

RRA-EMIESS24E893DAV-04Av0

Certification Radio test report
According to the standard:
CFR 47 FCC PART 15
RSS GEN – Issue 5 RSS 247 – Issue 3
Equipment under test: DAVEY TRONIC 5 BENCH MONITOR
FCC ID: 2AUQC-DT5GBMO IC NUMBER: 25586-DT5GBMO
Company:
DAVEY BICKFORD

Distribution: Mrs STOJANOVIC

(Company: DAVEY BICKFORD)

Number of pages: 58 with 2 appendixes

Ed.	Date	Modified Page(s)	Technical Verification and Quality Approval Name and Function	Visa
0	9-Dec-24	• • • •	M. DUMESNIL, Radio Laboratory Manager	VISa

Duplication of this document is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above. This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.

Information in italics are declared by the manufacturer/customer and are under his responsibility

Siège Social : Emitech - 3, rue des Coudriers - Z.A. de l'Observatoire - 78180 MONTIGNY LE BX - France Siret : 344 545 645 00022 - Tél. : 33 (0)1 30 57 55 55 - Fax : 33 (0)1 30 43 74 48 - E-mail : contact@emitech-group.com - URL : www.emitech.fr SAS au capital de 1 560 000 € - R.C.S. VERSAILLES 344 545 645 - APE 7112B

2070, 1-2206, 1-2376 & 1-608 LIST OF ACCREDITED SITES AND SCOPE AVALAIBLE ON WWW.COFRAC.FF

DESIGNATION OF PRODUCT:	DAVEY TRONIC 5 BENCH MONITOR
Serial number (S/N):	0001
Model:	ВМО
Reference (P/N):	62143 / BH024
Firmware version:	0x17 (LoRa Module)
MANUFACTURER:	DAVEY BICKFORD
COMPANY SUBMITTING THE PROD	DUCT:
Company:	DAVEY BICKFORD
Address:	LE MOULIN GASPARD CHEMIN DE LA PYROTECHNIE 89550 HERY FRANCE
Responsible:	Mrs STOJANOVIC
DATES OF TEST:	17-Sep-24 to 26-Sep-24
TESTING LOCATION:	EMITECH ANGERS laboratory at JUIGNE SUR LOIRE (49) FRANCE
	FCC Accredited under US-EU MRA Designation Number: FR0009 Test Firm Registration Number: 873677
	ISED Accredited under CANADA-EU MRA Designation Number: FR0001 Industry Canada Registration Number: 4452A
TESTED BY:	B. VOVARD VISA:
WRITTEN BY:	B. VOVARD

CONTENTS

TITLE

PAGE

1.	INTRODUCTION	. 4
2.	PRODUCT DESCRIPTION	. 4
3.	NORMATIVE REFERENCE	. 5
4.	TEST METHODOLOGY	. 6
5.	TEST EQUIPMENT CALIBRATION DATES	. 7
6.	TESTS RESULTS SUMMARY	
7.	MEASUREMENT UNCERTAINTY	11
8.	OCCUPIED BANDWIDTH	12
9.	BAND EDGE	
10.	PEAK CONDUCTED OUTPUT POWER	30
11.	RADIATED SPURIOUS EMISSIONS	37
12.	PEAK CONDUCTED POWER SPECTRAL DENSITY	45
APPE	ENDIX 1: TEST EQUIPMENT LIST	53
APPE	NDIX 2: RADIATED TEST SETUP	57

REVISIONS HISTORY

Revision	Date	Modified pages	Modifications
0	4-Oct-24	/	Creation

1. INTRODUCTION

This report presents the results of radio test carried out on the following radio equipment: <u>**DAVEY TRONIC 5**</u> <u>**BENCH MONITOR**</u>, in accordance with normative reference.

The equipment under test integrates:

- 2x LoRa 2.4 GHz transceiver radio module not already certified,
- WiFi 5 GHz transceiver radio module already certified (FCC ID: T7V-9026 / IC: 216Q-9026),
- 13.56MHz RFID Tag,
- GNSS module operational in the band 1559MHz 1610MHz

This report concerns only LoRa 2.4 GHz Radio parts.

Measurements are done separately on two 2.4 GHz LoRa Module, named "LoRa 2A" and "LoRa 2B".

The host device of certified module(s) shall be properly labeled to identify the module(s) within.

2. PRODUCT DESCRIPTION

Category of equipment (ISED): I

Class:	A
Utilization:	Industrial
Antenna type and gain:	Integrated antenna Gain at 2414.8 MHz for LoRa 2A => +10.15 dBi Gain at 2436.4 MHz for LoRa 2A => +10.83 dBi Gain at 2473.2 MHz for LoRa 2A => +10.08 dBi Gain at 2414.8 MHz for LoRa 2B => +8.13 dBi Gain at 2436.4 MHz for LoRa 2B => +8.56 dBi Gain at 2473.2 MHz for LoRa 2B => +10.38 dBi
Operating frequency band:	From 2400 MHz to 2483.5 MHz
Operating frequency range:	From 2414.8 MHz to 2473.2 MHz
Number of channels:	17

Frequencies tested:	2414.8 MHz, 2436.4 MHz and 2473.2 MHz
Channel spacing:	0.8 to 8 MHz
Modulation:	LoRa
Power soft adjusted to	13 (LoRa 2A & LoRa 2B)
Power source:	Internal rechargeable Li-Ion battery 7.27 Vdc 7000mAh AC/DC Adapter (120Vac 60Hz / 12 Vdc)

The radio is not operational during charge mode. All measurements are realized on internal battery.

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below. They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2024)	Radio Frequency Devices
ANSI C63.10	2013 Procedures for ComplianceTesting of Unlicensed Wireless Devices.
558074 D01 15.247 Meas Guid	lance v05r02 Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
RSP-100	Issue 12, August 2019 Certification of Radio Apparatus and Broadcasting equipment
RSS-Gen	Issue 5, April 2018 General Requirements for Compliance of Radio Apparatus
RSS-247	Issue 3, August 2023 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

4. TEST METHODOLOGY

Radio performance tests procedures given in CFR 47 part 15:

Subpart C – Intentional Radiators

Paragraph 203:	Antenna requirement
Paragraph 205:	Restricted bands of operation
Paragraph 209:	Radiated emission limits; general requirements
Paragraph 215:	Additional provisions to the general radiated emission limitations
Paragraph 247:	Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850
	MHz

Radio performance tests procedures given in RSS-Gen:

Paragraph 2 - General

Paragraph 3 - Normative publications and related documents

Paragraph 4 - Labelling requirements

Paragraph 6 - General administrative and technical requirements

Paragraph 8 - Licence-exempt Radio Apparatus

Radio performance tests procedures given in RSS-247:

Paragraph 3 - Certification requirements

Paragraph 4 - Measurement method

Paragraph 5 - Standard specifications for frequency hopping systems and digital transmission systems operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

5. TEST EQUIPMENT CALIBRATION DATES

Emitech Number	Model	Туре	Last calibration (DD/MM/YY)	Calibration interval (years) (DD/MM/YY)	Next calibration due (DD/MM/YY)
0	BAT-EMC V3.18.0.26	Software	/		/
1406	EMCO 6502	Loop antenna	04/04/2024	1	04/04/2025
4087	Filtek LP03/1000-7GH	Low Pass Filter	07/02/2023	3	06/02/2026
4088	R&S FSP40	Spectrum Analyzer	10/06/2024	2	10/06/2026
7124	A.H. Systems SAS-572	Antenna	23/05/2022	3	22/05/2025
7171	R&S HL223	Antenna	19/05/2022	3	18/05/2025
7190	R&S HL223	Antenna	17/03/2022	3	16/03/2025
7240	Emco 3110	Biconical antenna	17/03/2022	3	16/03/2025
7279	SUCOFLEX SF104 N 1.5m	Cable	31/05/2024	2	31/05/2026
7299	Microtronics BRM50702	Reject band filter	16/08/2022	3	15/08/2025
7566	Testo 608-H1	Meteo station	12/12/2022	2	11/12/2024
8528	Schwarzbeck VHA 9103	Biconical antenna	19/05/2022	3	18/05/2025
8548	Midwest Microwave 10dB	Attenuator	08/02/2023	3	07/02/2026
8732	Emitech	OATS	28/03/2022	3	27/03/2025
8785	N-1.5m Emitech	Cable	10/07/2024	2	10/07/2026
8813	Emitech	N Cable	04/06/2024	2	04/06/2026
8855	EMITECH	Turntable and mat controller	1	1	1
8864	Champ libre Juigné. V3.5	Software	1	1	1
8896	ACQUISYS GPS8	Satellite synchronized frequency standard	1	1	1
8974	STORM MICROWAE k-20cm	cable	29/01/2024	2	28/01/2026
9399	N-1m	Cable	29/01/2024	2	28/01/2026
10759	COMTEST Cage 3	Anechoic chamber			/
10771	EMCO 3117	Antenna	30/11/2022	3	30/11/2025

Emitech Number	Model	Туре	Last calibration (DD/MM/YY)	Calibration interval (years) (DD/MM/YY)	Next calibration due (DD/MM/YY)
10789	MATURO	Turntable and mat controller NCD	1	1	1
12590	LUCIX Corp S005180M3201	Low-noise amplifier	29/05/2024	1	29/05/2025
14303	SUCOFLEX N-2m	cable	01/12/2022	2	30/11/2024
14903	Fluke 177	Multimeter	22/12/2023	2	21/12/2025
15666	R&S FSV40	Spectrum Analyzer	27/09/2022	2	26/09/2024
16109	C&C HPF180400	High pass filter	11/08/2022	3	10/08/2025
17008	R&S ESW44	Test receiver	03/05/2024	1	03/05/2025
18418	MecHANC - Type K - 1m	Cable	02/09/2024	2	02/09/2026
19154	QOTANA DBLNA317202120S	Low-noise amplifier 18- 26GHz	23/09/2024	1	23/09/2025
19246	HYTEM - N - 5m	Cable	22/01/2024	2	21/01/2026
19249	HYTEM - N - 2.5m	Cable	22/01/2024	2	21/01/2026
19266	Radiall R412706124	Attenuator 6dB	06/12/2023	3	06/12/2026
19267	Radiall R412706124	Attenuator 6dB	06/12/2023	3	06/12/2026
19274	ASC - ASC805C	Low-noise amplifier	12/01/2024	1	11/01/2025
//	RS Commander V2.4.2	Software		/	/

6. TESTS RESULTS SUMMARY

6.1 CFR 47 part 15requirements

Test	Description of test		espect	Comment		
procedure			No	NAp	NAs	
-CC Part 15.203	ANTENNA REQUIREMENT	X				Note 1
FCC Part 15.205	RESTRICTED BANDS OF OPERATION	X				
FCC Part 15.207	CONDUCTED LIMITS			Х		Note 2
FCC Part 15.209	RADIATED EMISSION LIMITS; general requirements	X				Note 3
FCC part 15.215	ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS					
	(a) Alternative to general radiated emission limits	Х				
	(b) Unwanted emissions outside of §15.247 frequency bands	X				Note 4
	(c) 20 dB bandwidth and band-edge compliance	Х				
FCC Part 15.247	OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz					
	(a) (1) Hopping systems			Х		
	(a) (2) Digital modulation techniques	Х				Note 5
	(b) Maximum peak output power	Х				
	(c) Operation with directional antenna gains > 6 dBi	Х				
	(d) Intentional radiator	X				
	(e) Peak power spectral density	Х				
	(f) Hybrid system			X		
	(g) Frequency hopping requirements			X		
	(h) Frequency hopping intelligence	v		Х		
	(i) RF exposure compliance	X				

NAp: Not Applicable

NAs: Not Asked

Note 1: Integral antenna with unknow gain.

Note 2: The radio is not operational during charge mode. All measurements are realized on internal battery.

Note 3: See FCC part 15.247 (d).

Note 4: See FCC part 15.209. Unwanted emissions levels are all below the fundamental emission field strength level.

Note 5: The minimum 6 dB bandwidth of the equipment is 546 kHz for LoRa Modulation.

6.2 RSS-Gen requirements

Test	Description of test	Crit	eria re	Comment		
procedure		Yes	No	NAp	NAs	
Paragraph 8	Licence-exempt radio apparatus					
§ 8.1	Measurement Bandwidths and Detector Functions	Х				
§ 8.2	Pulsed operation	Х				
§ 8.3	Prohibition of amplifiers	Х				
§ 8.4	User manual notice	X				see certification documents
§ 8.5	Measurement of licence-exempt devices on-site (in- situ)			Х		
§ 8.6	Operating frequency range of devices in master/slave networks	x				
§ 8.7	Radio frequency identification (RFID) devices			Х		
§ 8.8	AC power line conducted emissions limits			Х		Note 1
§ 8.9	Transmitter emission limits	Х				
§ 8.10	Restricted frequency bands	Х				
§ 8.11	Frequency stability			Х		

NAp: Not Applicable

NAs: Not Asked

Note 1: The radio is not operational during charge mode. All measurements are realized on internal battery.

6.3 RSS-247 requirements

Test	Description of test	Crit	eria re	espect	Comment	
Procedure RSS-247		Yes	No	NAp	NAs	
Paragraph 5	Standard specifications for frequency hopping system and digital transmission systems operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz					
5.1	Frequency hopping systems (FHSS)			Х		
5.2	Digital transmission systems	Х				Note
5.3	Hybrid systems			Х		
5.4	Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) requirements	х				
5.5	Unwanted emissions	Х				

NAp: Not Applicable NAs: Not Asked

Note : The minimum 6 dB bandwidth of the equipment is 546 kHz for LoRa Modulation.

7. MEASUREMENT UNCERTAINTY

To declare, or not, the compliance with the specifications, it was not explicitly taken into account of uncertainty associated with the result(s)

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%.

Parameter	Emitech Uncertainty
RF power, conducted	\pm 0.8dB
Radiated emission valid to 26 GHz 9kHz – 30MHz 30MHz – 1GHz 1GHz – 18GHz 18GHz – 40GHz	± 4.3 dB ± 5.9 dB ± 4.8 dB ± 5.9 dB
AC Power Lines conducted emissions	\pm 3.7 dB
Temperature	± 0.95 °C
Humidity	± 4.6 %

8. OCCUPIED BANDWIDTH

Temperature (°C) : 23

Humidity (%HR): 58 to 57

Date : September 23, 2024 to September 24, 2024

Technician : B. VOVARD

Standard: FCC Part 15 RSS-247

Test procedure:

Method of paragraphs 11.8 of ANSI C63.10 (6dB Measurement) Method of paragraphs 6.9.3 of ANSI C63.10 (99% Measurement)

Test set up:

Test realized in near field.

Setting:

Measure	6dB	99%
Center frequency	The centre frequency	of the channel under test
Detector	F	Peak
Span	2 to 5 times the OBW	1.5 to 5 times the OBW
RBW	100kHz	1% to 5% of the OBW
VBW	300kHz	3 x RBW
Trace	Ma	x hold
Sweep		Auto

Test operating condition of the equipment:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (Vdc):	7.27
Voltage at the end of test (Vdc):	7.25
Percentage of voltage drop during the test (%):	0.27

Results for LoRa 2A:

Sample N° 1

Spectrum)				
Ref Level 117. Att	00 dBµV 20 dB SWT 3 m	 RBW 100 kHz NBW 300 kHz 	Mode Sweep		\
●1Pk Max			·		
110 dBµV			M1[1]		102.03 dBµ 2.414634500 GH
100 dBµV		M1	D2[1]		-5.98 d -381.000 kH
D1 96	5.030 dBµV				
90 dBµV					
80 dBµV				Martin Charles	
70 dBµV				and an and the second second	-
60 dBµV					
50 dBµV					
40 dBµV					
30 dBµV					
20 dBµV					
CF 2.4148 GHz		3000	pts		Span 3.0 MHz
Marker					
Type Ref Tro		Y-value	Function	Func	tion Result
	1 2.4146345				
	1 -381.0 1 590.0				

6dB bandwidth - Low Channel 2414.8 MHz

Spectrum								
Ref Level e Att	117.00 dB 20	•	 RBW 100 VBW 300 		e Sweep			
⊖1Pk Max								,
110 dBµV					D3[1] 			-6.05 dB 91.000 kHz
100 dBµV)1 96.220	dBu M	<u></u>			1		12.22 dBµV 36500 GHz
90 dBµV						1		
80 dBµV					MW/	marking 1		
70 dBµV—	Market Market	r –				The state of the s	and the second s	A
60 dBµV								and the second s
50 dBµV								
40 dBµV								
30 dвµV								
20 dBµV								
CF 2.4364	GHz	1 1	I	3000 pts	I	1	Spa	n 3.0 MHz
Marker								
Type Ref		X-value	Y-va		Function	Fund	tion Result	
M1	1	2.4367365 GH		2 dBµV				
D2 M1 D3 M1		-880.0 kH 91.0 kH		5.97 dB 6.05 dB				

6dB bandwidth - Central Channel 2436.4 MHz

Spectrun	n												
Ref Leve	l 117.00) dBµV		•	RBW	100 kHz							
🗕 Att		20 dB	SWT 🔅	3 ms	VBW	300 kHz	Mod	e Sw	еер				
😑 1Pk Max													J
110 dBµV—				M:	1				1[1]				102.64 dBµV ?764500 GHz
100 dBµV—	-D1 06 6	540 dBµ\		07				D2	2[1]			-	-5.92 dB 114.000 kHz
90 dBµV—	01 90.0			<u>^</u>					- 1	_			
80 dBµV—			-							No.	and an and a second		
70 dBµV—												the second s	
60 dBµV—													
50 dBµV—													
40 dBµV													
30 dBµV—													
20 dBµV													
CF 2.4732	GHz					3000) pts					Sp	an 3.0 MHz
Marker													
Type Re	f Trc		X-value			Y-value		Fund	tion		Fur	nction Resu	lt
M1	1	2	2.47276			102.64 dBµ							
D2 M				1.0 kHz		-5.92 (
D3 M	11 1		856	5.0 kHz		-5.94 (3B						

6dB bandwidth - High Channel 2473.2 MHz

Limit:

Shall be at least 500 kHz

Spectrum									
Ref Level	117.00 d	Вµ∨		RBW 30 kHz					
🖷 Att	20	dB SWT 3	8 ms	VBW 100 kHz	Mode Sw	еер			
⊖1Pk Max									j
110 dBµV						1[1] cc Bw		2.4150	02.00 dBµV 06500 GHz 100000 kHz
100 dBµV—			- 1		•••			000.0000	
90 dBµV			+			$\left \right $			
80 dBµV			/						
70 dBµV							a from more and a		
60 dBµV	Warn Star Warner and Star	~~~~					and	and the second	
Số dBµV——									and the second second
40 dBµV									
30 dBµV									
20 dBµV									
CF 2.4148 (GHz	•		3000	pts	1	ł	Spa	n 3.0 MHz
Marker									
Type Ref	Trc	X-value		Y-value	Func	tion	Fun	ction Result	
M1	1	2.415006		102.00 dBµ					
T1 T2	1	2.414309		96.57 dBµ 95.79 dBµ		cc Bw			855.0 kHz
	<u> </u>	2111010		55775 dbf	••				

99% bandwidth - Low Channel 2414.8 MHz

Spectru	um											
Ref Lev	zel 1	117.00 di	Βμν	•	RBW	30 kHz						
🔵 Att		20	dB SWT 3	3 ms	VBW 1	00 kHz 🛛 🕅	Iode Sw	еер				
😑 1Pk Ma×	(
110 dBµV								1[1]			2.4367)2.18 dBµV 35500 GHz 00000 kHz
100 dBµV	-			Ŧ							079.0000	
90 dBµV-												
80 dBµV-			N	<i>[</i>				VI.	m	\ \		
70 dBµV-			dament and the second						V	Jun Mandana		
60 dBµV-		للمساجع مسينين								- WWWWW	and mar	
-		-									and the second sec	And
50 dBµV–												
40 dBµV-												
30 dBµV-												
20 dBµV–												
CF 2.436		Hz	1	1	I	3000 p [.]	ts				Spa	n 3.0 MHz
Marker											<u> </u>	
Type F	Ref	Trc	X-value			value	Funct	tion		Func	tion Result	
M1		1	2.43673			2.18 dBµV						
T1		1	2,43590			6.39 dBµV	0	cc Bw				879.0 kHz
T2		1	2,43678	55 GHz	9	4.74 dBµV						

99% bandwidth - Central Channel 2436.4 MHz

Spectrum										
Ref Level	117.00 dBj	νL	😑 F	RBW 30 kHz						
🕳 Att	20		ms V	/BW 100 kHz	Mode Sw	/eep				
●1Pk Max						•				
110 dBµV			M1			1[1]			2.4727)2.60 dBµ¥ 78500 GHz 100000 kHz
100 dвµV					0	CC BW			855.0000	
90 dBµV						\vdash				
80 dBµV			<u>/</u>			4				
70 dBµV							Many			
60 dBµV	and the second design	~~~~						me	and the second second	
50 dBµV										and the second second
40 dBµV										
30 dBµV										
20 dBµV										
CF 2.4732 G	Hz			3000	pts	1	I		Spa	n 3.0 MHz
Marker										
Type Ref	Trc	X-value		Y-value	Func	tion		Func	tion Result	
M1	1	2.472778	5 GHz	102.60 dBµ						
T1	1	2.472707		96.84 dBµ		CC BW				855.0 kHz
T2	1	2.473562	:5 GHz	96.36 dBµ	IV					

99% bandwidth - High Channel 2473.2 MHz

Measure realized for reporting only

Results for LoRa 2B:

Sample N° 1

Spectrum					
Ref Level 117.00 Att	•	RBW 100 kHz VBW 300 kHz	Mode Sweep		
● 1Pk Max	20 00 3991 3 115	1014 300 KHZ	Moue sweep		
110 dBµV			M1[1]		101.42 dBµ 2.414675500 GF
		M1	D2[1]		-5.71 c -427.000 kł
100 dBµV D1 95.4	20 dBµV				-427.000 KF
90 dBµV					
80 dBµV				- market	
70 dBµV				and the second s	
60 dBµV					
50 dBµV					
40 dBµV					
30 dBµV					
20 dBµV					
CF 2.4148 GHz		3000 p	ots		Span 3.0 MH
Marker					
Type Ref Trc	X-value 2.4146755 GHz	<u>Y-value</u> 101.42 dBµV	Function	Fun	ction Result
D2 M1 1	-427.0 kHz	-5.71 dB			
D3 M1 1	546.0 kHz	-6.33 dB			

6dB bandwidth - Low Channel 2414.8 MHz

Spectr	um											
Ref Le e Att	vel :		dBµ∨ 20 dB SWT	-	RBW 100 kHz VBW 300 kHz	Mo	o de Sw	еер				
😑 1Pk Ma	Х											
110 dBµ'	v—				5.4.1			1[1]				10.73 dBµV 42500 GHz -5.73 dB
100 dBµ'		1 04 7	30 dBµV	D7	M1 •			2[1] 			-29	-5.73 uB 93.000 kHz
90 dBµV		1 94.7		Ê				-				
80 dBµV									No.			
70 dBµV											and a second second	
60 dBµV	, 											and the second division of the second divisio
50 dBµV												
40 dBµV												
30 dBµV												
20 dBµV												
CF 2.43	CF 2.4364 GHz 3000 pts Span 3.0 MHz											
Marker												
	Ref		X-value		Y-value		Funct	tion		Fund	ction Result	
M1 D2	M1	1	2.43614	25 GHz 3.0 kHz	100.73 dBj -5.73							
D2 D3	M1 M1	1		3.0 KHZ 4.0 kHz	-6.04							

6dB bandwidth - Central Channel 2436.4 MHz

Spectr	um											
Ref Le e Att	evel	117.00 d 20	BµV)dB SWT	-	RBW 100 kHz VBW 300 kHz	Mo	de Sw	еер				
😑 1Pk Ma	ах											
110 dBµ	v-							1[1]				99.68 dBµV '29500 GHz
100 dBµ				M1			D:	2[1]	I		-	-5.58 dB 83.000 kHz
90 dBµV		1 93.680) dBµV	Ê				- T				
80 dBµV			- Lawrender						Mary Mary	we want		
70 dBµV	_	and the second second								And and a second se	The second se	
roto de Liv	<u> </u>											A STATE OF THE OWNER AND A STATE OF
50 dBµV												
40 dBµV	+											
30 dBµV												
20 dBµV												
CF 2.47	'32 G	Hz	•		3000) pts					Spa	n 3.0 MHz
Marker												
Туре	Ref		X-value		Y-value		Funct	tion		Fun	ction Result	
M1		1	2.47272		99.68 dB							
D2 D3	M1 M1	1		3.0 kHz 4.0 kHz	-5.58 (-6.22 (

6dB bandwidth - High Channel 2473.2 MHz

Limit:

Shall be at least 500 kHz

Spectrum							
Ref Level	117.00 d	Вµ∨ ●	RBW 30 kHz				
🖷 Att	20)dB SWT 3 ms	VBW 100 kHz 🛛 🛛	lode Sweep			
⊖1Pk Max							
110 dBµV			M1	M1[1]		101.39 dBµ¥ 2.414804500 GHz 856.000000000 kHz	
100 dBµV		T T T T		 ₩			
90 dBµV							
80 dBµV							
70 dBµV					Joseph Land Land Land Land Land Land Land Land		
60 dBµV	- and the second second				and the second second		
50 dBµV—							
40 dBµV							
30 dвµV							
20 dBµV—							
CF 2.4148 GHz 3000 pts Span 3.0 MHz							
Marker							
Type Ref		X-value	Y-value	Function	Func	tion Result	
M1	1	2.4148045 GHz	101.39 dBµV				
T1 T2	1	2.4143045 GHz 2.4151605 GHz	96.20 dBµV 95.88 dBµV	Occ Bw		856.0 kHz	

99% bandwidth - Low Channel 2414.8 MHz

Spectrum									
Ref Level	117.00 d		⊜ RBV	V 30 kHz					· · ·
🗕 Att	20)dB SWT 3 m	ns VB \	♥ 100 kHz	Mode Sw	еер			
😑 1Pk Max									
110 dBµV						1[1] cc Bw		2.4366	00.69 dBµ¥ 06500 GHz 00000 kHz
100 dBµV—			¥			₩ V			
90 dBµV						$\left \right $			
80 dBµV			/			\vdash			
70 dBµV						,	have a second and a		
60 dBµV		-						•	
50 dBµV	And the second s							and	man manage
40 dвµV——									
30 dBµV									
20 dвµV——									
CF 2.4364 (GHz			3000	pts	1		Spa	n 3.0 MHz
Marker					-				
Type Ref	Trc	X-value		Y-value	Func	tion	Fun	ction Result	
M1	1	2.4366065		100.69 dBµ					
T1 T2	1	2.4359025		95.07 dBµ 94.66 dBµ		cc Bw			856.0 kHz

99% bandwidth - Central Channel 2436.4 MHz

Spectrum									
Ref Level	117.00 dB	·μV	🔵 RBW	30 kHz					
🗕 Att	20	dB SWT 3 n	ns VBW	100 kHz	Mode Sw	еер			
😑 1Pk Max									
110 dBµV						1[1]	99.64 dBµ 2.472756500 GH		
100 dBµV						CC BW		853.0000	00000 kHz
90 dвµV			+						
80 dBµV			/						
70 dBµV						\ 	mon		
60 dBµV	and the second						The state of the s		
∿50° άβμΫ								and the second second	All and the second s
40 dBµV									
30 dBµV									
20 dBµV——									
CF 2.4732 (GHz	· · ·	I	3000	pts		•	Spa	n 3.0 MHz
Marker									
Type Ref	Trc	X-value		Y-value	Func	tion	Fund	tion Result	
M1	1	2.4727565		99.64 dBµ					
T1 T0	1	2.4727025		94.47 dBµ		cc Bw			853.0 kHz
T2	1	2.4735555	GHz	94.22 dBµ	V				

99% bandwidth - High Channel 2473.2 MHz

Measure realized for reporting only

9. BAND EDGE

Temperature (°C) : 23

Humidity (%HR): 58 to 57

Date : September 23, 2024 to September 24, 2024

Technician : B. VOVARD

Standard: FCC Part 15 RSS-247

Test procedure:

Method of paragraph 11.13.3 of ANSI C63.10

Test set up:

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power.

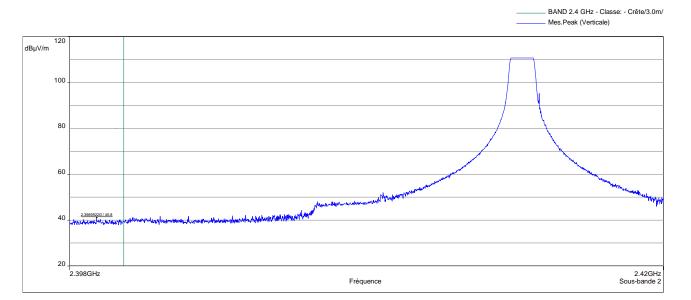
Test operating condition of the equipment:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

We used for power source the internal battery of the equipment and we noted:

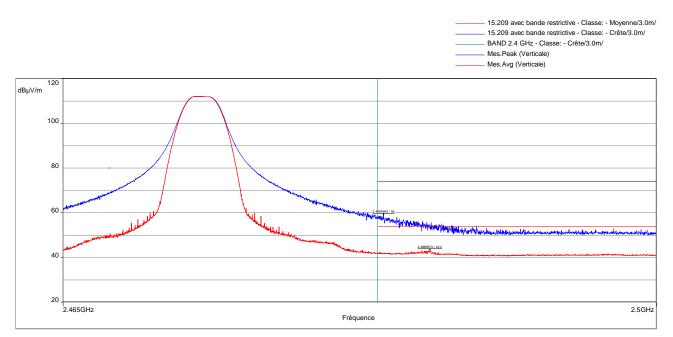
Voltage at the beginning of test (Vdc):	7.27
Voltage at the end of test (Vdc):	7.25
Percentage of voltage drop during the test (%):	0.27

Results:


Lower Band Edge: From 2398 MHz to 2400 MHz Upper Band Edge: From 2483.5 MHz to 2485.5 MHz

Results for LoRa 2A:

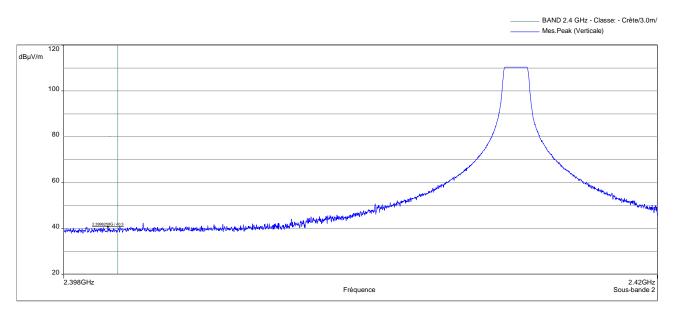
Fundamental frequency (MHz)	Field Strength Level of fundamental (dBµV/m)	Detector (Peak or Average)	RBW (kHz)	Frequency of maximum Band-edges Emission (MHz)	Delta Marker (dB) (1)	Calculated Max Out-of- Band Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2414.8	111	Peak	100	2398.99	70.2	40.8	91	50.2
2473.2	112	Peak	1000	2483.84	53	59	74	15
2473.2	112	Average	1000	2486.58	68.8	43.2	54	10.8


(1) Marker-Delta method

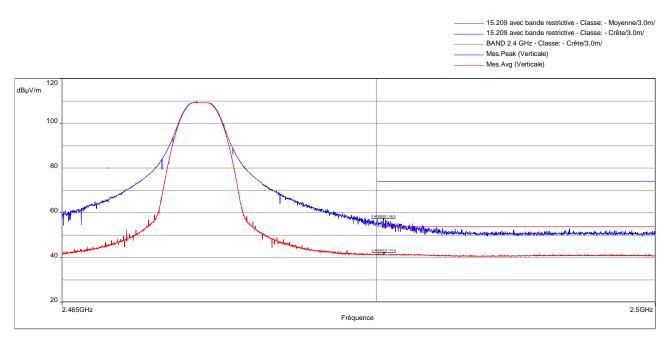
(2) The peak level is lower than the average limit (54 dB μ V/m)

Low Channel – LoRa Modulation: Band edge worst case measurement

High Channel - LoRa Modulation: Band edge worst case measurement



Results for LoRa 2B:


Fundamental frequency (MHz)	Field Strength Level of fundamental (dBµV/m)	Detector (Peak or Average)	RBW (kHz)	Frequency of maximum Band-edges Emission (MHz)	Delta Marker (dB) (1)	Calculated Max Out-of- Band Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2414.8	110	Peak	100	2399.62	69.7	40.3	90	49.7
2473.2	110	Peak	1000	2483.89	53.2	56.8	74	17.2
2473.2	110	Average	1000	2483.92	68.4	41.6	54	12.4

(1) Marker-Delta method

Low Channel – LoRa Modulation: Band edge worst case measurement

High Channel - LoRa Modulation: Band edge worst case measurement

Test conclusion:

RESPECTED STANDARD

10. PEAK CONDUCTED OUTPUT POWER

Temperature (°C) : 23

Humidity (%HR): 58 to 57

Date : September 23, 2024 and September 24, 2024

Technician : B. VOVARD

Standard: FCC Part 15 RSS-247

Test procedure:

For FCC Part 15: paragraph 15.247 (b) For RSS-247: paragraph 5.4

RBW≥DTS bandwidth method of paragraph 11.9.1.1 of ANSI C63.10

Test set up: (Refer Appendix 2)

First an exploratory radiated measurement was performed. During this phase the product is oriented in this normal position.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5 m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See test setup in appendix 2

Distance of antenna: 3 meters (in anechoic room)

Antenna height: 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

The measurement of the radiated electro-magnetic field is realized with an analyser and peak detector. The resolution bandwidth is adjusted at 10 MHz and video bandwidth at 10 MHz. (11.9.1.1 of ANSI C63.10)

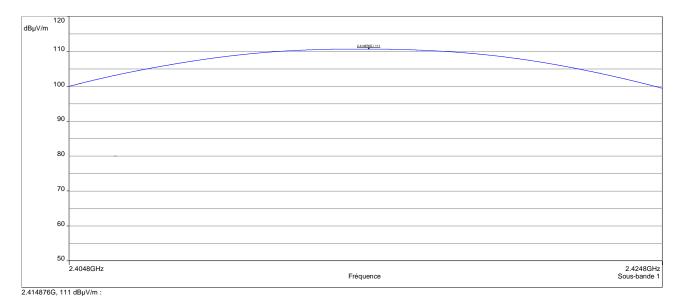
Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (Vdc):7.25Voltage at the end of test (Vdc):7.22Percentage of voltage drop during the test (%):0.41

Results for LoRa 2A:

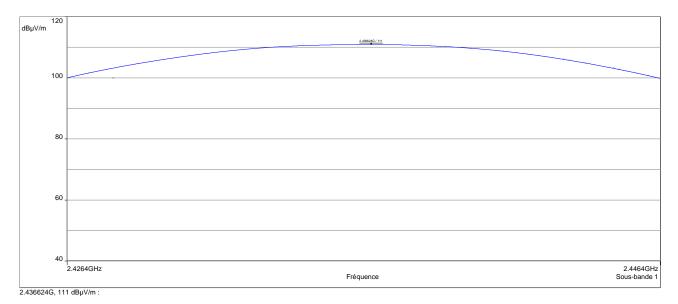

<u>Sample N° 1</u> Low Channel (F = 2414.8MHz)

	Electro- magnetic field	Maximum Pea output	ak conducted power	Limit
	(dBµV/m):	(dBm)	(W)	
Nominal supply voltage: 7.27 Vdc	111	5.59	0.003624	0.631

Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 99 degrees)

Maximum Peak conducted output power:

 $EIRP(dBm) = E (dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 10.15 dBi.

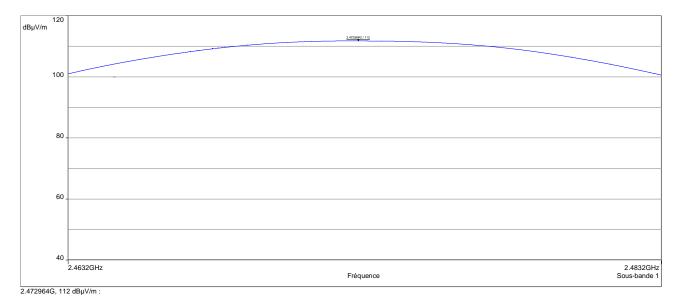

<u>Sample N° 1</u> Central Channel (F = 2436.4 MHz)

	Electro- magnetic field	Maximum Pea output		Limit
	(dBµV/m):	(dBm)	(W)	
Nominal supply voltage: 7.27 Vdc	111	4.91	0.003097	0.631

Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 95 degrees)

Maximum Peak conducted output power:

 $EIRP(dBm) = E(dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 10.83 dBi.


<u>Sample N° 1</u> High Channel (F = 2473.2 MHz)

	Electro- magnetic field	Maximum Pea output		Limit
	(dBµV/m):	(dBm)	(W)	
Nominal supply voltage: 7.27 Vdc	112	6.66	0.004634	0.631

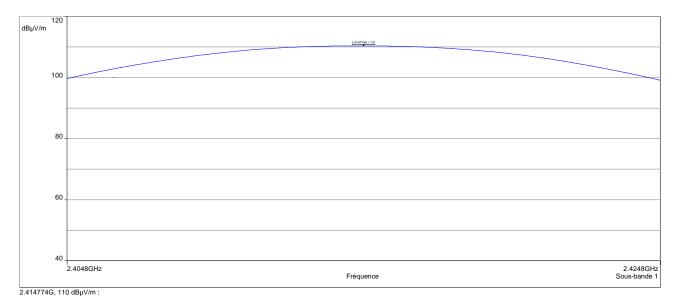
Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 97 degrees)

Maximum Peak conducted output power:

 $EIRP(dBm) = E(dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 10.08 dBi.

Results for LoRa 2B:

<u>Sample N° 1</u> Low Channel (F = 2414.8MHz)

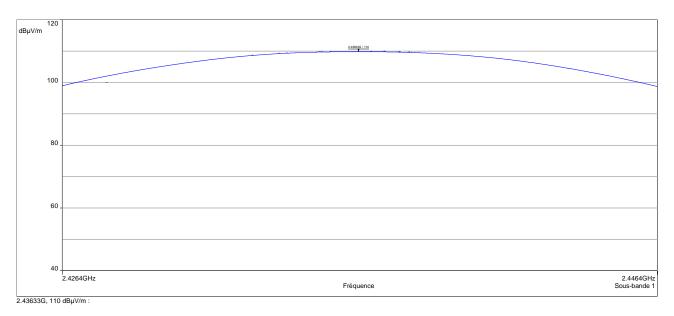

	Electro- magnetic field	Maximum Pea output		Limit
	(dBµV/m):	(dBm)	(W)	
Nominal supply voltage: 7.27 Vdc	110	6.61	0.004581	0.631

Polarization of test antenna: vertical (height: 150 cm)

Position of equipment: Position 1 - (azimuth: 234 degrees)

Maximum Peak conducted output power:

 $EIRP(dBm) = E(dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 8.13 dBi.

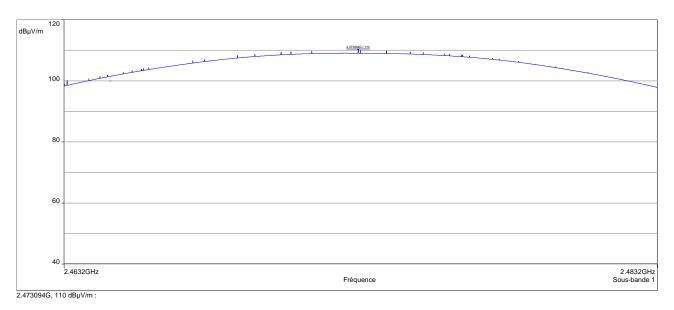

<u>Sample N° 1</u> Central Channel (F = 2436.4 MHz)

	Electro- magnetic field	Maximum Peak conducted output power		Limit
	(dBµV/m):	(dBm)	(W)	(W)
Nominal supply voltage: 7.27 Vdc	110	6.18	0.004150	0.631

Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 248 degrees)

Maximum Peak conducted output power:

 $EIRP(dBm) = E(dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 8.56 dBi.


<u>Sample N° 1</u> High Channel (F = 2473.2 MHz)

	Electro- magnetic field	Maximum Peak conducted output power		Limit
	(dBµV/m):	(dBm)	(W)	(W)
Nominal supply voltage: 7.27 Vdc	110	4.36	0.002729	0.631

Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 258 degrees)

Maximum Peak conducted output power:

 $EIRP(dBm) = E(dB\mu V/m) + 20log(D) - 104.8$; where D is the measurement distance in meters and antenna Gain = 10.38 dBi.

Test conclusion:

RESPECTED STANDARD

11. RADIATED SPURIOUS EMISSIONS

Temperature (°C) : 23

Humidity (%HR): 58 to 57

Date : September 23, 2024 and September 24, 2024

Technician : B. VOVARD

Standard: FCC Part 15 RSS-247

Test procedure:

For FCC Part 15: paragraph 15.205, paragraph 15.209, paragraph 15.247 (d) For RSS-247: paragraph 5.5

Emissions in non-restricted frequency bands method of paragraph 11.11 of ANSI C63.10 Emissions in restricted frequency bands method of paragraph 11.12 of ANSI C63.10

Test set up: (Refer Appendix 2)

First an exploratory radiated measurement was performed. During this phase the product is oriented in this normal position.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5 m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See test setup in appendix 2

Frequency range: From 9 kHz to 10th harmonic of the highest fundamental frequency (2473.2 MHz)

Detection mode: Quasi-peak (F < 1 GHz)

Peak / Average (F > 1 GHz)

Bandwidth: 200Hz (9 kHz < F < 150kHz) 9 kHz (150 kHz < F < 30MHz) 120 kHz (30 MHz < F < 1 GHz) 100 kHz / 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (Vdc):	7.25
Voltage at the end of test (Vdc):	7.22
Percentage of voltage drop during the test (%):	0.41

Results for LoRa 2A:

Frequencies (MHz)	Detector P QP Av	Antenna height (cm)	RBW (kHz)	Position	Polarization H: Horizontal V: Vertical	Field strength Measured at 3 m (dBµV/m)	Limits (dBµV/m)	Margin (dB)
4829.6 (2)	Р	250	1000	1	Н	46.4 (3)	74	27.6
7244.4	Р	126	100	1	V	39 (1)	92	53
9659.2	Р	247	100	1	V	38.1 (1)	92	53.9
12074 (2)	Р	150	1000	1	V	52.5 (3)	74	21.5
14488.8 (2)	Р	150	1000	1	V	53.7 (3)	74	20.3
16903.6	P	150	100	1	Н	47.6	92	44.4

Sample N° 1 Low Channel (F = 2414.8 MHz)

P= Peak, QP=Quasi-peak, Av=Average

(1) Noise Floor

(2) Restricted bands of operation in 15.205

(2) Restricted bands of operation as defined in Table 6 of RSS-Gen

(3) The peak level is lower than the average limit (54 dB μ V/m)

<u>Sample N° 1</u> Central Channel (F = 2436.4 MHz)

Frequencies	Detector	Antenna	RBW (kHz)	Position	Polarization	Field	Limits	Margin
(MHz)	Р	height			H: Horizontal	strength	(dBµV/m)	(dB)
	QP	(cm)			V: Vertical	Measured	or	
	Av					at 3 m	(dBm)	
						(dBµV/m)		
4872.8 (2)	Р	150	1000	1	V	46.7 (3)	74	27.3
7309.2 (2)	Р	165	1000	1	V	48.4 (3)	74	25.6
9745.6	Р	150	100	1	V	37.7 (1)	92	54.3
12182 (2)	Р	150	1000	1	V	52.4 (3)	74	21.6
14618.4	Р	150	100	1	V	46 (1)	92	46
17054.8	Р	150	100	1	Н	46 (1)	92	46

P= Peak, QP=Quasi-peak, Av=Average

(1) Noise Floor

(2) Restricted bands of operation in 15.205

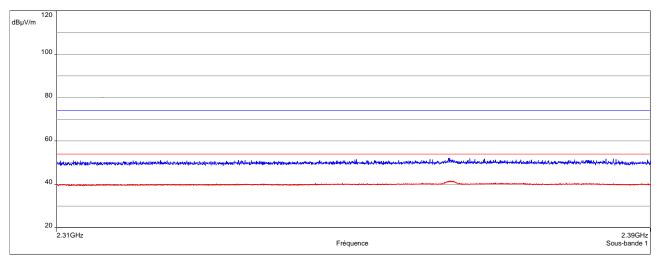
(2) Restricted bands of operation as defined in Table 6 of RSS-Gen

(3) The peak level is lower than the average limit (54 dB μ V/m)

Sample N° 1	High Channel (F =	2473.2 MHz)
-------------	-------------------	-------------

Frequencies	Detector	Antenna	RBW (kHz)	Position	Polarization	Field	Limits	Margin
(MHz)	Р	height			H: Horizontal	strength	(dBµV/m)	(dB)
	QP	(cm)			V: Vertical	Measured		. ,
	Av	. ,				at 3 m		
						(dBµV/m)		
4946.3 (2)	Р	250	1000	1	Н	46.7 (3)	74	27.3
7419.6 (2)	Р	150	1000	1	V	47.9 (3)	74	26.1
9892.8	Р	150	100	1	Н	39.2 (1)	92	52.8
12366 (2)	Р	150	1000	1	V	53.4 (3)	74	20.6
14839.2	Р	150	100	1	V	49.2	92	42.8
17312.4	Р	250	100	1	Н	46.5	92	45.5

P= Peak, QP=Quasi-peak, Av=Average


(1) Noise Floor

(2) Restricted bands of operation in 15.205
(2) Restricted bands of operation as defined in Table 6 of RSS-Gen
(3) The peak level is lower than the average limit (54 dBµV/m)

Band edge worst case measurement (band 2.31GHz to 2.39GHz)

15.209 avec bande restrictive - Classe: - Moyenne/3.0m/
15.209 avec bande restrictive - Classe Moyenne/5.00
15.209 avec bande restrictive - Classe: - Crête/3.0m/
Mes.Peak (Verticale)
Mes.Avg (Verticale)

Applicable limits: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 112 $dB\mu V/m$ on the lowest channel.

So the applicable limit is 92 dBµV/m.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

In addition, radiated emissions which fall in the restricted band, as defined in Table 6 of RSS-Gen, must also comply with the radiated emission limits specified in Table 4 and Table 5 of RSS-Gen.

Results for LoRa 2B:

Frequencies (MHz)	Detector P QP Av	Antenna height (cm)	RBW (kHz)	Position	Polarization H: Horizontal V: Vertical	Field strength Measured at 3 m (dBµV/m)	Limits (dBµV/m)	Margin (dB)
4829.6 (2)	Р	150	1000	1	V	46.9 (3)	74	27.1
7244.4	Р	150	100	1	Н	37.2 (1)	90	52.8
9659.2	Р	150	100	1	V	38.6	90	51.4
12074 (2)	Р	187	1000	1	Н	53 (3)	74	21
14488.8 (2)	Р	150	1000	1	Н	53.9 (3)	74	20.1
16903.6	P	150	100	1	V	47.1 (1)	90	42.9

Sample N° 1 Low Channel (F = 2414.8 MHz)

P= Peak, QP=Quasi-peak, Av=Average

(1) Noise Floor

(2) Restricted bands of operation in 15.205

(2) Restricted bands of operation as defined in Table 6 of RSS-Gen

(3) The peak level is lower than the average limit (54 dB μ V/m)

<u>Sample N° 1</u> Central Channel (F = 2436.4 MHz)

Frequencies	Detector	Antenna	RBW (kHz)	Position	Polarization	Field	Limits	Margin
(MHz)	Р	height			H: Horizontal	strength	(dBµV/m)	(dB)
	QP	(cm)			V: Vertical	Measured	or	
	Av					at 3 m	(dBm)	
						(dBµV/m)		
4872.8 (2)	Р	171	1000	1	V	47.5 (3)	74	26.5
7309.2 (2)	Р	150	1000	1	Н	47.9 (3)	74	26.1
9745.6	Р	100	100	1	V	37.5	90	52.5
12182 (2)	Р	100	1000	1	V	52.9 (3)	74	21.1
14618.4	Р	150	100	1	V	44.6 (1)	90	45.4
17054.8	Р	195	100	1	V	46.6	90	43.4

P= Peak, QP=Quasi-peak, Av=Average

(1) Noise Floor

(2) Restricted bands of operation in 15.205

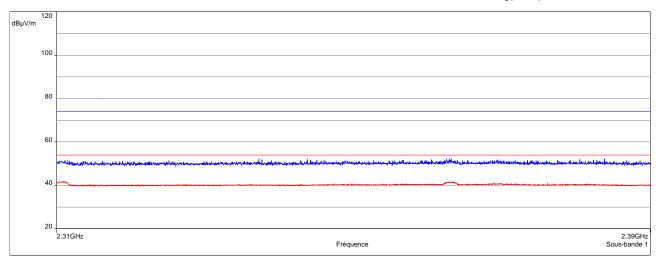
(2) Restricted bands of operation as defined in Table 6 of RSS-Gen

(3) The peak level is lower than the average limit (54 dB μ V/m)

Sample N° 1	High Channel (F = 2473.2 MHz)
-------------	-------------------------------

Frequencies	Detector	Antenna	RBW (kHz)	Position	Polarization	Field	Limits	Margin
(MHz)	Р	height	. ,		H: Horizontal	strength	(dBµV/m)	(dB)
	QP	(cm)			V: Vertical	Measured		. ,
	Av	. ,				at 3 m		
						(dBµV/m)		
4946.3 (2)	Р	150	1000	1	Н	46.2 (3)	74	27.8
7419.6 (2)	Р	150	1000	1	Н	47.6 (3)	74	26.4
9892.8	Р	150	100	1	Н	39.8	90	50.2
12366 (2)	Р	150	1000	1	V	53.6 (3)	74	20.4
14839.2	Р	150	100	1	Н	43.9 (1)	90	46.1
17312.4	Р	150	100	1	Н	47.9	90	42.1

P= Peak, QP=Quasi-peak, Av=Average


(1) Noise Floor

(2) Restricted bands of operation in 15.205
(2) Restricted bands of operation as defined in Table 6 of RSS-Gen
(3) The peak level is lower than the average limit (54 dBµV/m)

Band edge worst case measurement (band 2.31GHz to 2.39GHz)

15.209 avec bande restrictive - Classe: - Moyenne/3.0m/
15.209 avec bande restrictive - Classe: - Crête/3.0m/
Mes.Peak (Verticale)
Mes.Avg (Verticale)

Applicable limits: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 110 $dB\mu V/m$ on the lowest channel.

So the applicable limit is 90 dBµV/m.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

In addition, radiated emissions which fall in the restricted band, as defined in Table 6 of RSS-Gen, must also comply with the radiated emission limits specified in Table 4 and Table 5 of RSS-Gen.

Test conclusion:

RESPECTED STANDARD

12. PEAK CONDUCTED POWER SPECTRAL DENSITY

Temperature (°C) : 23

Humidity (%HR): 58 to 57

Date : September 23, 2024 and September 24, 2024

Technician : B. VOVARD

Standard: FCC Part 15 RSS-247

Test procedure:

For FCC Part 15: paragraph 15.247 (e), paragraph 15.247 (f) For RSS-247: paragraph 5.2 PKPSD (Peak PSD) method of paragraph 11.10.2 of ANSI C63.10

Test set up: (Refer Appendix 2)

First an exploratory radiated measurement was performed. During this phase the product is oriented in this normal position.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5 m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See test setup in appendix 2

Distance of antenna: 3 meters (in anechoic room)

Antenna height: 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

The measurement of the radiated electro-magnetic field is realized with an analyser.

10MHz
3kHz
10kHz
Peak
Auto
Auto
MaxHold

Then the peak marker function is used.

Finally the radiated electro-magnetic field is converted in dBm with the following formula: EIRP(dBm) = E (dB μ V/m) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 2 dBi.

Equipment under test operating condition:

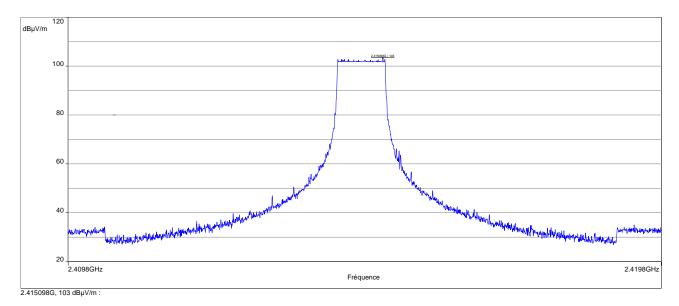
The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

We used for power source the internal battery of the equipment and we noted:

Voltage at the beginning of test (Vdc):	7.25
Voltage at the end of test (Vdc):	7.22
Percentage of voltage drop during the test (%):	0.41

Results for LoRa 2A:

<u>Sample N° 1</u> Low Channel (F = 2414.8MHz)


	Electro- magnetic field (dBµV/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage: 7.27 Vdc	103	-2.41	8

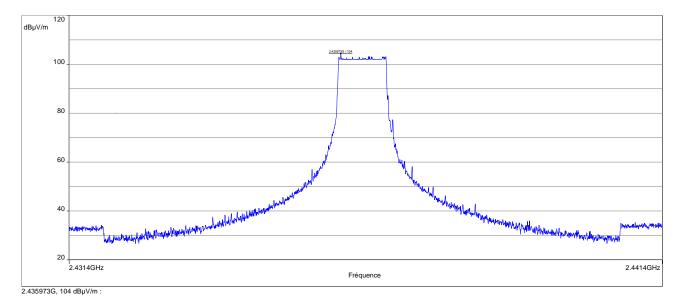
Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 99 degrees)

Maximum Peak conducted power density:

EIRP(dBm / 3 kHz) = E (dB μ V/m / 3 kHz) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 11.15 dBi.

Declared maximum antenna gain: 10.15 dBi

<u>Sample N° 1</u> Central Channel (F = 2436.4 MHz)


	Electro- magnetic field (dBµV/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage: 7.27 Vdc	104	-2.09	8

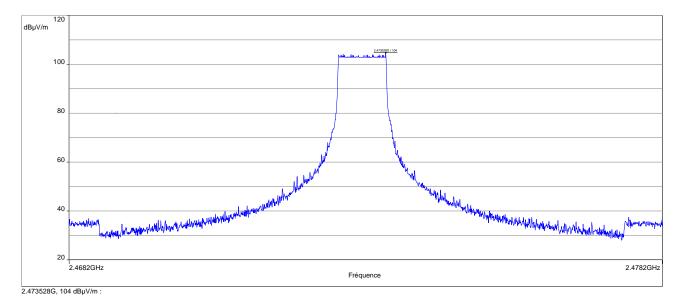
Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 95 degrees)

Maximum Peak conducted power density:

EIRP(dBm / 3 kHz) = E (dB μ V/m / 3 kHz) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 10.83 dBi.

Declared maximum antenna gain: 10.83 dBi

<u>Sample N° 1</u> High Channel (F = 2473.2 MHz)


	Electro- magnetic field (dBµV/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage: 7.27 Vdc	104	-1.34	8

Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 97 degrees)

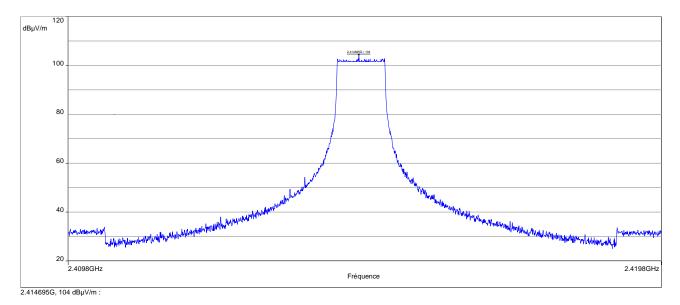
Maximum Peak conducted power density:

EIRP(dBm / 3 kHz) = E (dB μ V/m / 3 kHz) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 10.08 dBi.

Declared maximum antenna gain: 10.08 dBi

Results for LoRa 2B:

<u>Sample N° 1</u> Low Channel (F = 2414.8MHz)


	Electro- magnetic field (dBµV/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage: 7.27 Vdc	104	0.61	8

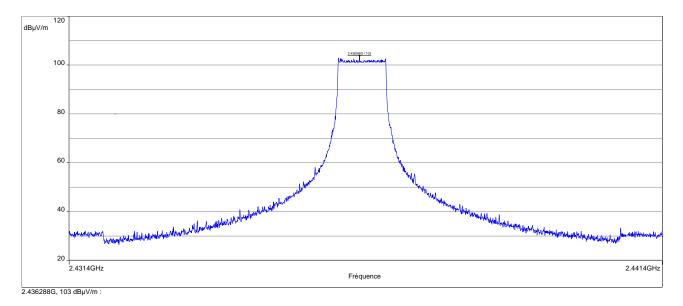
Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 234 degrees)

Maximum Peak conducted power density:

EIRP(dBm / 3 kHz) = E (dB μ V/m / 3 kHz) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 8.13 dBi.

Declared maximum antenna gain: 8.13 dBi

<u>Sample N° 1</u> Central Channel (F = 2436.4 MHz)


	Electro- magnetic field (dBµV/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage: 7.27 Vdc	103	-0.82	8

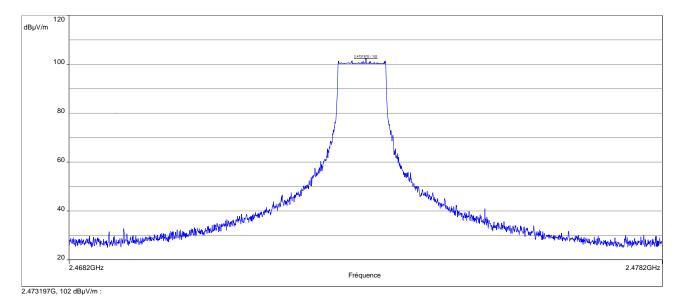
Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 248 degrees)

Maximum Peak conducted power density:

EIRP(dBm / 3 kHz) = E (dB μ V/m / 3 kHz) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 8.56 dBi.

Declared maximum antenna gain: 8.56 dBi

<u>Sample N° 1</u> High Channel (F = 2473.2 MHz)


	Electro- magnetic field (dBµV/m):	Maximum Peak conducted power density (dBm / 3 kHz)	Limit (dBm / 3 kHz)
Nominal supply voltage: 7.27 Vdc	102	-3.64	8

Polarization of test antenna: vertical (height: 150 cm) Position of equipment: Position 1 - (azimuth: 258 degrees)

Maximum Peak conducted power density:

EIRP(dBm / 3 kHz) = E (dB μ V/m / 3 kHz) + 20log(D) - 104.8; where D is the measurement distance in meters and antenna Gain = 10.38 dBi.

Declared maximum antenna gain: 10.38 dBi

Test conclusion:

RESPECTED STANDARD

□□□ End of report, 2 appendixes to be forwarded □□□

APPENDIX 1: Test equipment list

Occupied bandwidth

ТҮРЕ	MANUFACTURER	EMITECH NUMBER
Full anechoic chamber	EMITECH	10759
Turntable and mat controller NCD	MATURO	10789
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Antenna 3117	ETS-Lindgren	10771
Attenuator 10dB	Midwest Microwave	8548
N-1M Cable	SUCOFLEX	9399
N-2M Cable	SUCOFLEX	14303
N-5M Cable	HYTEM	19246
N-2.5M Cable	HYTEM	19249
Multimeter 177	Fluke	14903
Meteo station 608-H1	Testo	7566
Software	RS Commander V2.4.2	

Band edge

ТҮРЕ	MANUFACTURER	EMITECH NUMBER
Full anechoic chamber	EMITECH	10759
Turntable and mat controller NCD	MATURO	10789
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Antenna 3117	ETS-Lindgren	10771
Attenuator 10dB	Midwest Microwave	8548
N-1M Cable	SUCOFLEX	9399
N-2M Cable	SUCOFLEX	14303
N-5M Cable	HYTEM	19246
N-2.5M Cable	HYTEM	19249
Multimeter 177	Fluke	14903
Meteo station 608-H1	Testo	7566
Software	BAT-EMC V3.18.0.26	0000

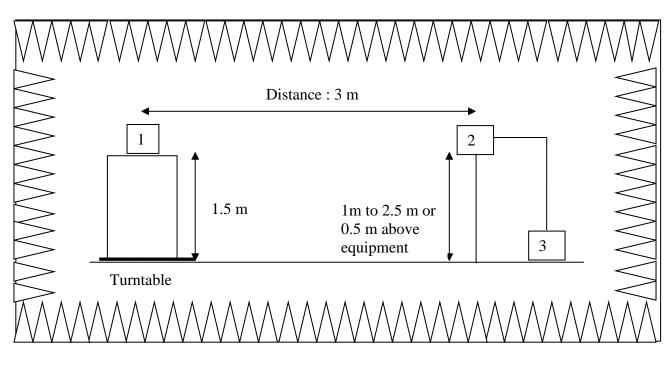
Peak conducted output power

ТҮРЕ	MANUFACTURER	EMITECH NUMBER
Full anechoic chamber	EMITECH	10759
Turntable and mat controller NCD	MATURO	10789
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Antenna 3117	ETS-Lindgren	10771
Low-noise amplifier S005180M3201	LUCIX Corp.	12590
Attenuator 10dB	Midwest Microwave	8548
N-1M Cable	SUCOFLEX	9399
N-2M Cable	SUCOFLEX	14303
N-5M Cable	HYTEM	19246
N-2.5M Cable	HYTEM	19249
Multimeter 177	Fluke	14903
Meteo station 608-H1	Testo	7566
Software	BAT-EMC V3.18.0.26	0000

Radiated spurious emissions

ТҮРЕ	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Turntable and mat controller	EMITECH	8855
Full anechoic chamber	EMITECH	10759
Turntable and mat controller NCD	MATURO	10789
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		
Test receiver ESW44	Rohde & Schwarz	17008
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Loop antenna 6502	EMCO	1406
Biconical antenna VHA 9103	Schwarzbeck	8528
Biconical antenna 3110	Emco	7240
Log periodic antenna HL223	Rohde & Schwarz	7171
Log periodic antenna HL223	Rohde & Schwarz	7190
Antenna 3117	ETS-Lindgren	10771
Antenna SAS-572	A.H Systems	7124
Low-noise amplifier ASC805C	ASC	19274
Low-noise amplifier S005180M3201	LUCIX Corp.	12590
Low-noise amplifier BLNA317202120S	QOTANA	19154
Attenuator 6dB	Radiall	19266
Attenuator 6dB	Radiall	19267
N-1.5M Cable	SUCOFLEX	7279
N-1.5M Cable	EMITECH	8813
N-1.5M Cable	GYL	8785
N-1M Cable	SUCOFLEX	9399
N-2M Cable	SUCOFLEX	14303
N-5M Cable	HYTEM	19246
N-2.5M Cable	HYTEM	19249
Cable k-20cm	STORM MICROWAE	8974
Cable k-100cm	MecHANC	18418
Low pass filter LP03/1000-7GH	Filtek	4087
Reject band filter BRM50702	Microtronics	7299
High pass filter HPF180400	C&C	16109
Meteo station 608-H1	Testo	7566
Multimeter 177	Fluke	14903
Software	BAT-EMC V3.18.0.26	0000
Software	Champ libre Juigné. V3.5	8864

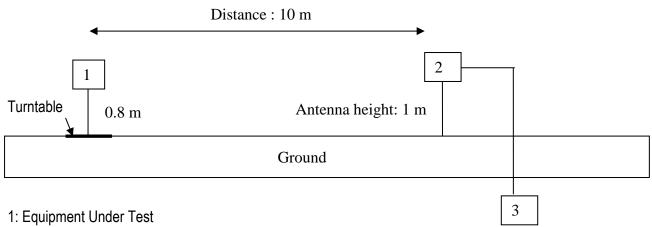
Peak conducted power spectral density


ТҮРЕ	MANUFACTURER	EMITECH NUMBER
Full anechoic chamber	EMITECH	10759
Turntable and mat controller NCD	MATURO	10789
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSV40	Rohde & Schwarz	15666
Antenna 3117	ETS-Lindgren	10771
Attenuator 10dB	Midwest Microwave	8548
N-1M Cable	SUCOFLEX	9399
N-2M Cable	SUCOFLEX	14303
N-5M Cable	HYTEM	19246
N-2.5M Cable	HYTEM	19249
Multimeter 177	Fluke	14903
Meteo station 608-H1	Testo	7566
Software	BAT-EMC V3.18.0.26	0000

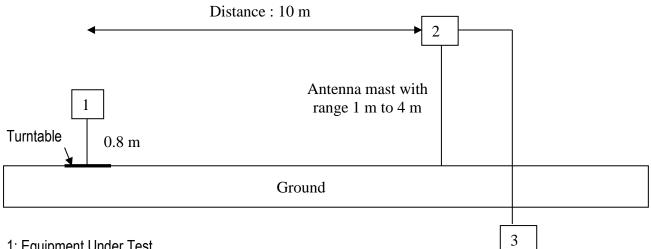
APPENDIX 2: Radiated Test Setup

Anechoic chamber setup

Above 1 GHz


1: Equipment Under Test 2: Measurement antenna

3: Measurement equipment


Open area setup

Below 30 MHz

- 2: Measurement antenna
- 3: Measurement equipment

Between 30 MHz and 1 GHz

- 1: Equipment Under Test
- 2: Measurement antenna
- 3: Measurement equipment