

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	15 SUBPART C TEST REPORT
Report Reference No	CTA22091600201
FCC ID :	2AY5D-M6
Compiled by (position+printed name+signature) . :	File administrators Zoey Cao Zoey Cow
Supervised by (position+printed name+signature) . :	Project Engineer Amy Wen
Approved by (position+printed name+signature) . :	RF Manager Eric Wang
Date of issue	Sep. 22, 2022
Testing Laboratory Name:	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community Fuhai Street, Baoʻan District, Shenzhen, China
Applicant's name:	Shenzhen USV Technology Co.,Ltd
Address:	4th to the south, building B20, Hengfeng Industrial City, Hangchen, Bao'an District, Shenzhen City, Guangdong Province, China
Address:	
Test specification:	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology Technology C	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology Technology C for damages resulting from the reader	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the inology Co., Ltd. takes no responsibility for and will not assume liabilit
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C for damages resulting from the reader context.	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the mology Co., Ltd. takes no responsibility for and will not assume liability is interpretation of the reproduced material due to its placement and
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C for damages resulting from the reader context. Test item description	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the mology Co., Ltd. takes no responsibility for and will not assume liabilit is interpretation of the reproduced material due to its placement and Magnetic wireless charger
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C for damages resulting from the reader context. Test item description Trade Mark Manufacturer Model/Type reference	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the mology Co., Ltd. takes no responsibility for and will not assume liability is interpretation of the reproduced material due to its placement and Magnetic wireless charger N/A Shenzhen USV Technology Co.,Ltd
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C for damages resulting from the reader context. Test item description Trade Mark Manufacturer Model/Type reference	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the mology Co., Ltd. takes no responsibility for and will not assume liabilit is interpretation of the reproduced material due to its placement and Magnetic wireless charger N/A Shenzhen USV Technology Co.,Ltd M6 N/A
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Technology C for damages resulting from the reader context. Test item description Trade Mark Manufacturer	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the mology Co., Ltd. takes no responsibility for and will not assume liabilit is interpretation of the reproduced material due to its placement and Magnetic wireless charger N/A Shenzhen USV Technology Co.,Ltd M6 N/A
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech for damages resulting from the reader context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the mology Co., Ltd. takes no responsibility for and will not assume liabilit is interpretation of the reproduced material due to its placement and Magnetic wireless charger N/A Shenzhen USV Technology Co.,Ltd M6 N/A
Test specification : Standard : Shenzhen CTA Testing Technology This publication may be reproduced in Shenzhen CTA Testing Technology C material. Shenzhen CTA Testing Tech for damages resulting from the reader context. Test item description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Type	Bao'an District, Shenzhen City, Guangdong Province, China FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013 Co., Ltd. All rights reserved. whole or in part for non-commercial purpses as long as the o., Ltd. is acknowledged as copyright owner and source of the inology Co., Ltd. takes no responsibility for and will not assume liabilit s interpretation of the reproduced material due to its placement and Magnetic wireless charger N/A Shenzhen USV Technology Co.,Ltd M6 N/A ASK

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

TEST REPORT Equipment under Test Magnetic wireless charger 2 Model /Type M6 Listed Models N/A CTATESTING ÷ Applicant Shenzhen USV Technology Co.,Ltd 4th to the south, building B20, Hengfeng Industrial City, Hangchen, Address Bao'an District, Shenzhen City, Guangdong Province, China ;TATESTING Manufacturer Shenzhen USV Technology Co.,Ltd 1 4th to the south, building B20, Hengfeng Industrial City, Hangchen, Address 1 Bao'an District, Shenzhen City, Guangdong Province, China Test Result: PASS

> The test report merely corresponds to the test sample. CTATE It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

	Contents	
	TA TEST STANDADDS	
	TEST STANDARDS	
2	CUMMARY CV	STING
<u> </u>	SUMMARY	5
.1	General Remarks	GNCV
	Product Description	55
.3	Description of the test mode	5 5 5
.4	Special Accessories	5
.5	Modifications	5
_	TEST ENVIRONMENT	
.1	Address of the test laboratory	ATESTING
.2	Test Facility	610
.3	Environmental conditions	6
.4	Summary of measurement results	CTATES 6 7 8
.5	Statement of the measurement uncertainty	CVC 7
.6	Equipments Used during the Test	8
_	TEST CONDITIONS AND RESULTS	9
-		<u></u>
	AC Power Conducted Emission	0
.1 .2	Radiated Emission	9 12
.3	Radiated Emission The 20dB bandwidth	16
.4	Antenna Requirement	TING 17
<u>.</u>	TEST SETUP PHOTOS OF THE EUT .	
_	PHOTOS OF THE EUT	
	GIA CTATESTING	
	CTA .	TESTING CTATESTING
	CTP	
		TESI
		CTA '
		CTATESTING
	TATESTING CTATESTING	
	TATESTING	
	TESTIN'	
		CTA TESTING
		~=S1115
		CTATL.

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart C (Section 15.207): Conducted limits. FCC Rules and Regulations Part 15 Subpart C (Section 15.209): Radiated emission limits; general requirements. ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

CTATE

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		TESTING
Date of receipt of test sample	2.	Sep. 16, 2022
	E	
Testing commenced on	-	Sep. 16, 2022
Testing concluded on	:	Sep. 22, 2022

2.2 Product Description

Product Name:	Magnetic wireless charger
Model/Type reference:	M6
Hardware version:	V1.0
Software version:	V1.0 CTA
Test samples ID:	CTA220916002-1# (Engineer sample), CTA220916002-2# (Normal sample)
Power supply:	Input: 5.0V-2A, 9.0V-2.0A Output: 5W/7.5W/10W/15.0W
Adapter information (Auxiliary test supplied by test Lab)	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 9V/ 2A,5V/2A
Operation frequency:	110KHz - 205KHz
Modulation type:	ASK
Antenna type:	Loop coil antenna

2.3 Description of the test mode

Equipment under test was operated during the measurement under the following conditions: Charging and communication mode

Test Modes:					
Mode 1	Wireless Charging	TESTING	Recorded		
Mode 2	Standby	CTA 1	Pre-tested	TING	
Note: All test modes were pre-tested, but we only recorded the worst case in this report.					

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
1 ATA	1	/	G I	/	/
2.5 Modif	ications	CTP	TESTIN	STING	

2.5 **Modifications**

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission

24 ° C
45 %
950-1050mbar

AC Power Conducted Emission:

	Temperature:	25 ° C
1	M	
	Humidity:	46 %
	TIN	2
	Atmospheric pressure:	950-1050mbar

Atmospheric pressure:	950-1050mbar
Conducted testing:	ESTING
Temperature:	25 ° C
	C
Humidity:	44 %
	and a second
Atmospheric pressure:	950-1050mbar

Summary of measurement results 3.4

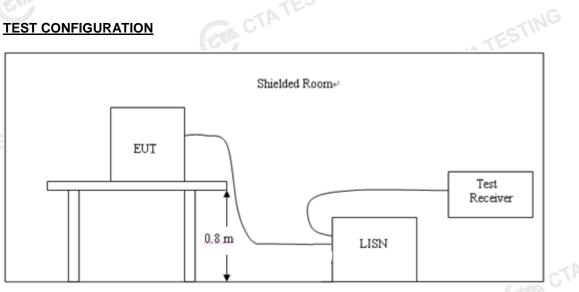
Description of test	Result
Conducted emissions test	Compliant
Radiated emission test	Compliant
The 20dB bandwidth measurement	Compliant
Antenna requirement	Compliant

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. TESTING

Hereafter the best measurement capability for Shenzhen CTA laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)


(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. CTATES

Equipments Used during the Test 3.6

			. 6			
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
	Ultra-Broadband Antenna	^G Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
A	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
			CON CTP		GM CT	ATESTING

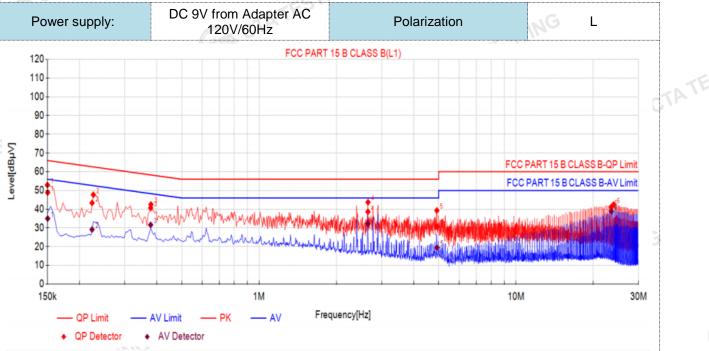
TATESTING 4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

CTATES **AC Power Conducted Emission Limit**


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit ((dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Description with the lange it has a fire or		•

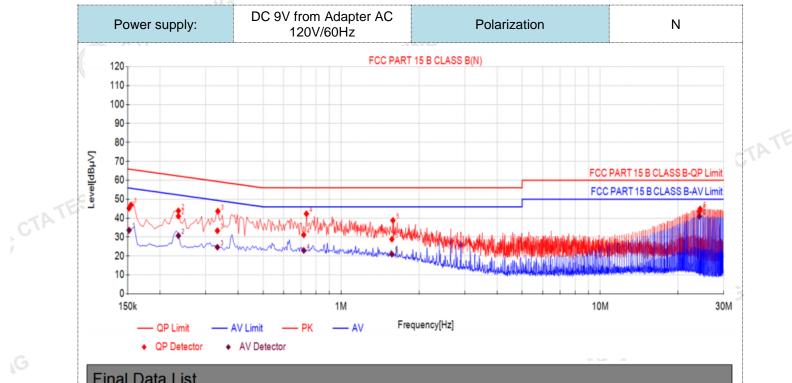
Decreases with the logarithm of the frequency.

TEST RESULTS

1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz Wireless charging 9V2A was reported as below:

Final Data List

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1504	10.50	38.38	48.88	65.98	17.10	24.52	35.02	55.98	20.96	PASS	
2	0.2239	10.50	32.84	43.34	62.67	19.33	18.65	29.15	52.67	23.52	PASS	
3	0.3785	10.50	30.19	40.69	58.31	17.62	21.12	31.62	48.31	16.69	PASS	
4	2.6541	10.50	28.14	38.64	56.00	17.36	21.76	32.26	46.00	13.74	PASS	1
5	4.9265	10.50	20.37	30.87	56.00	25.13	8.99	19.49	46.00	26.51	PASS	(4 7-
6	23.5156	10.50	30.64	41 14	60.00	18.86	28.37	38.87	50.00	11.13	PASS	
Note: Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)												
). Fac	tor (dB)=ir	sertion I	oss of LI	SN (dB)	+ Cable	loss (dB))					


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- CTA TESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

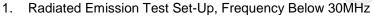
CTATE

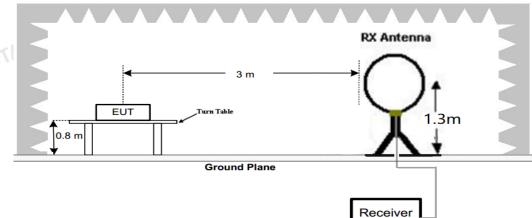
Report No.: CTA22091600201

Final	i Data Lis	st										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1520	10.50	34.73	45.23	65.89	20.66	23.14	33.64	55.89	22.25	PASS	
2	0.2355	10.50	30.54	41.04	62.26	21.22	20.22	30.72	52.26	21.54	PASS	
3	0.3331	10.50	22.85	33.35	59.37	26.02	14.14	24.64	49.37	24.73	PASS	
4	0.7176	10.50	20.69	31.19	56.00	24.81	12.43	22.93	46.00	23.07	PASS	
5	1.5709	10.50	18.35	28.85	56.00	27.15	10.44	20.94	46.00	25.06	PASS	
6	24.1878	10.50	33.12	43.62	60.00	16.38	30.47	40.97	50.00	9.03	PASS	
Note: Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)												
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												
3). QP	Margin(dB) = QP L	imit (dBµ	V) - QP	Value (d	BµV)						
4) 4)/	Manaina (al D	۰ <u>۸۱/۱</u> :										

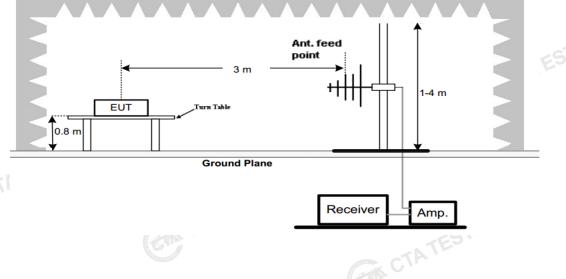
4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

4.2 **Radiated Emission**


Limit


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


		Rad	diated emission limits	
	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
CTATE	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
, GVr	1.705-30	3	20log(30)+ 40log(30/3)	30
1	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500
				CTA
	TEST CONFIGURATION	ON		

TEST CONFIGURATION

Radiated Emission Test Set-Up, Frequency below 1000MHz 2.

Report No.: CTA22091600201

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- The distance between test antenna and EUT as following table states: 6.

	Test Frequency range	Test Antenna Type	Test Distance	
	9KHz-30MHz	Active Loop Antenna	3	
3	30MHz-1GHz	Bilog Antenna	3	
		* •• • • • • • •		

CTATEST. Setting test receiver/spectrum as following table states:

	Test Frequency range	Test Receiver/Spectrum Setting	Detector	
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
R	ESULTS	CTATES		
Kł	Hz-30MHz		CTA '	
	WOR	ST-CASE RADIATED EMISSION BELOW 30 MHz 🚿		

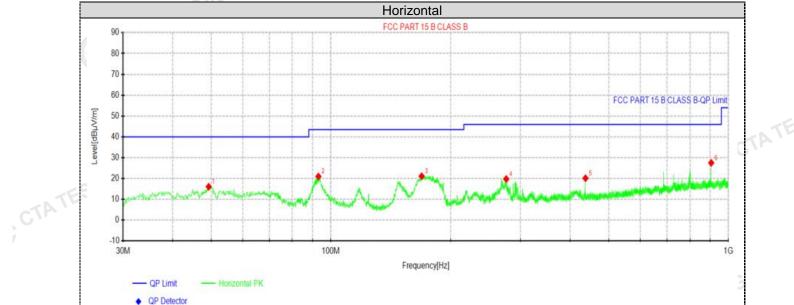
TEST RESULTS

For 9 KHz-30MHz

WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz) 📈	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.128950(F)	77.77	Loop	23.63	0.02	101.42	106.00	4.58	PK
0.128950(F)	54.52	Loop	23.63	0.02	78.17	86.00	7.83	AV
0.110	52.06	Loop	23.51	0.02	75.59	106.78	31.19	PK
0.110	47.68	Loop	23.51	0.02	71.21	86.78	15.57	AV
0.288	42.82	Loop	23.82	-0.17	66.47	98.42	31.95	QP
0.471	40.26	Loop	24.21	-0.28	64.19	94.14	29.95	QP
0.549	33.81	Loop	24.32	-0.3	57.83	72.81	14.98	QP
- \G								

Remark:


- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. Emission level (dBuV/m) =Reading + Antenna Factor + Cable Loss.
- Margin value = Limit value- Emission level. 6.

Data of measurement within this frequency range shown "-- in the table above means the reading of 1. emissions are attenuated more than 20dB below the permissible limits and not recorded.

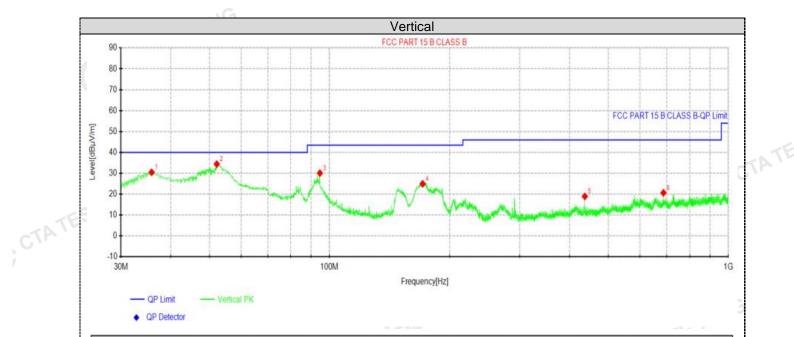
CON CIATE

For 30MHz-1GHz

Suspected Data List

ouspe									
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	49.2788	32.20	16.08	-16.12	40.00	23.92	100	348	Horizontal
2	93.05	40.46	21.01	-19.45	43.50	22.49	100	3	Horizontal
3	169.195	42.23	21.14	-21.09	43.50	22.36	100	278	Horizontal
4	276.137	37.49	19.79	-17.70	46.00	26.21	100	117	Horizontal
5	437.036	35.33	20.17	-15.16	46.00	25.83	100	149	Horizontal
6	905.425	36.74	27.54	-9.20	46.00	18.46	100	181	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

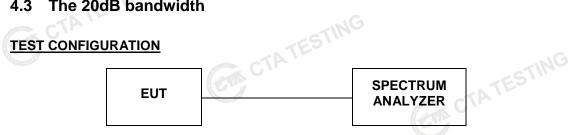
3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m) CTATESTING

JATE JA

CIA

Suspected Data List

CTATESTING


NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	
1	35.82	48.22	30.49	-17.73	40.00	9.51	100	223	Vertical
2	52.1888	50.93	34.40	-16.53	40.00	5.60	100	202	Vertical
3	94.6262	49.32	30.12	-19.20	43.50	13.38	100	137	Vertical
4	171.256	45.98	25.00	-20.98	43.50	18.50	100	190	Vertical
5	436.793	34.12	18.96	-15.16	46.00	27.04	100	137	Vertical
6	687.538	32.41	20.67	-11.74	46.00	25.33	100	357	Vertical

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

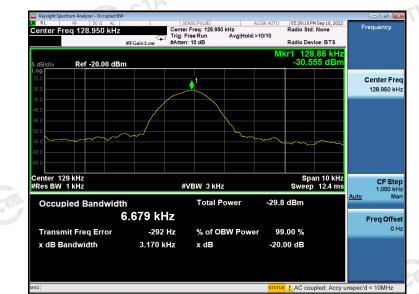
2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

4.3 The 20dB bandwidth

TEST PROCEDURE

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.


LIMIT

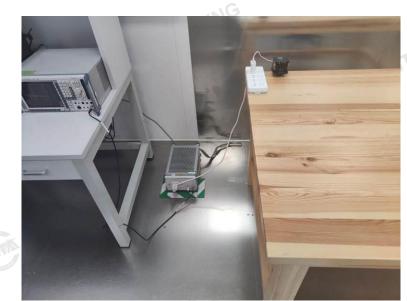
The 20dB bandwidth shall be less than 80% of the permitted frequency band.

TEST RESULTS

GTA TESTING

Mode	Freq (KHz)	20dB Bandwidth (KHz)	Conclusion
Tx Mode	128.95	3.170	PASS
No. Constant	Keysight Spectrum Analyzer - Occupied BW	-0	

Standard Applicable

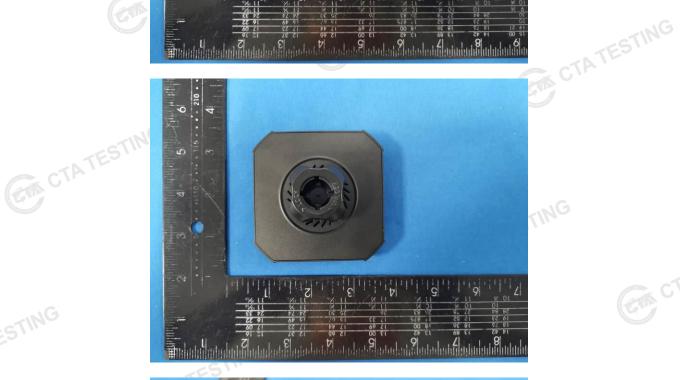

Standard Applicable

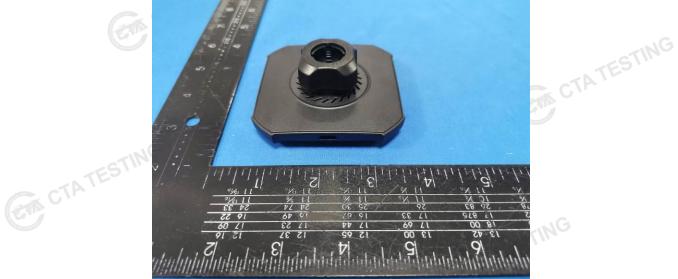
CTATESTING For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to GTA CTATE ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Information

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is GIA CTATES 0dBi.

5 Test Setup Photos of the EUT





6 PHOTOS OF THE EUT

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

JG

GIA CTATESTING

TING

