Exposure Calculation Report

Raymarine Belgium BVBA, Solid state non-IMO radar Model: Cyclone

In accordance with FCC 47 CFR Part 1.1310: 2018 and ISED Canada: Health Canada Safety Code 6:2015

Prepared for:

Raymarine Belgium BVBA Luxemburgstraat, Meer 2321 Belgium

COMMERCIAL-IN-CONFIDENCE

FCC ID: PJ5-953LPSSR

IC: 4069B-953LPSSR

Document 75950287-06 Issue: 01

SIGNATURE			
Carlant			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Jon Kenny	Manager (RF)	Authorised Signatory	14 May 2021

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

EXECUTIVE SUMMARY

The calculation of exposure for this product was found to be compliant at a minimum distance of 20 cm (Occupational) - 30 cm (General Public) using Antenna: Model: E70628, 20 cm (Occupational) - 40 cm (General Public) using Antenna: Model: E70629 and 20 cm (Occupational) - 40 cm (General Public) using Antenna: Model: E70630 with 47 CFR Part 1.1310: 2018 and Health Canada Safety Code 6:2015 assuming continuous exposure of 6 minutes or more. The calculated compliance distance is based on rotational averaged power density, assumption is made that the power is shut down when the antenna is stationary. If alternative antennas are used with greater gains or differing dimensions, the distance must be recalculated.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2021 TÜV SÜD.

TÜV SÜD is a trading name of TUV SUD Ltd

Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Add value. Inspire trust.

TÜV SÜD

TÜV®

Contents

1	Report Summary	2
1.1 1.2 1.3 1.4	Report Modification Record Introduction Summary of Results Product Information	2 2 3 4
2	Assessment Details	6
2.1 2.2 2.3 2.4 2.5 2.6	Assessment Method Antenna E70628 Parameters and Results: Antenna E70629 Parameters and Results: Antenna E70630 Parameters and Results: Field Region Boundary Results Uncertainty	6 9 11 13 15 15
Annex A	Regional Requirements	۹.2

1 Report Summary

1.2

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	14 May 2021

Table 1 Introduction Applicant Raymarine Belgium BVBA Manufacturer Raymarine Belgium BVBA Model Number(s) Cyclone E70620 AD5NZBQ Radar Pedestal 1010833-3 Hardware Version(s) with the following deviations applied: D-21-1377 D-20-1186 D-20-1264 D-21-1335 D-21-1378 D-21-1383 D-21-1407 3ft antenna: 1011615-3 4ft antenna: 1011614-3 6ft antenna: 1010556-3 V0.56.442 Software Version(s) ISED Canada: Health Canada Safety Code 6:2015 Specification/Issue/Date • FCC 47 CFR Part 1.1310: 2018 Order Number 1310109535 Date 20-October-2020 Related Document(s) • RSS-102 Issue 5 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) IEEE C95.3:2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz-300 GHz

1.3 Summary of Results

The Radar described within this report was compliant with the restrictions related to human exposure to electromagnetic fields for both general public and worker/occupational exposures at the minimum compliance distances calculated.

The calculations shown in this report were made in accordance with the procedures specified in the applied test specification(s).

1.3.1 Rotationally Averaged Compliance Boundary

Configuration	Calculated minimum compliance boundary (m) (rounded up to nearest 0.1 m)		
Conliguration	Worker/Occupational	General Public	
3ft Antenna: Model: E70628	0.2 m which is < Swept Volume (0.52 m)	0.3 m which is < Swept Volume (0.52 m)	
4ft Antenna: Model: E70629	0.2 m which is < Swept Volume (0.67 m)	0.4 m which is < Swept Volume (0.67m)	
6ft Antenna: Model: E70630	0.2 m which is < Swept Volume (0.975 m)	0.4 m which is < Swept Volume (0.975 m)	

Table 2 – Rotationally Averaged Compliance Boundary Calculation Results

1.3.2 Beam Stationary Compliance Boundary

Configuration	Calculated minimum compliance boundary (m) (rounded up to nearest 0.1 m)		
Configuration	Worker/Occupational	General Public	
3ft Antenna: Model: E70628	N/A	N/A	
4ft Antenna: Model: E70629	N/A	N/A	
6ft Antenna: Model: E70630	N/A	N/A	

Table 3 – Beam Stationary Boundary Calculation Results

Assumption is made that the device does not transmit whilst stationary.

1.4 **Product Information**

1.4.1 Technical Description

Solid state non-IMO X-band Radar

1.4.2 Transmitter Description

The following radio access technologies and frequency bands are supported by the equipment under test.

Frequency Band (MHz)	Output Power (dBm)	Pulse Width (nS)	Pulse Repetition Frequency (Hz)	Duty Cycle (%)
9300 - 9500	46.81	46	4800	0.02
9300 - 9500	46.81	192	4800	0.09
9300 - 9500	46.81	750	4800	0.36
9300 - 9500	46.81	1020	4800	0.49
9300 - 9500	46.81	1235	4800	0.59
9300 - 9500	46.81	1675	4800	0.80
9300 - 9500	46.81	2300	4800	1.10
9300 - 9500	46.81	2710	4800	1.30
9300 - 9500	46.81	3900	4800	1.87
9300 - 9500	46.81	17600	3600	6.34
9300 - 9500	46.81	23600	2400	5.66
9300 - 9500	46.81	35000	1200	4.20
9300 - 9500	46.81	47000	820	3.85
9300 - 9500	46.81	79000	700	5.53

Table 4 – Transmitter Description

Note: Transmitter power includes upper bounds of uncertainty therefore maximum values are used in accordance with Section 2.6.

1.4.3 Antenna Description

The following antennas are supported by the equipment under test.

Antenna	Antenna length (cm)	Antenna height (cm)	Gain (dBi))	Antenna Beamwidth (Degrees)
E70628	104	6.3	25.7	1.32
E70629	134	6.3	27.7	1.99
E70630	195	6.3	29.8	2.83

Table 5 – Antenna description

Note: Antenna gain includes upper bounds of uncertainty therefore maximum values are used in accordance with Section 2.3.

2 Assessment Details

2.1 Assessment Method

The following documents provide guidance on radar RF exposure assessment.

- 1. FCC Guideline OET Bulletin 65
- 2. IEEE C95.3
- 3. Canada Technical Guide for Interpretation and Compliance Assessment of Health Canada's Radiofrequency Exposure Guidelines
- 4. Australia/New Zealand AS/NZS2772-2
- 5. UK Defence Standard 05-74

From these documents the following assessment method is derived:

The assessment method is by calculation of the power density S in each of three antenna field regions are shown in Figure 1. the field region boundaries R_2 and R_1 are calculated in the field region boundary results.

Figure 1 – Antenna Field Regions

Quantities:

Quantity	Description	Units
f	Frequency	MHz
λ	Wavelength c=fλ, c=3E8 m/s	m
GidB	Gain	dB
G _i	Gain G _i =10 ^(GdBi/10)	Ratio
t _p	Pulse width	μs
PRF	Pulse repetition frequency	Hz
Popeak	Peak power into antenna	W
P _{o av}	Mean power into antenna P _{av} =P _{Peak} *t _p *PRF	W
А	Antenna Width - Maximum Antenna Dimension	m
В	Antenna Height - Minimum Antenna Dimension	m
$\theta_{azimuth}$	Azimuth antenna beamwidth	° Degrees
R ₁	Rayleigh range distance due to antenna width A $R_1 = A^2/2\lambda$	m
R ₂	Rayleigh range distance due to antenna height B R_{2} = $B^{2}/2\lambda$	m
S	Power flux density (see equations below)	W/m ²
r	Separation distance from antenna	m

The quantities used in the calculations are shown in Table 5:

Table 6 – Quantities

Far Field:

The calculation in the far field uses the spherical model applicable under far field conditions.

$$S = \frac{Pav \times G_i}{4 \times \pi \times r^2}$$

Intermediate Field:

No simple calculation possible but in the main beam the power density reduces as 1/distance r beyond the R₂ Rayleigh Range up to the R₁ far field boundary.

The reference power density S_{R1} at the start of the Far Field at R_1 Rayleigh Range is given by far field equation in the above paragraph. The power density within the intermediate field is therefore given by;

$$S = \frac{R_1 x S_{R1}}{r}$$

Radiating near field equation:

The maximum worst case near field power density is given by;

$$S(W/m^2) = \frac{4P_0}{Area}$$

Where: Area - Area of antenna array (A width x B height)

Rotational Averaging:

Where the antenna continuously rotates and cannot operate stationary, a rotational averaging factor can be derived to calculate the reduction in the time averaged power density. The factor calculation depends on the field region below:

Near Field:

In the radiating and intermediate near field the rotational averaging factor K depends on the antenna width A as the beam is unfocused and the resultant power density varies with distance r. The power density is multiplied by the factor K:

$$K = \frac{A}{2\pi r}$$

Far Field:

In the far field the rotational averaging factor K depends only on the antenna azimuth beamwidth θ . The power density is multiplied by the factor K:

$$K = \frac{\theta}{360}$$

Caveats:

This assessment is an estimate and if necessary, should be confirmed by measurement of the radar using suitable test instrumentation.

This assessment assumes that exposure is continuous for 6 minutes or more in accordance with the averaging time required by the exposure standards at the stated minimum compliance boundary separation distance. Exposures of less than 6 minutes at other separation distances are not addressed by this report.

The far field region boundary depends on the frequency and wavelength and also on the antenna dimension. The boundary of the far field region is calculated below to demonstrate the validity of using the spherical model.

The result is compared to the limits in Annex A to determine compliance or to calculate the required compliance distance. The calculation is based on the lowest frequency in each band as the most onerous requirement as the limits increase with frequency for frequencies above 10-50 MHz (dependent on region).

2.2 Antenna E70628 Parameters and Results:

Parameter	Value	Units	Source
Occupational Reference Level mean			
power SOcc	50	W/m2	
General Public Reference Level mean	10	10//0	
power SGP	10		
Frequency f	9370	MHz	Manufacturer
Wavelength λ	0.0320171	m	c=f*λ
Power (peak) Ppeak	40	W	Manufacturer
Gain Gi	371.5	ratio	
Pulse width tp	17.6	us	Manufacturer
Pulse Repetition Frequency PRF	3600	Hz	Manufacturer
Azimuth beamwdith θ	1.32	degrees	Manufacturer
Scanning Averaging Factor K	0.00367	N/A	K = azimuth beamwidth/360 (far field)
Power (mean) Pmean	3.041	W	PMean =PPeak*tp*PRF
Power (mean) rotationally/scanned			
averaged PMean rot av	0.01116	W	PMean rot av = PMean*K
Maximum Width Dimension A	1.04	m	Manufacturer
Height dimension B	0.063	m	Manufacturer

Table 7 – Antenna E70628 Parameters

RADIATING NEAR FIELD RESULT			
The following boundaries assume	radiating near	field and are va	lid only if compliance distance <
Rayleigh Range R2	0		, i
Maximum near field power density main			
beam Snear (beam stationary)	185.67	W/m2	SNear = 4*PMean/A*B
Main Beam Compliance Boundary			
Occupational (rotationally averaged)	N/A	m	r=[4*Pmean/A*B]*[A/2*π*SOcc]
Main Beam Compliance Boundary			
General Public (rotationally averaged)	N/A	m	r=[4*Pmean/A*B]*[A/2*π*SGP]
Near field power density main beam at			
(retationally everaged)	50.10	W/m2	S-[4*Dmoon/A*D]*[1/m]
(Intationally averaged)	59.10	VV/1112	
IN1	ERMEDIATE	E FIELD RESUL	Ť
The following boundaries assume i	ntermediate i	near field and ar	e valid only if compliance
distance > Rayleigh Range R2 and	l < Raleigh Ra	ange R1	
	Less than		
	swept		
Main Beam Compliance Boundary	volume		
Occupational (beam stationary)	(0.107)	m	r=R1^SR1/Socc
Main Beam Compliance Boundary	0 5262	~	* D1*CD1/CCD
General Public (beam stationary)	0.5363	m	I=RT SRT/SGP
	swent		
Main Beam Compliance Boundary	volume		
Occupational (rotationally averaged)	(0.133)	m	r=[R1*SR1*A/2*π*Socc]^0.5
	Less than		
	swept		
Main Beam Compliance Boundary	volume		
General Public (rotationally averaged)	(0.298)	m	r=[R1*SR1*A/2*π*SGP]^0.5
	FAR FIEL	D RESULT	
The following boundaries assume f	ar field and a	re valid only if co	ompliance distance > Rayleigh
Range R1			
Reference power density main beam			
(beam stationary) at R1	0.31990	W/m2	SR1=PMean*Gi /4*π*R1^2
Reference power density main beam			SR1 Rot Av=PMean Rot Av*Gi
(rotationally averaged) at R1	0.00117	W/m2	/4*π*R1^2
Main Beam Compliance Boundary			
Occupational (beam stationary)	N/A	m	r=[PMean*Gi /4*π*SOcc]^0.5
Main Beam Compliance Boundary	N1/A		
General Public (beam stationary)	N/A	m	r=[PiMean"GI /4"π"SGP]"0.5
	NI/A		r-[PMean rot av*Gi //*т*SOcc140 5
Main Ream Compliance Boundary	IN/A		
General Public (rotationally averaged)	N/A	m	r=IPMean rot av*Gi /4*π*SGP1^0.5

Table 8 – Antenna E70628 Results

2.3 Antenna E70629 Parameters and Results:

Parameter	Value	Units	Source
Occupational Reference Level mean	50)M//0	
power SUcc	50	VV/m2	
power SGP	10	W/m2	
Frequency f	9370	MHz	Manufacturer
Wavelength λ	0.0320171	m	c=f*λ
Power (peak) Ppeak	48	W	Manufacturer
Gain Gi	588.8	ratio	
Pulse width tp	17.6	us	Manufacturer
Pulse Repetition Frequency PRF	3600	Hz	Manufacturer
Azimuth beamwdith θ	1.99	degrees	Manufacturer
Scanning Averaging Factor K	0.00553	N/A	K = azimuth beamwidth/360 (far field)
Power (mean) Pmean	3.041	W	PMean =PPeak*tp*PRF
Power (mean) rotationally/scanned averaged PMean rot av	0.01682	W	PMean rot av = PMean*K
Maximum Width Dimension A	1.34	m	Manufacturer
Height dimension B	0.063	m	Manufacturer

Table 9 – Antenna E70629 Parameters

RADIATING NEAR FIELD RESULT				
The following boundaries assume	The following boundaries assume radiating near field and are valid only if compliance distance <			
Rayleigh Range R2				
Maximum near field power density main				
beam Snear (beam stationary)	144.10	W/m2	SNear = 4*PMean/A*B	
Main Beam Compliance Boundary				
Occupational (rotationally averaged)	N/A	m	r=[4*Pmean/A*B]*[A/2*π*SOcc]	
Main Beam Compliance Boundary				
General Public (rotationally averaged)	N/A	m	r=[4*Pmean/A*B]*[A/2*π*SGP]	
Near field power density main beam at				
swept volume boundary (r=A/2)				
(rotationally averaged)	45.87	W/m2	S=[4*Pmean/A*B]*[1/π]	
IN1	ERMEDIATE	FIELD RESUL	Т	
The following boundaries assume i	ntermediate r	near field and are	e valid only if compliance	
distance > Rayleigh Range R2 and	l < Raleigh Ra	ange R1		
	Less than			
	swept			
Main Beam Compliance Boundary	volume			
Occupational (beam stationary)	(0.102)	m	r=R1*SR1/Socc	
	Less than			
	swept			
Main Beam Compliance Boundary	volume			
General Public (beam stationary)	(0.512)	m	r=R1*SR1/SGP	
	Less than			
	swept			
Main Beam Compliance Boundary	volume			
Occupational (rotationally averaged)	(0.148)	m	r=[R1^SR1^A/2^π^Socc]^0.5	
	Less than			
Main Room Compliance Roundary	swept			
General Public (retationally averaged)		m	r-[P1*SP1*A/2*#*SCP140.5	
General Public (Totationally averaged)	(0.330)	111	I-[KI SKI A/2 II SGF] 0.5	
	FAR FIEL	D RESULT		
The following boundaries assume f	ar field and a	re valid only if co	ompliance distance > Rayleigh	
Range R1		-		
Reference power density main beam				
(beam stationary) at R1	0.18396	W/m2	SR1=PMean*Gi /4*π*R12	
Reference power density main beam			SR1 Rot Av=PMean Rot Av*Gi	
(rotationally averaged) at R1	0.00102	W/m2	/4*π*R1^2	
Main Beam Compliance Boundary				
Occupational (beam stationary)	N/A	m	r=[PMean*Gi /4*π*SOcc]^0.5	
Main Beam Compliance Boundary				
General Public (beam stationary)	N/A	m	r=[PMean*Gi /4*π*SGP]^0.5	
Main Beam Compliance Boundary				
Occupational (rotationally averaged)	N/A	m	r=[PMean rot av*Gi /4*π*SOcc]^0.5	
Main Beam Compliance Boundary				
General Public (rotationally averaged)	N/A	m	r=[PMean rot av*Gi /4*π*SGP]^0.5	

Table 10 – Antenna E70629 Results

2.4 Antenna E70630 Parameters and Results:

Parameter	Value	Units	Source
Occupational Reference Level mean	FO	\\//m2	
General Public Reference Level mean	50	VV/I112	
power SGP	10	W/m2	
Frequency f	9370	MHz	Manufacturer
Wavelength λ	0.0320171	m	c=f*λ
Power (peak) Ppeak	48	W	Manufacturer
Gain Gi	891.3	ratio	
Pulse width tp	17.6	us	Manufacturer
Pulse Repetition Frequency PRF	3600	Hz	Manufacturer
Azimuth beamwdith θ	2.83	degrees	Manufacturer
Scanning Averaging Factor K	0.00786	N/A	K = azimuth beamwidth/360 (far field)
Power (mean) Pmean	3.041	W	PMean =PPeak*tp*PRF
Power (mean) rotationally/scanned	0.02200	10/	PMoon rot ov - PMoon*K
	0.02390	VV	
Maximum Width Dimension A	1.95	m	Manufacturer
Height dimension B	0.063	m	Manufacturer

Table 11 – Antenna E70630 Parameters

RADIATING NEAR FIELD RESULT				
The following boundaries assume radiating near field and are valid only if compliance distance <				
Rayleigh Range R2				
Maximum near field power density main				
beam Snear (beam stationary)	99.02	W/m2	SNear = 4*PMean/A*B	
Main Beam Compliance Boundary				
Occupational (rotationally averaged)	N/A	m	r=[4*Pmean/A*B]*[A/2*π*SOcc]	
Main Beam Compliance Boundary	N 1/A			
General Public (rotationally averaged)	N/A	m	r=[4*Pmean/A*B]*[A/2*π*SGP]	
Near field power density main beam at				
(retationally averaged)	24 50	\\//m2	S = [4*Dmoon/(4*D)*[1/m])	
	51.52			
INI	ERMEDIATE	: FIELD RESUL		
The following boundaries assume i	ntermediate r	near field and ar	e valid only if compliance	
distance > Rayleigh Range R2 and	l < Raleigh Ra	ange R1		
	Less than			
	swept			
Main Beam Compliance Boundary	volume			
Occupational (beam stationary)	(0.073)	m	r=R1*SR1/Socc	
	Less than			
	swept			
Main Beam Compliance Boundary	volume			
General Public (beam stationary)	(0.366	m	r=R1^SR1/SGP	
	Less than			
Main Room Compliance Roundary	swept			
	(0 151)	m	r=[P1*SP1*Δ/2*π*Socc]^0 5	
	l ess than			
	swept			
Main Beam Compliance Boundary	volume			
General Public (rotationally averaged)	(0.337)	m	r=[R1*SR1*A/2*π*SGP]^0.5	
The following boundaries assume t		re velid only if o	ampliance distance > Poyleigh	
The following boundaries assume far field and are valid only if compliance distance > Rayleign				
Reference power density main beam	0.0004.0	W//m O		
(beam stationary) at R1	0.06210	vv/m2		
(retetion of the supers and the supe	0.00040	\\//m 0	SR1 Rot AV=PMean Rot AV*GI	
(rotationally averaged) at R1	0.00049	vv/m2	/4*11*R1*2	
Main Beam Compliance Boundary	NI/A	~	r-[DMean*Ci //*#*\$000100 5	
Main Ream Compliance Roundary	IN/A	m		
General Public (beam stationary)	NI/A	m	r=[PMean*Gi /4*π*SCP1^0 5	
Main Beam Compliance Boundary	IN/A	111		
Occupational (rotationally averaged)	N/A	m	r=IPMean rot av*Gi /4*π*SOccl^0 5	
Main Beam Compliance Boundary	11/7			
General Public (rotationally averaged)	N/A	m	r=IPMean rot av*Gi /4*π*SGP1^0 5	

Table 11 – Antenna E70630 Results

2.5 Field Region Boundary Results

The field region boundary calculation result is shown in Table 6:

Field Region Boundaries			
(Ref: FCC Guideline OET Bulletin 65, IEEE C95.3 Annex B, Technical Guide for Interpretation and Compliance Assessment of Health Canada's Radiofrequency Exposure Guidelines 7.1, UK Defence Standard 05-74)			
Antenna Configuration	Radiating Near Field Boundary	Intermediate Near Field	Far Field Boundary
	R ₂	R_2 to R_1	R ₁
	B²/2λ (m)	$B^2/2λ$ to $A^2/2λ$ (m)	A²/2λ (m)
E70628 @ 9370MHz	< 0.062	0.062 - 16.8	> 16.8
E70629 @ 9370MHz	< 0.062	0.062 – 27.8	> 27.8
E70629 @ 9370MHz	< 0.062	0.062 – 58.9	> 58.9

Table 12 – Field Region Boundaries

The appropriate calculation has been applied to each of the three regions as described in the assessment method section therefore the calculation result is considered valid.

2.6 Uncertainty

The basic computation formulas presented in section **Error! Reference source not found.** are conservative formulas for the estimation of RF field strength or power density.

No uncertainty estimations are required when using these formulas but there is clear guidance on where and when these formulas are applicable. For the estimate of S, E or H to be conservative, the transmitter power P and antenna gain G_i values shall be the upper bounds of uncertainty therefore maximum values are used.

The spherical formula is valid under far field conditions which are established in section 2.5.

ANNEX A

REGIONAL REQUIREMENTS

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	10	61.4	0.163
20 - 48	44.72/f^0.5	129.8/f^0.25	0.3444/f^0.25
48 - 100	6.455	49.33	0.1309
100 - 6000	0.6455*f^0.5	15.60*f^0.25	0.04138*f^0.25
6000 - 150000	50	137	0.364

Table A.1 – Health Canada Safety Code 6 Worker/Occupational Limits

Frequency Range (MHz)	Power Density (W/m ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	2	27.46	0.0728
20 - 48	8.944/f^0.5	58.07/f^0.25	0.1540/f^0.25
48 - 300	1.291	22.06	0.05852
300 - 6000	0.02619*f^0.6834	3.142*f^0.3417	0.008335*f^0.3417
6000 - 15000	10	61.4	0.163

Table A.2 – Health Canada Safety Code 6 General Public Limits

Frequency Range (MHz)	Power Density (mW/cm ²) Note 1	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	900/f^2	1842/f	4.89/f
30 - 300	1	61.4	0.163
300 - 1500	f/300	-	-
1500 - 100000	5	-	-

Table A.1 – CFR 47 Pt1.1310 Worker/Occupational Limits

Frequency Range (MHz)	Power Density (mW/cm ²) Note 1	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	180/f^2	824/f	2.19/f
30 - 300	0.2	27.5	0.073
300 - 1500	f/1500	-	-
1500 - 100000	1	-	-

Table A.2 – CFR 47 Pt1.1310 General Public Limits

Note 1: The calculations and limits presented in this report for power density are in units of W/m^2 . The conversion factor is; 1 mW/cm² = 10 W/m².