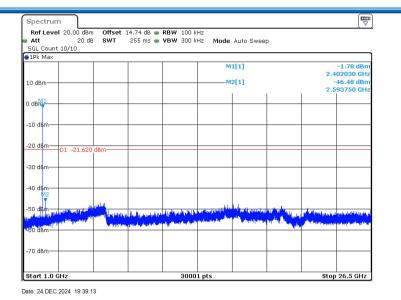
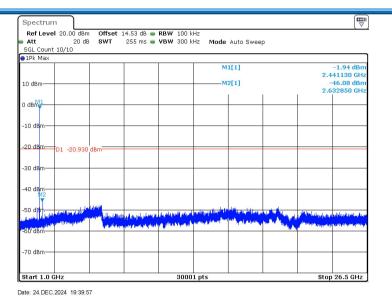


5.9 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset=cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Pass

DH5_Ant1_2441_0~Reference

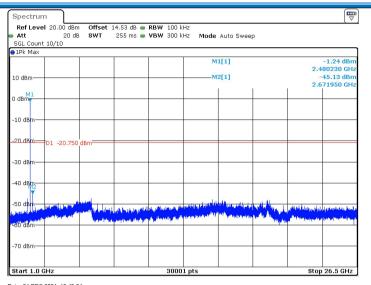
Ref Level 30.0 Att	0 dBm 30 dB				100 kHz 300 kHz	Mode	Auto FET		
SGL Count 2000/		0	1010 pp 1		000 1112	moue	Autonni		
●1Pk Max									
						M	1[1]		-0.93 dl
20 dBm				-					
10 dBm					_				
0 dBm							M1		
-10 dBm									
	-		~				~	/	
-20 dBm									
-30.dBm									
-40 dBm				_	_				
-50 dBm									
-60 dBm									
CF 2.441 GHz					691 pts			Spa	n 1.5 MF


DH5 Ant1 2441 30~1000

Spectrun									
Ref Leve Att SGL Count	20.00 dBm 20 dB 10/10			RBW 100 k VBW 300 k		Auto FFT			('
⊖1Pk Max									
					м	1[1]	I		50.98 dBm .5060 MHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -20.930	dBm							
-30 dBm									
-40 dBm									
-50 dBm						M	1		
South and	History		Hillindutset	a ha parte la la com	and particular	Almandad	mannahan	Man Alexand	estatul ^{li} tikka
"Million "Hollow"	Nunhain Anna	wro ^{Ea} bd/pu/	rhope the cut	ang	adaryyyddyddiog	d hite years a	appendict for the second s	Constanting and	an a
-70 dBm									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
Date: 24.DEC.	2024 19:39:4	6							
			15	4 0 4 4	4 400	0.005	~~		

DH5_Ant1_2441_1000~26500

DH5_Ant1_2480_0~Reference


Att 30.00 dBm	Offset 14.53 dB RBW SWT 18.9 us VBW	/ 100 kHz / 300 kHz Mode Auto FFT	
SGL Count 2000/2000			
●1Pk Max			
		M1[1]	-0.75 d 2.48017150 0
20 dBm			
10 dBm			
0 dBm		M1	
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.48 GHz		691 pts	Span 1.5 Mi

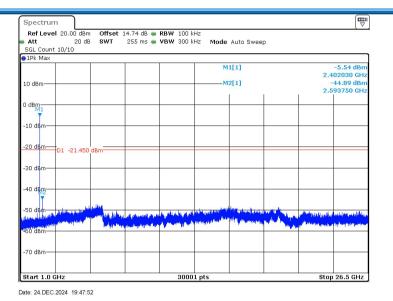
DH5 Ant1 2480 30~1000

Spectrum			₽
	14.53 dB 🖷 RBW 100 kHz		(•)
e Att 20 dB SWT	1.1 ms 👄 VBW 300 kHz 🛛 Mode	Auto FFT	
SGL Count 10/10			
CTEN MON		11[1]	-51.27 dBm
			707.9590 MHz
10 dBm			
0 dBm			
-10 dBm			
-20.dBm D1 -20.750 dBm			
-30 dBm			
-40 dBm			
		M1	
-50 dBm	a second second		nd a the a
A faith an part distance literation for the	and work of the state of the st	della server and the particular de la la de la	million and the second
فيصدقه الألي وتشرطه ومتعصير عنيرية الأسترجي الأسريمية	National States of the second	stanainstrainna Dibat, airma th Makail,	Manager (Manager (Ma
-70 dBm			2000
-70 UBIT			
Start 30.0 MHz	30001 pts		Stop 1.0 GHz
Date: 24.DEC.2024 19:42:53			
D	H5_Ant1_2480_100	0~26500	

Date: 24.DEC.2024 19:43:04

2DH5_Ant1_2402_0~Reference

Ref Level 30.00 dB Att 30 d	B SWT		VBW 300 kHz		Auto FFT			
SGL Count 2000/2001)							
●1Pk Max				м	1[1]			-1.45 di
					L	1	2.401	84800 G
20 dBm-								
10 dBm								
0 dBm		N		_ /				
				\sim			-	
-10 dBm								<
-20 dBm								
-30 dBm								
-40 dBm								
-40 UBIII								
-50 dBm								
-60 dBm		-						
CF 2.402 GHz			691 pt	s			Spa	n 1.5 MF

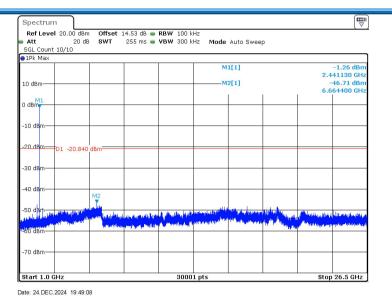

2DH5_Ant1_2402_30~1000

SGL Count 10/10					Auto FFT				
1Pk Max					1[1]			50.43 dBm	
				M	*[*]			50.43 dBm 1.5480 MHz	
.0 dBm									
) dBm									
10 dBm									
20 dBm D1 -21.450	dBm								
51 -21.450	aom								
30 dBm									
40 dBm									
50 dBm								M1	
dia dia mandra dal	na h antan	alle a bland in ma	no. caracterist	والمراوية والمرادية	to a still be been	handhan ad th	A.J. Shikamara	المتحمر والمسلم فالد فالد	
nde ^{blan} ssler ^{ti} ber bisliktister	ana sy ray. 	ան ու ու մեր Բենքին են են կույ	and set of parts	a ser parana an Iona Internation	al a contrata da	ີ ທີ່ມີ. ທີ່ມີ ແຜ່ນຄືນ	L. H. Band	and of a linear an	
ng ang ang ang ang ang ang ang ang ang a	a de l'adelida	Little de lidere	the lift of the second second	athea by that is	In the design of the	Addition 1	a barren de la compañía de la	A 11 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
70 dBm									
Start 30.0 MHz			3000					p 1.0 GHz	

2DH5_Ant1_2402_1000~26500

2DH5_Ant1_2441_0~Reference

Ref Level 30.00 dBm Att 30 dB SGL Count 2000/2000		RBW 100 kHz VBW 300 kHz	Mode	Auto FFT		
91Pk Max						
			м	1[1]		-0.84 d 84800 C
20 dBm						
10 dBm						
0 dBm	 M			(
-10 dBm				~	 	
-20 dBm						
-30 dBm						
-40 dBm						
-40 dBm						
-50 dBm						
-60 dBm	 					
CF 2.441 GHz		691 pts	5		Spa	n 1.5 MF

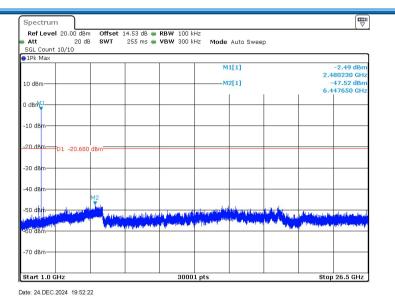

2DH5 Ant1 2441 30~1000

Spectrum Ref Level 20.00 dBm	Offset 14 53 dB	RBW 100 kHz				
 Att 20 dB SGL Count 10/10 		• VBW 300 kHz	Mode Auto FFT			
1Pk Max			M1[1]			1.07 dBm 3310 MHz
0 dBm						
-10 dBm						
-20. dBm-01 -20.840	dBm					
-40 dBm						
-50 dBm		le ducture le dubences	microlation control	harteka (Manadal Manada	M1
-70 dBm	state and and a linear factor	fraihhlistalainn ann	anno an	in the second	Tepholital (kaha ^{ji} (jija)
Start 30.0 MHz		30001 pt	ts		Stor	1.0 GHz
Date: 24.DEC.2024 19:48:5	7	00001 p			0101	, no une j

2DH5_Ant1_2441_1000~26500

2DH5_Ant1_2480_0~Reference

Ref Level 30.00 dBm		14.53 dB 👄							
Att 30 dB	SWT	18.9 µs 👄	VBW	300 kHz	Mode	Auto FFT			
SGL Count 2000/2000									
●1Pk Max									
					M	1[1]			-0.68 d
20 dBm							1	2.479	85020
20 dBm									
10 dBm									
		N							
0 dBm			-	-		~			
			\sim	~ ~	\sim				
-10 dBm									
									\sim
-20 dBm									~
-30 dBm		-							
-40 dBm									
-50 dBm									
-60 dBm									
-60 aBm									
CF 2.48 GHz		-		691 pts			I	Spa	n 1.5 M


2DH5 Ant1 2480 30~1000

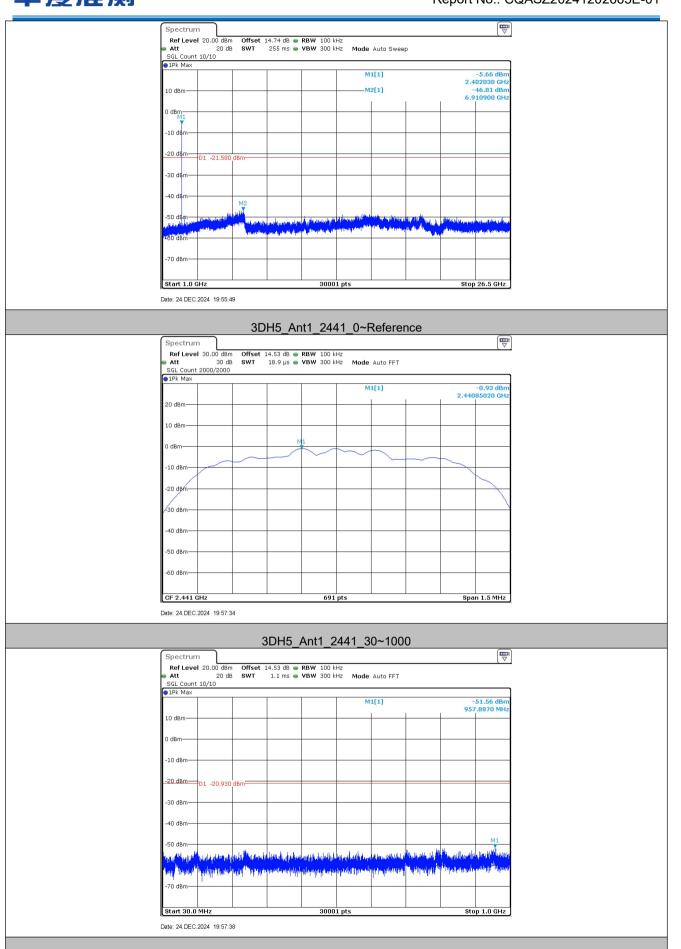
Spectrum Image: Constraint of the sector of t
Att 20 dB SWT 1.1 ms VBW 300 kHz Mode Auto FFT SGL Count 10/10
● 1Pk Max
M1[1] -50.39 dBm 951.6470 MHz
10 dBm
0 dBm-
-10 dBm-
-201.dBm-01 -20.680 dBm
-30 dBm-
-40 dBm-
-50 dBm
al 🗸 bin sa 1911 di calima fasti mala lisis na si di nasari na di na
ากกับ (การสาวกรรรม (การสาวกรรรม) (การสาวกรรม (การสาวกรรม) (การสาวกรรม (การสาวกรรม) (การสาวกรรม (การสาวกรรม) (ก เป็นที่ (การสาวกรรม (การสาวกรรม) (การสาวกรรม (การสาวกรรม) (การสาวกรรม (การสาวกรรม) (การสาวกรรม (การสาวกรรม) (กา
-70 d8m
Start 30.0 MHz 30001 pts Stop 1.0 GHz
Date: 24.DEC 2024 19:52:11

2DH5_Ant1_2480_1000~26500

3DH5_Ant1_2402_0~Reference

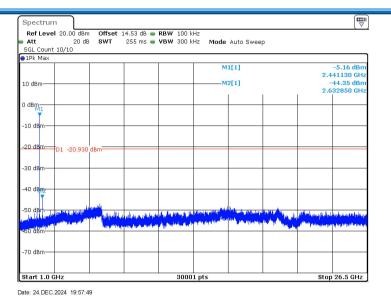
Ref Level 30.00 dBm		14.74 dB 👄						
Att 30 dB	SWT	18.9 µs 👄	VBW	300 kHz	Mode	Auto FFT		
SGL Count 2000/2000								
●1Pk Max								
					M	1[1]		-1.58 d
							 2.401	99350
20 dBm								
10 dBm								
0 dBm				ML				
			~	~	\sim	~		
-10 dBm						~	 ~	
-10 UBIII								
-20 dBm								
-30 dBm								
-40 dBm								
-to abiii								
-50 dBm								
-60 dBm								
CF 2.402 GHz				691 pts			6 m a	n 1.5 M
GF 2.402 GHZ				091 pts			spa	п т.э м

3DH5 Ant1 2402 30~1000


Att SGL Count 10/10	20 dB SWT	1.1 ms 👄	VBW 300 k	Hz Mode	Auto FFT				
9 1Pk Max	,								
				м	1[1]			51.54 dBm 3570 MHz	
10 dBm									
0 dBm									
-10 dBm									
-20 dBm-01 -2	1.580 dBm								
-30 dBm									
-40 dBm									
-50 dBm						P	11		
a and the official according	and a start and a start	where while the	والمراجعة والمعادمة	المواد بالاغم والطور	and her allele such	Production of	Marthellow	auth rates	
halap Dagated Partition	antara palaban pa	a beer paraterista p	e open ported to	nilise by the billion	permission (inc	olygylly opdation	inder de la compañe	dal har yang yang yang yang yang yang yang yang	
-70 dBm									
Start 30.0 MHz		1	3000	1 pts		I	Sto	p 1.0 GHz	

3DH5_Ant1_2402_1000~26500

Shenzhen Huaxia Testing Technology Co., Ltd.


Report No.: CQASZ20241202665E-01

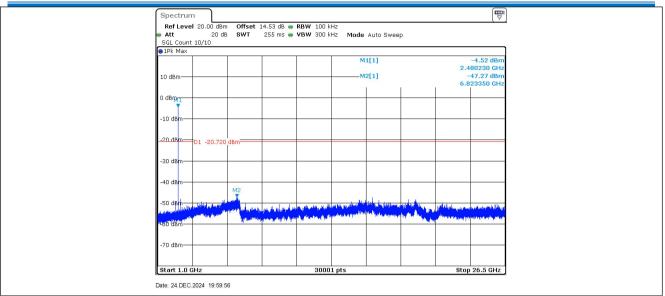
3DH5_Ant1_2441_1000~26500

3DH5_Ant1_2480_0~Reference

Ref Level 30.00 dBr	n Offset	14.53 dB 👄	RBW 100 k	Hz			[4
Att 30 d			VBW 300 k		Auto FFT		
SGL Count 2000/2000		1010 p5 🖕		ne moue	Autonn		
1Pk Max							
				M	1[1]		-0.72 dB
						2.480	17150 GH
20 dBm							
10 dBm							
0 dBm					M1		
U UBIII-		-	\sim	\sim	~		
	-				\	~	
-10 dBm		-					
-20 dBm						 	
-30 dBm							
oo abiii							
-40 dBm							
-50 dBm							
-60 dBm						 	
CF 2.48 GHz			691	pts		Spa	n 1.5 MH

Date: 24.DEC.2024 19:59:41

3DH5_Ant1_2480_30~1000


Ref Level	20.00 dBm	Offset 1	.4.53 dB 👄	RBW 100 k	Hz					
Att	20 dB			VBW 300 k		Auto FFT				
SGL Count	10/10									
∋1Pk Max										
					M	1[1]			51.27 dBm	
10 10-						1	1	810	.1610 MHz	
10 dBm										
0 dBm										
-10 dBm										
-20 dBm	D1 -20.720	dBm								
-30 dBm										
-40 dBm										
								L.		
-50 dBm		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					N I	1		
work works the	al alle the ball of	in the set	Stational Ins. 1	dad all the	atter build be also	المعان الالتداري الألاد	Hold Latters	والرابات أحاول والأ	Well Hard	
	the standard	un din and	Harat source R by	Land Marcala	and tract		in and it	وهايا والاربال	Martina	
ultion rotes de	and the fit of the	edh coduint	. Likite in dela solar	A MARINE MARINE	a hi hali maki	e date da de la com	h <mark>aven)</mark> tübeli	a shakiki in	d'access and	
-70 dBm										
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz	

3DH5_Ant1_2480_1000~26500

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20241202665E-01

Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

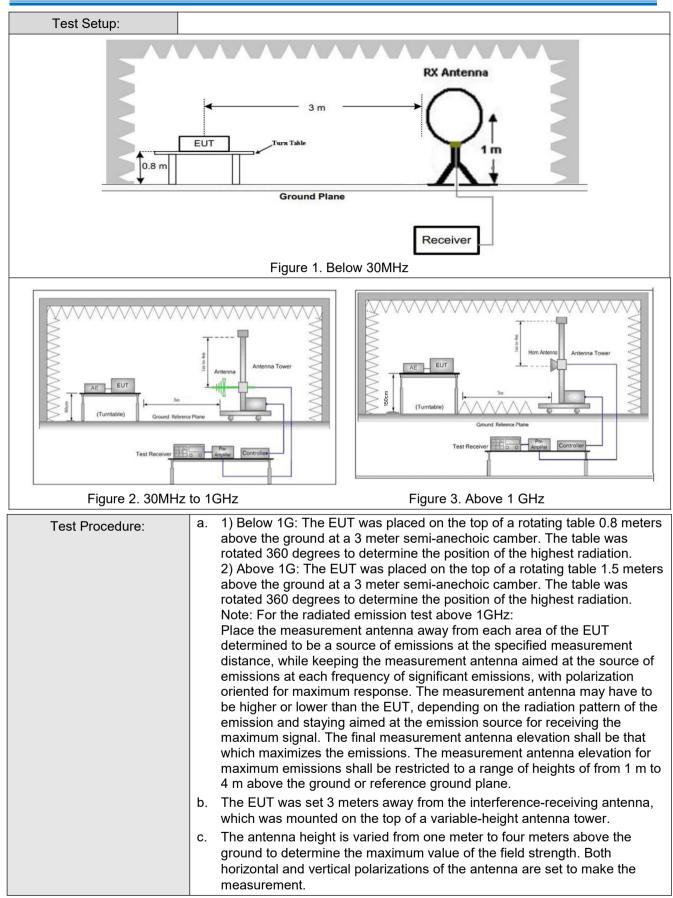
5.10Other requirements Frequency Hopping Spread Spectrum System

•	
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
rate from a Pseudorandom o on the average by each trans	nnel frequencies that are selected at the system hopping rdered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.
channels during each transm receiver, must be designed t transmitter be presented with employing short transmission	spectrum systems are not required to employ all available hopping hission. However, the system, consisting of both the transmitter and the o comply with all of the regulations in this section should the n a continuous data (or information) stream. In addition, a system n bursts must comply with the definition of a frequency hopping system nissions over the minimum number of hopping channels specified in
the system to recognize othe independently chooses and The coordination of frequence	nce within a frequency hopping spread spectrum system that permits er users within the spectrum band so that it individually and adapts its hopsets to avoid hopping on occupied channels is permitted. by hopping systems in any other manner for the express purpose of ccupancy of individual hopping frequencies by multiple transmitters is
Compliance for section 15.	247(a)(1)
stage shift register whose 5th outputs are added in a modu	lo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: 2 ⁹ -1 = 511 bits
Linear Feedback Sl	hift Register for Generation of the PRBS sequence
An example of Pseudorandor 20 62 46 77	m Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1 10 10 10 10 10 10 10 10 10 10 10 10 10 1
Each frequency used equally	on the average by each transmitter.
According to Bluetooth Core bandwidths that match the	e Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.
Compliance for section 15.	247(g)
pseudorandom hopping freq	re Specification, the Bluetooth system transmits the packet with the uency with a continuous data and the short burst transmission from the unsmitted under the frequency hopping system with the pseudorandom

Compliance for section 15.247(h)

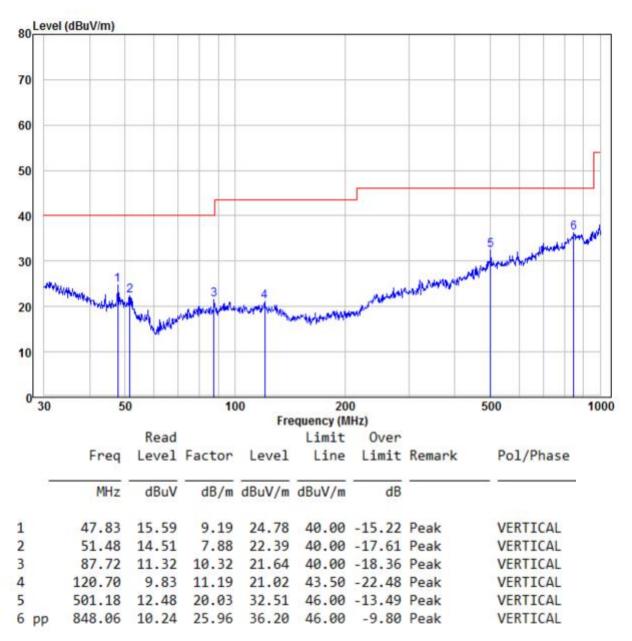
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15.	205			
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)		
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak	
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak	
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	30MHz-1GHz		Peak	120 kH	lz 300kHz	Peak	
	Above 1GHz		Peak	1MHz	: 3MHz	Peak	
			Peak	1MHz	: 10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30	
	1.705MHz-30MHz		30	-	-	30	
	30MHz-88MHz		100	40.0	Quasi-peak	3	
	88MHz-216MHz		150	43.5	Quasi-peak	3	
	216MHz-960MHz		200	46.0	Quasi-peak	3	
	960MHz-1GHz		500	54.0	Quasi-peak	3	
	Above 1GHz		500	54.0	Average	3	
	Note: 15.35(b), Unless emissions is 20dE applicable to the e peak emission lev	3 ab equi	ove the maxin pment under t	num permi est. This p	itted average	emission limit	



	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the
	worst case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type
	Transmitting mode
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

30MHz~1GHz		
Test mode:	Transmitting	Vertical

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,


Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20241202665E-01

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.11.2 Transmitter Emission above 1GHz

Worse case	mode:	GFSK(DH	5)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	53.50	-9.2	44.30	74	-29.70	Peak	Н
2400	56.82	-9.39	47.43	74	-26.57	Peak	Н
4804	52.51	-4.33	48.18	74	-25.82	Peak	Н
7206	50.82	1.01	51.83	74	-22.17	Peak	Н
2390	54.15	-9.2	44.95	74	-29.05	Peak	V
2400	54.84	-9.39	45.45	74	-28.55	Peak	V
4804	53.53	-4.33	49.20	74	-24.80	Peak	V
7206	48.72	1.01	49.73	74	-24.27	Peak	V

Worse case	mode:	GFSK(DH	5)	Test chann	el:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	51.90	-4.11	47.79	74	-26.21	peak	Н
7323	49.15	1.51	50.66	74	-23.34	peak	Н
4882	52.15	-4.11	48.04	74	-25.96	peak	V
7323	48.83	1.51	50.34	74	-23.66	peak	V

Worse case	mode:	GFSK(DH	5)	Test chann	el:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.30	-9.29	45.01	74	-28.99	Peak	Н
4960	51.49	-4.04	47.45	74	-26.55	Peak	Н
7440	49.54	1.57	51.11	74	-22.89	Peak	Н
2483.5	53.36	-9.29	44.07	74	-29.93	Peak	V
4960	50.39	-4.04	46.35	74	-27.65	Peak	V
7440	50.05	1.57	51.62	74	-22.38	Peak	V

Worse case	mode:	π /4DQPS	K (2DH5)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	55.06	-9.2	45.86	74	-28.14	Peak	Н
2400	55.54	-9.39	46.15	74	-27.85	Peak	Н
4804	52.81	-4.33	48.48	74	-25.52	Peak	Н
7206	48.36	1.01	49.37	74	-24.63	Peak	Н
2390	54.66	-9.2	45.46	74	-28.54	Peak	V
2400	54.49	-9.39	45.10	74	-28.90	Peak	V
4804	53.62	-4.33	49.29	74	-24.71	Peak	V
7206	50.85	1.01	51.86	74	-22.14	Peak	V

Worse case	mode:	π /4DQPSK (2DH5)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	51.12	-4.11	47.01	74	-26.99	peak	Н
7323	48.38	1.51	49.89	74	-24.11	peak	Н
4882	53.93	-4.11	49.82	74	-24.18	peak	V
7323	49.68	1.51	51.19	74	-22.81	peak	V

Worse case mode:		π /4DQPSK (2DH5)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
2483.5	55.29	-9.29	46.00	74	-28.00	Peak	Н
4960	52.35	-4.04	48.31	74	-25.69	Peak	Н
7440	50.10	1.57	51.67	74	-22.33	Peak	Н
2483.5	54.63	-9.29	45.34	74	-28.66	Peak	V
4960	50.45	-4.04	46.41	74	-27.59	Peak	V
7440	49.21	1.57	50.78	74	-23.22	Peak	V
2483.5	55.29	-9.29	46.00	74	-28.00	Peak	Н