEAG |
|-----------------|-------|
| -               |       |

## **DASY5 Validation Report for Head TSL**

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma = 1.86$  S/m;  $\varepsilon_r = 37.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.9 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.34 W/kg Maximum value of SAR (measured) = 22.3 W/kg



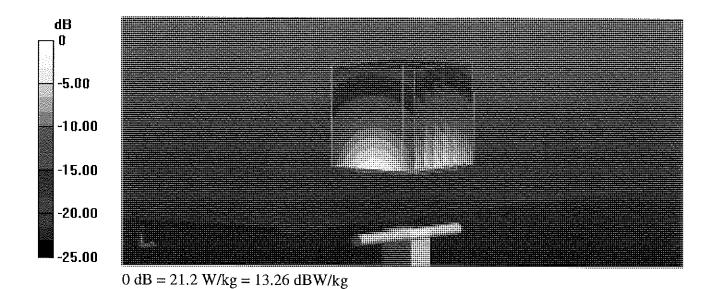
| File                                                                        | View                                | <u>C</u> hannel             | Sw <u>e</u> ep | Calibration | <u>Trace S</u> cal | e M <u>a</u> rker | S <u>v</u> stem <u>V</u> | <u>V</u> indow | <u>H</u> elp                              |              |                                          |
|-----------------------------------------------------------------------------|-------------------------------------|-----------------------------|----------------|-------------|--------------------|-------------------|--------------------------|----------------|-------------------------------------------|--------------|------------------------------------------|
|                                                                             |                                     |                             |                |             | A                  | XXX               |                          |                | 2.450000 GHz<br>256.19 pH<br>2.450000 GHz | ł 3<br>2 52. | 3.699 Ω<br>.9438 Ω<br>107 mU<br>44.653 ° |
|                                                                             | Ch1:St                              | Ch 1 Avg =<br>art 2.25000 ( |                |             |                    |                   | ~                        |                |                                           | Stop         | 2,65000 GHz                              |
| 10.)<br>5.0<br>-5.0<br>-10<br>-15<br>-20<br>-25<br>-30<br>-35<br>-35<br>-40 | 0<br>00<br>.00<br>.00<br>.00<br>.00 | Ch 1 Avg = art 2.25000      | 20<br>3Hz      |             |                    |                   | > 1                      |                | 2.450000 GHz                              |              | 2.65000 GHz                              |
| Sta                                                                         | atus                                | CH 1:                       | 311            |             | C* 1-Port          |                   | Avg=20 D                 | elay           |                                           |              | LCL                                      |

## **DASY5 Validation Report for Body TSL**

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma = 2.03$  S/m;  $\epsilon_r = 51$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.94, 7.94, 7.94) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.6 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 25.9 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (measured) = 21.2 W/kg



| <u>File V</u> ie                                                                             | w <u>C</u> hannel S               | 5w <u>e</u> ep Ca <u>l</u> ibra | tion <u>T</u> race <u>S</u> cal | e M <u>a</u> rker S <u>v</u> ste      | m <u>W</u> indow | <u>H</u> elp                            |                                               |
|----------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------------|------------------|-----------------------------------------|-----------------------------------------------|
|                                                                                              |                                   |                                 |                                 | A A A A A A A A A A A A A A A A A A A |                  | .450000 GHz<br>402.78 pH<br>.450000 GHz | 50.310 Ω<br>6.2005 Ω<br>61.772 mU<br>83.597 ° |
| Ch1:                                                                                         | Ch 1 Avg = -2<br>Start 2.25000 GH |                                 |                                 | <u>~</u>                              |                  |                                         | Stop 2,65000 GHz                              |
| 10.00<br>5.00<br>-5.00<br>-10.00<br>-15.00<br>-20.00<br>-25.00<br>-30.00<br>-35.00<br>-40.00 | BSI                               | 0                               |                                 |                                       | > 1: 2           | 450000 GHz                              | -24.184 dB                                    |
| [] Ch1:                                                                                      | : Start 2.25000 GH                | Z ,                             |                                 |                                       |                  |                                         | Stop 2.65000 GHz                              |





# **Certification of Calibration**

Object

D2450V2 – SN: 750

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 14, 2020

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

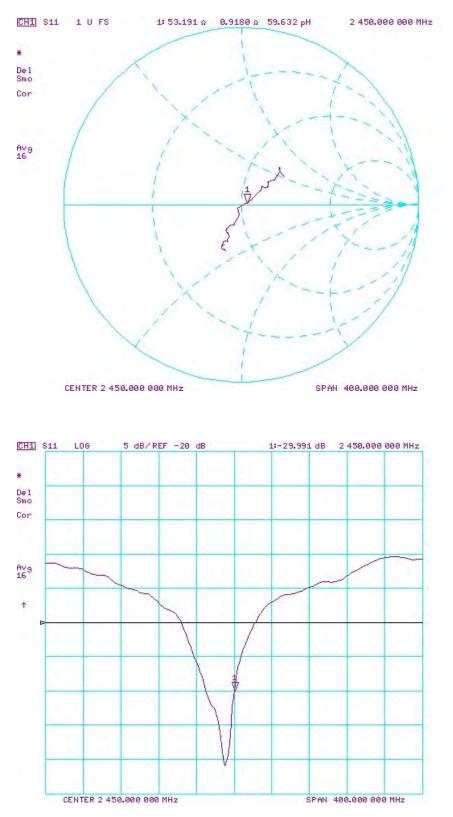
| Manufacturer          | Model     | Description                                             | Cal Date  | Cal Interval | Cal Due   | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|-----------|--------------|-----------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 1/16/2020 | Annual       | 1/16/2021 | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 8/19/2019 | Annual       | 8/19/2020 | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT       | N/A          | CBT       | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 1/15/2020 | Annual       | 1/15/2021 | 1328004       |
| Control Company       | 62344-734 | Therm./ Clock/ Humidity Monitor                         | 3/18/2019 | Biennial     | 3/18/2021 | 192038436     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 8/2/2018  | Biennial     | 8/2/2020  | 181292000     |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT       | N/A          | CBT       | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019  | Annual       | 7/2/2020  | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT       | N/A          | CBT       | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT       | N/A          | CBT       | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT       | N/A          | CBT       | 9406          |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/18/2019 | Annual       | 7/18/2020 | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/14/2020 | Annual       | 1/14/2021 | 793           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 8/12/2019 | Annual       | 8/12/2020 | 1408          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2020 | Annual       | 5/12/2021 | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/20/2020 | Annual       | 1/20/2021 | 3837          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 8/29/2019 | Annual       | 8/29/2020 | 3949          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

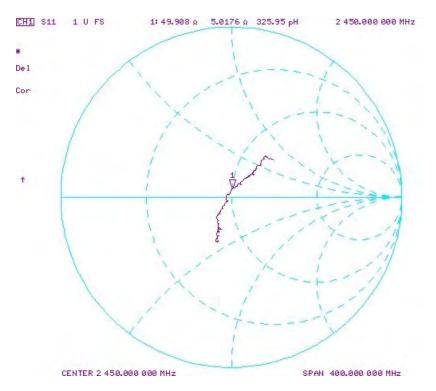
| Object:           | Date Issued: | Dogo 1 of 4 |  |
|-------------------|--------------|-------------|--|
| D2450V2 – SN: 750 | 6/14/2020    | Page 1 of 4 |  |

## **DIPOLE CALIBRATION EXTENSION**

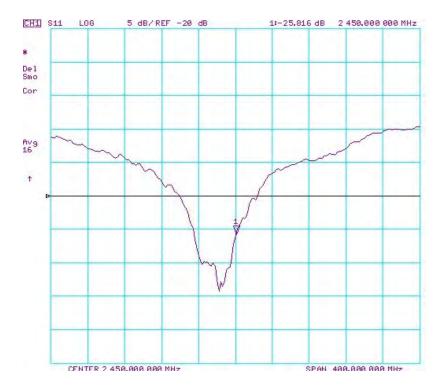

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Date                | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (19)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)   | vv/кg @ 20.0<br>dBm                                           | (10g) W/kg @<br>20.0 dBm |                      | Head (Ohm)<br>Real                             | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB)                            | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/14/2019           | 6/14/2020      | 1.154                                   | 5.31                            | 5.54                                            | 4.33% | 2.5                                                           | 2.56                     | 2.40%                | 53.7                                           | 53.2                                        | 0.5                      | 3.9                                                 | 0.9                                              | 3                                | -25.7                                   | -30                                  | -16.70%       | PASS      |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/)  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (40-) Million (2)        | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 6/14/2019           | 6/14/2020      | 1.154                                   | 5.1                             | 5.33                                            | 4.51% | 2.41                                                          | 2.47                     | 2.49%                | 50.3                                           | 49.9                                        | 0.4                      | 6.2                                                 | 5                                                | 1.2                              | -24.2                                   | -25.8                                | -6.60%        | PASS      |

| Object:           | Date Issued: | Page 2 of 4 |  |
|-------------------|--------------|-------------|--|
| D2450V2 – SN: 750 | 6/14/2020    | raye 2 01 4 |  |




#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:           | Date Issued: | Page 2 of 4 |  |
|-------------------|--------------|-------------|--|
| D2450V2 – SN: 750 | 6/14/2020    | Page 3 of 4 |  |



#### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:           | Date Issued: | Dogo 4 of 4 |  |  |
|-------------------|--------------|-------------|--|--|
| D2450V2 – SN: 750 | 6/14/2020    | Page 4 of 4 |  |  |





# **Certification of Calibration**

Object

D2450V2 – SN: 750

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 14, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

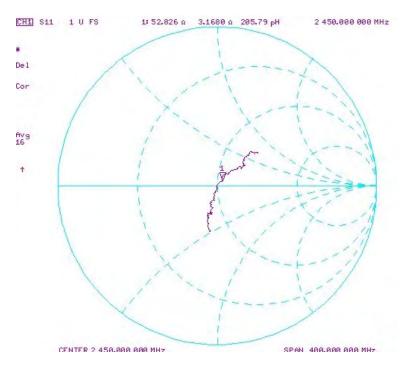
| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 4/14/2021  | Annual       | 4/14/2022  | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 12/1/2020  | Annual       | 12/1/2021  | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 3/4/2021   | Annual       | 3/4/2022   | 1328004       |
| Control Company       | 4353      | Long Stem Thermometer                                   | 10/28/2020 | Biennial     | 10/28/2022 | 200670635     |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 6/29/2019  | Biennial     | 6/29/2021  | 192291463     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 9/1/2020   | Annual       | 9/1/2021   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/30/2020  | Biennial     | 7/30/2022  | 22217         |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 9/13/2020  | Annual       | 9/13/2021  | 1408          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/11/2021  | Annual       | 1/11/2022  | 1645          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 8/19/2020  | Annual       | 8/19/2021  | 3949          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 3/3/2021   | Annual       | 3/3/2022   | 7640          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2021  | Annual       | 5/12/2022  | 1070          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

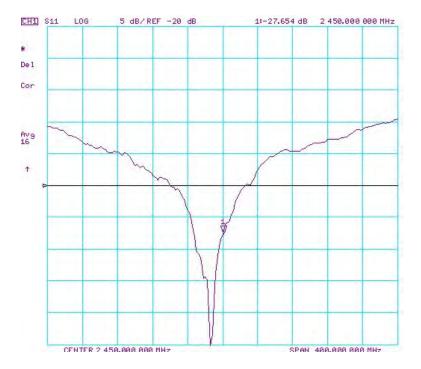
|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 750 | 6/14/2021    | Page 1 of 4 |

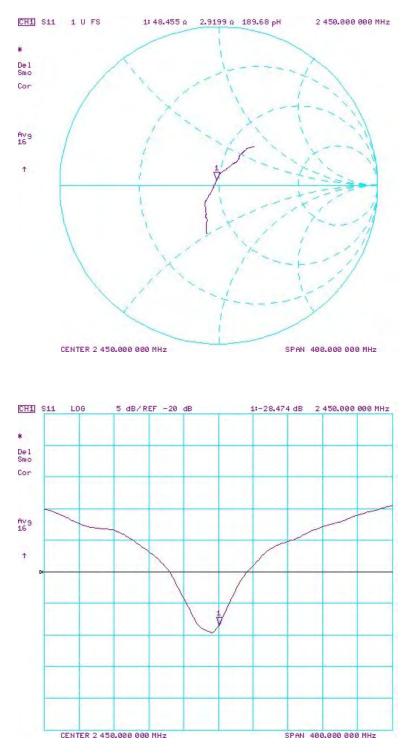
## **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

| Date      | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)    | Head (10g)<br>W/kg @ 20.0<br>dBm | (40-) M(0 (2)            |        | Head (Ohm)<br>Real                             | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB) | Deviation (%) |      |
|-----------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|--------|----------------------------------|--------------------------|--------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|-----------|---------------|------|
| 6/14/2019 | 6/14/2021      | 1.154                                   | 5.31                            | 5.29                                            | -0.38% | 2.50                             | 2.4                      | -4.00% | 53.7                                           | 52.8                                        | 0.9                      | 3.9                                                 | 3.2                                              | 0.7                              | -25.7                                   | -27.7     | -7.60%        | PASS |
| Date      | Extension Date | Certificate<br>Electrical<br>Delay (ns) | W/kg @ 20.0<br>dBm              | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)    | W/kg @ 20.0<br>dBm               | (10g) W/kg @<br>20.0 dBm |        | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Body (dB) | Deviation (%) |      |
| 6/14/2019 | 6/14/2021      | 1.154                                   | 5.10                            | 4.87                                            | -4.51% | 2.41                             | 2.24                     | -7.05% | 50.3                                           | 48.5                                        | 1.8                      | 6.2                                                 | 2.9                                              | 3.3                              | -24.2                                   | -28.5     | -17.70%       | PASS |


| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 750 | 6/14/2021    | raye 2 014  |



Impedance & Return-Loss Measurement Plot for Head TSL



| Object:           | Date Issued: | Page 3 of 4  |
|-------------------|--------------|--------------|
| D2450V2 – SN: 750 | 6/14/2021    | 1 age 5 01 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:           | Date Issued: | Page 4 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 750 | 6/14/2021    | Fage 4 01 4 |

**Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



CRE

S С S

. .

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test Certificate No: D2600V2-1042 Jun19

s,

Accreditation No.: SCS 0108

# **CALIBRATION CERTIFICATE**

| Object                                | D2600V2-SN:1042             |                                                   |                                  |  |  |  |  |
|---------------------------------------|-----------------------------|---------------------------------------------------|----------------------------------|--|--|--|--|
| Calibration procedure(s)              | QA CAL-05,v11               |                                                   | 6 -5/11                          |  |  |  |  |
|                                       |                             | edure for SAR Validation Source                   | as between 0,7-3,6Hz             |  |  |  |  |
|                                       |                             |                                                   |                                  |  |  |  |  |
|                                       |                             |                                                   | VATH                             |  |  |  |  |
| Calibration date:                     | June 14, 2019               |                                                   | 7/6/2020                         |  |  |  |  |
| This sollyration portificate desures  |                             |                                                   |                                  |  |  |  |  |
| This calibration certificate document | his the traceability to hat | lonal standards, which realize the physical u     | units of measurements (SI).      |  |  |  |  |
| The measurements and the uncent       | ainties with confidence p   | probability ere given on the following pages a    | and are part of the certificate, |  |  |  |  |
|                                       |                             |                                                   |                                  |  |  |  |  |
| All calibrations have been conducte   | ed in the closed laborato   | ry facility: environment temperature (22 $\pm$ 3) | )°C and humidity < 70%.          |  |  |  |  |
|                                       |                             |                                                   | V ATM                            |  |  |  |  |
| Calibration Equipment used (M&TE      | critical for calibration)   |                                                   | , , ,                            |  |  |  |  |
|                                       | 1                           |                                                   | 7/10/2021                        |  |  |  |  |
| Primary Standards                     | ID #                        | Cal Date (Certificate No.)                        | Scheduled Calibration            |  |  |  |  |
| Power meter NRP                       | SN: 104778                  | 03-Apr-19 (No. 217-02892/02893)                   | Apr-20                           |  |  |  |  |
| Power sensor NRP-Z91                  | SN: 103244                  | 03-Apr-19 (No. 217-02892)                         | Apr-20                           |  |  |  |  |
| Power sensor NRP-Z91                  | SN: 103245                  | 03-Apr-19 (No. 217-02893)                         | Apr-20                           |  |  |  |  |
| Reference 20 dB Attenuator            | SN: 5058 (20k)              | 04-Apr-19 (No. 217-02894)                         | Apr-20                           |  |  |  |  |
| Type-N mismatch combination           | SN: 5047.2 / 06327          | 04-Apr-19 (No. 217-02895)                         | Apr-20                           |  |  |  |  |
| Reference Probe EX3DV4                | SN: 7349                    | 29-May-19 (No. EX3-7349_May19)                    | May-20                           |  |  |  |  |
| DAE4                                  | SN: 601                     | 30-Apr-19 (No. DAE4-601_Apr19)                    | Apr-20                           |  |  |  |  |
|                                       | 1                           |                                                   |                                  |  |  |  |  |
| Secondary Standards                   | ID #                        | Check Date (In house)                             | Scheduled Check                  |  |  |  |  |
| Power meter E4419B                    | SN: GB39512475              | 30-Oct-14 (In house check Feb-19)                 | In house check: Oct-20           |  |  |  |  |
| Power sensor HP 8481A                 | SN: US37292783              | 07-Oct-15 (in house check Oct-18)                 | In house check: Oct-20           |  |  |  |  |
| Power sensor HP 8481A                 | SN: MY41092317              | 07-Oct-15 (In house check Oct-18)                 | In house check: Oct-20           |  |  |  |  |
| RF generator R&S SMT-06               | SN: 100972                  | 15-Jun-15 (in house check Oct-18)                 | in house check: Oct-20           |  |  |  |  |
| Network Analyzer Agilent E8358A       | SN: US41080477              | 31-Mar-14 (In house check Oct-18)                 | In house check: Oct-19           |  |  |  |  |
|                                       |                             |                                                   |                                  |  |  |  |  |
|                                       | Name                        | Function                                          | Signature                        |  |  |  |  |
| Calibrated by:                        | Michael Weber               | Laboratory Technician                             | /////                            |  |  |  |  |
|                                       |                             |                                                   | M.IRSE                           |  |  |  |  |
|                                       |                             |                                                   |                                  |  |  |  |  |
| Approved by:                          | Kalja Pokovic               | Technical Manager                                 | et lle                           |  |  |  |  |
|                                       |                             |                                                   | 1009                             |  |  |  |  |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage C

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### **Glossary:**

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed 6 point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- 0 Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 6 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ക connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2                              |
|------------------------------|------------------------|---------------------------------------|
| Extrapolation                | Advanced Extrapolation |                                       |
| Phantom                      | Modular Flat Phantom   | · · · · · · · · · · · · · · · · · · · |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer                           |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |                                       |
| Frequency                    | 2600 MHz ± 1 MHz       | ······                                |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.3 ± 6 %   | 2.03 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 14.8 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 57.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.57 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.9 W/kg ± 16.5 % (k=2) |

### Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2.16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.5 ± 6 %   | 2.22 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 14.1 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 55.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.30 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.9 W/kg ± 16.5 % (k=2) |

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.6 Ω - 8.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.5 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 45.8 Ω - 6.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.2 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.150 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

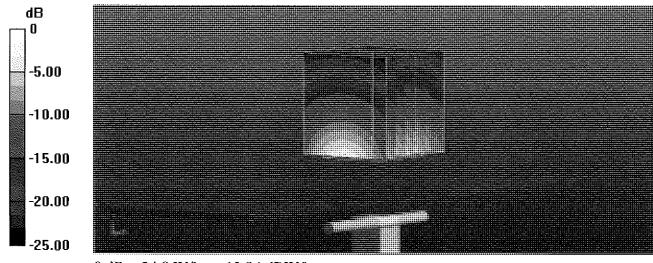
| Manufactured by | SPEAG |  |
|-----------------|-------|--|

#### **DASY5 Validation Report for Head TSL**

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma$  = 2.03 S/m;  $\epsilon_r$  = 37.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 120.0 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.57 W/kg Maximum value of SAR (measured) = 24.8 W/kg



0 dB = 24.8 W/kg = 13.94 dBW/kg

### Impedance Measurement Plot for Head TSL

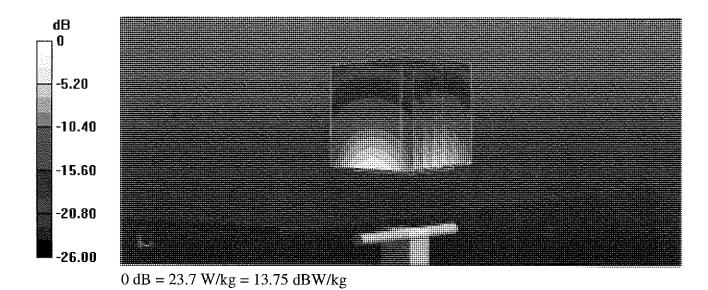
| File                                                                 | View                                       | Channel                     | Sw <u>e</u> ep | Calibration | <u>T</u> race <u>S</u> cal | e M <u>a</u> rker | S <u>v</u> stem <u>V</u> | <u>M</u> indow <u>H</u> | elp                            |     |            |                                         |
|----------------------------------------------------------------------|--------------------------------------------|-----------------------------|----------------|-------------|----------------------------|-------------------|--------------------------|-------------------------|--------------------------------|-----|------------|-----------------------------------------|
|                                                                      |                                            |                             |                |             | A                          |                   |                          |                         | 600000 G<br>7.2565<br>600000 G | iрF | -8.<br>84. | 9.607 Ω<br>4357 Ω<br>480 mU<br>37.829 ° |
|                                                                      | Ch1:St                                     | Ch 1 Avg =<br>art 2.40000 ( | 20<br>3Hz      | 112         |                            |                   | <b></b>                  |                         |                                |     | Stop 2     | :.80000 GHz                             |
| 10.1<br>5.0<br>-5.0<br>-10<br>-15<br>-20<br>-25<br>-30<br>-35<br>-40 | 0<br>00<br>.00<br>.00<br>.00<br>.00<br>.00 | 18 S11                      |                |             |                            |                   | > 1                      | 2.                      | ₿00000 C                       | Hz  |            | .485 dB                                 |
| Sta                                                                  | alus                                       | CH 1:                       | 511            |             | C* 1-Port                  |                   | Avg=20 D                 | elay                    |                                |     |            | LCL.                                    |

#### **DASY5 Validation Report for Body TSL**

Date: 14.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1042


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma$  = 2.22 S/m;  $\epsilon_r$  = 50.5;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.3 W/kg Maximum value of SAR (measured) = 23.7 W/kg



### Impedance Measurement Plot for Body TSL

| <u>File V</u> iew          | / <u>C</u> hannel S              | 5w <u>e</u> ep Calibration             | <u>I</u> race <u>S</u> cale | : M <u>a</u> rker S <u>v</u> | stem <u>W</u> indov | v <u>H</u> elp                           |                  |
|----------------------------|----------------------------------|----------------------------------------|-----------------------------|------------------------------|---------------------|------------------------------------------|------------------|
| Ch1:S                      | Ch 1 Avg = 2<br>Start 2.40000 GH | )                                      |                             |                              |                     | 2.800000 GH:<br>9.9180 pl<br>2.800000 GH | 6.1732 Ω         |
| 10.00                      | BB/S11                           | I                                      | 1                           | 1                            | > 11                | n dagaaa duu                             |                  |
| 5.00<br>0.00<br>-5.00      |                                  |                                        |                             |                              | ~ 1,                | 2.600000 GH                              | z -22.160 dB     |
| -10.00                     |                                  | ······································ |                             |                              |                     |                                          |                  |
| -15.00<br>-20.00           | k                                |                                        |                             | ·····                        |                     |                                          |                  |
| -25.00<br>-30.00           |                                  |                                        |                             |                              |                     |                                          |                  |
| -35.00<br>-40.00<br>Ch1: 9 | Ch 1 Awg = 2<br>Start 2.40000 GF | 0<br>1z                                |                             |                              |                     |                                          | Stop 2.30000 GHz |
| Status                     | CH 1: 51                         |                                        | C" 1-Port                   | A,                           | vg=20 Delay         |                                          | LCL              |





# **Certification of Calibration**

Object

D2600V2 - SN: 1042

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 14, 2020

Extended Calibration date:

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

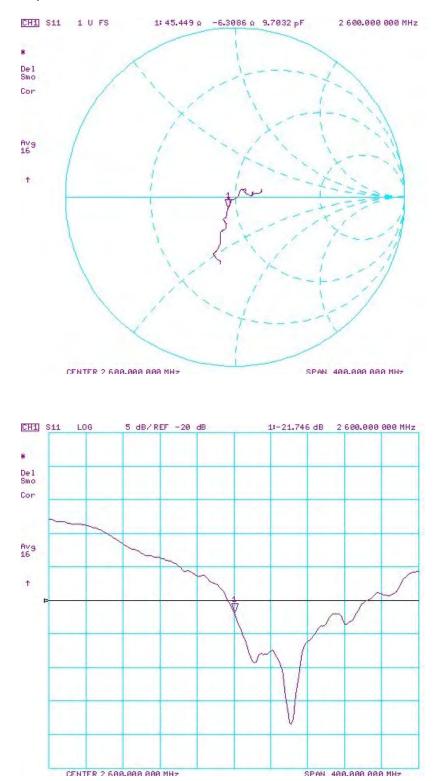
| Manufacturer          | Model     | Description                                             | Cal Date  | Cal Interval | Cal Due   | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|-----------|--------------|-----------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 1/16/2020 | Annual       | 1/16/2021 | US39170118    |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 8/19/2019 | Annual       | 8/19/2020 | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT       | N/A          | CBT       | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 1/21/2020 | Annual       | 1/21/2021 | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 1/15/2020 | Annual       | 1/15/2021 | 1328004       |
| Control Company       | 62344-734 | Therm./ Clock/ Humidity Monitor                         | 3/18/2019 | Biennial     | 3/18/2021 | 192038436     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 8/2/2018  | Biennial     | 8/2/2020  | 181292000     |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT       | N/A          | CBT       | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019  | Annual       | 7/2/2020  | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT       | N/A          | CBT       | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT       | N/A          | CBT       | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT       | N/A          | CBT       | 9406          |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/18/2019 | Annual       | 7/18/2020 | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/14/2020 | Annual       | 1/14/2021 | 793           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 8/12/2019 | Annual       | 8/12/2020 | 1408          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2020 | Annual       | 5/12/2021 | 1070          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 1/20/2020 | Annual       | 1/20/2021 | 3837          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 8/29/2019 | Annual       | 8/29/2020 | 3949          |

Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

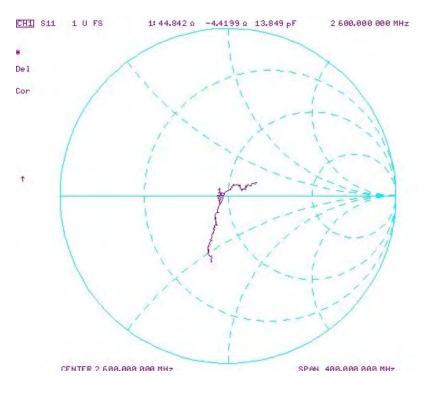
| Object:            | Date Issued: | Dogo 1 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2020    | Page 1 of 4 |

## **DIPOLE CALIBRATION EXTENSION**


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


| Date                | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Head (19)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)   | vv/кg @ 20.0<br>dBm                                           | (10g) W/kg @<br>20.0 dBm |                      | Head (Ohm)<br>Real                             | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB)                            | Deviation (%) |           |
|---------------------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|-------|---------------------------------------------------------------|--------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 6/14/2019           | 6/14/2020      | 1.15                                    | 5.77                            | 6.11                                            | 5.89% | 2.59                                                          | 2.75                     | 6.18%                | 49.6                                           | 45.4                                        | 4.2                      | -8.4                                                | -6.3                                             | 2.1                              | -21.5                                   | -21.7                                | -0.90%        | PASS      |
| Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) |                                 | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/)  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm | (40-) Million (2)        | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 6/14/2019           | 6/14/2020      | 1.15                                    | 5.52                            | 5.85                                            | 5.98% | 2.49                                                          | 2.58                     | 3.61%                | 45.8                                           | 44.8                                        | 1                        | -6.2                                                | -4.4                                             | 1.8                              | -22.2                                   | -22.7                                | -2.30%        | PASS      |

| Object:            | Date Issued: | Dogo 2 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2020    | Page 2 of 4 |



#### Impedance & Return-Loss Measurement Plot for Head TSL

| Object:            | Date Issued: | Dogo 2 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2020    | Page 3 of 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2020    | Page 4 of 4 |





# **Certification of Calibration**

Object

D2600V2 - SN: 1042

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

June 14, 2021

Extended Calibration date:

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 4/14/2022  | US39170118   |            |               |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 12/1/2020  | Annual       | 12/1/2021  | MY47420837    |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 343972        |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/9/2021   | Annual       | 3/9/2022   | 1207470       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 3/8/2021   | Annual       | 3/8/2022   | 1339007       |
| Anritsu               | ML2495A   | Power Meter                                             | 3/4/2021   | Annual       | 3/4/2022   | 1328004       |
| Control Company       | 4353      | Long Stem Thermometer                                   | 10/28/2020 | Biennial     | 10/28/2022 | 200670635     |
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 6/29/2019  | Biennial     | 6/29/2021  | 192291463     |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 9/1/2020   | Annual       | 9/1/2021   | MY53401181    |
| MiniCircuits          | VLF-6000+ | Low Pass Filter                                         | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Seekonk               | NC-100    | Torque Wrench                                           | 7/30/2020  | Biennial     | 7/30/2022  | 22217         |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 10/12/2020 | Annual       | 10/12/2021 | 1213          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 1/11/2021  | Annual       | 1/11/2022  | 1645          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 10/21/2020 | Annual       | 10/21/2021 | 7420          |
| SPEAG                 | EX3DV4    | SAR Probe                                               | 3/3/2021   | Annual       | 3/3/2022   | 7640          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/12/2021  | Annual       | 5/12/2022  | 1070          |

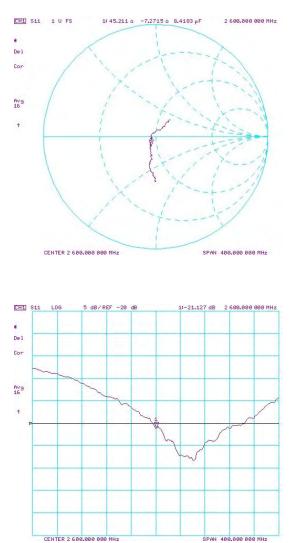
Measurement Uncertainty =  $\pm 23\%$  (k=2)

|                | Name            | Function           | Signature    |
|----------------|-----------------|--------------------|--------------|
| Calibrated By: | Parker Jones    | Team Lead Engineer | Parker Jones |
| Approved By:   | Kaitlin O'Keefe | Managing Director  | ROK          |

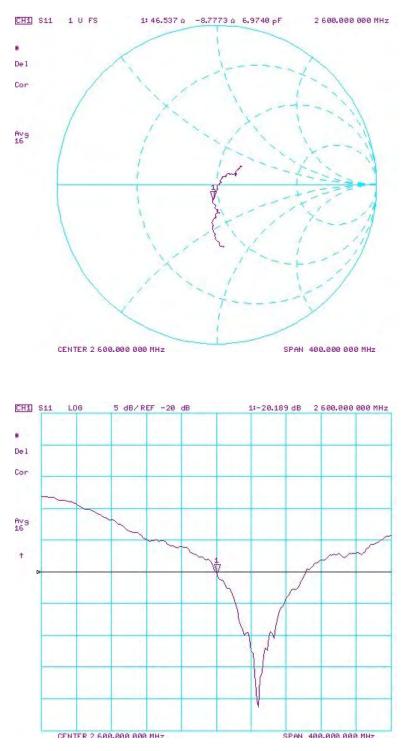
| Object:            | Date Issued: | Page 1 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2021    | Fage 1 014  |

## **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


| Date      | Extension Date |                                         | Head (1g)<br>W/kg @ 20.0<br>dBm | dBm                                             | (%)    | Head (10g)<br>W/kg @ 20.0<br>dBm | 20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Head (dB) | Deviation (%) |      |
|-----------|----------------|-----------------------------------------|---------------------------------|-------------------------------------------------|--------|----------------------------------|----------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|-----------|---------------|------|
| 6/14/2019 | 6/14/2021      | 1.15                                    | 5.77                            | 5.65                                            | -2.08% | 2.59                             | 2.44     | -5.79%               | 49.6                                           | 45.2                                        | 4.4                      | -8.4                                                | -7.3                                             | 1.1                              | -21.5                                   | -21.1     | 1.70%         | PASS |
| Date      | Extension Date | Certificate<br>Electrical<br>Delay (ns) | W/kg @ 20.0<br>dBm              | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (%)    | W/kg @ 20.0<br>dBm               | 20.0 dBm |                      | Body (Ohm)<br>Real                             | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Body (dB) | Deviation (%) |      |
| 6/14/2019 | 6/14/2021      | 1.15                                    | 5.52                            | 5.31                                            | -3.80% | 2.49                             | 2.35     | -5.62%               | 45.8                                           | 46.5                                        | 0.7                      | -6.2                                                | -8.8                                             | 2.6                              | -22.2                                   | -20.2     | 9.10%         | PASS |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2021    | raye 2 014  |

#### Impedance & Return-Loss Measurement Plot for Head TSL



| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2021    | rage 5 01 4 |



#### Impedance & Return-Loss Measurement Plot for Body TSL

| Object:            | Date Issued: | Dogo 4 of 4 |
|--------------------|--------------|-------------|
| D2600V2 – SN: 1042 | 6/14/2021    | Page 4 of 4 |