

FCC Part 15C Test Report FCC ID: 2ADBH-Q5

Product Name:	360 degree rotating tablet keyboard			
Trademark:	N/A			
Model Name :	Q5-7			
Prepared For :	ShenZhen DeFengYuan Technology Co.,Ltd			
Address :	Building B, 9Floor, Heng Shou Science Park, Gongming Street, Guangmin New District, ShenZhen, China			
Prepared By :	Shenzhen BCTC Testing Co., Ltd.			
Address :	BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China			
Test Date:	Dec. 03, 2019 – Dec. 06, 2019			
Date of Report :	Dec. 06, 2019			
Report No.:	BCTC1912000272E			

TEST RESULT CERTIFICATION

Applicant's name:	ShenZhen DeFengYuan Technology Co.,Ltd				
Address:	Building B, 9Floor, Heng Shou Science Park, Gongming				
	Street, Guangmin New District, ShenZhen, China				
Manufacture's Name:	ShenZhen DeFengYuan Technology Co.,Ltd				
Address:	Building B, 9Floor, Heng Shou Science Park, Gongming				
	Street, Guangmin New District, ShenZhen, China				
Product description					
Product name:	360 degree rotating tablet keyboard				
Trademark:					
Model and/or type reference	Q5-7				
Standards:	FCC Part15.247 ANSI C63.10:2013				

This device described above has been tested by BCTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BCTC, this document may be altered or revised by BCTC, personal only, and shall be noted in the revision of the document.

Prepared by(Engineer):	Cai Fangzhong	Cai Fang Zhong
Reviewer(Supervisor):	Eric Yang	tric form
Approved(Manager):	Zero Zhou	BCTC APPROVED
		BCTC TESTING CE

Table of Contents

Test I	Report Declaration F	Page
1.	TEST SUMMARY	5
2.	TEST FACILITY	6
3.	MEASUREMENT UNCERTAINTY	6
4.	GENERAL INFORMATION	
4.1	GENERAL DESCRIPTION OF EUT	
4.2	Test Setup Configuration	7
4.3	Support Equipment	
4.4	Channel List	9
4.5	Test Mode	10
5.	TEST FACILITY AND TEST INSTRUMENT USED	11
5.1	Test Facility	11
5.2	Test Instrument Used	11
6.	CONDUCTED EMISSIONS	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test procedure	13
6.4	Test Result	
7.	RADIATED EMISSIONS	
7.1	Block Diagram Of Test Setup	17
7.2	Limit	18
7.3	Test procedure	
7.4	Test Result	
7.5	RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BAND	-
8.		
8.1	Block Diagram Of Test Setup	
8.2		
8.3		
8.4		
9.	20 DB BANDWIDTH	
9.1	Block Diagram Of Test Setup	
9.2		
9.3		
9.4		
10.		
10.1	3 1 	
10.2 10.3		
10.3		
10.4 11.	HOPPING CHANNEL SEPARATION	
11.1		
11.1	Dioux Diagram Or rest delup	

Shenzhen BCTC Testing Co., Ltd.

11.2	Limit
11.3	Test procedure
11.4	Test Result
12.	NUMBER OF HOPPING FREQUENCY
12.1	Block Diagram Of Test Setup40
12.2	Limit
12.3	Test procedure
12.4	Test Result
13.	DWELL TIME
13.1	Block Diagram Of Test Setup42
100	
13.2	Limit
	Limit
13.3	
13.3 13.4	Test procedure
13.3 13.4 14.	Test procedure 42 Test Result 43

(Note: N/A means not applicable)

1. TEST SUMMARY

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C							
Standard Section	Test Item	Remark					
15.205(a) 15.209 15.247(d)	Radiated Spurious Emissions	PASS					
15.247(d)	Conducted Spurious emissions	PASS					
15.247(d) 15.205(a)	Band edge	PASS					
15.207	Conducted Emission	PASS					
15.247(a)	20dB Bandwidth	PASS					
15.247(b)	Maximum Peak Output Power	PASS					
15.247(a)	Frequency Separation	PASS					
15.247(a)	Number of Hopping Frequency	PASS					
15.247(a)	Dwell time	PASS					
15.203							
Note: (1)" N/A	" denotes test is not applicable in this Te	est Report					

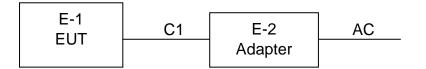
2. TEST FACILITY

Shenzhen BCTC Testing Co., Ltd. Add. : BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China Test Firm Registration Number: 712850 IC Registered No.: 23583

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\,$ k=2 , providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
3	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
4	Conducted Adjacent channel power	U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59°C


4. GENERAL INFORMATION

4.1 GENERAL DESCRIPTION OF EUT

Equipment	360 degree rotating tablet keyboard				
Trade Name	N/A				
Model Name	Q5-7				
Model Difference	N/A				
	The EUT is a 360 degree	ee rotating tablet keyboard			
	Operation Frequency:	2402-2480 MHz			
	Modulation Type:	GFSK			
	Number Of Channel	79CH			
Product Description	Antenna Designation:	PCB antenna			
	Antenna Gain 2.78dBi				
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.				
Channel List	Please refer to the Note 2.				
Ratings	DC 3.7V				
Connecting I/O Port(s)	Please refer to the User's Manual				
Hardware Version:	N/A				
Software Version:	N/A				

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual Conducted Emission Test

Radiated Spurious Emission Test

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Data Cable
E-1	360 degree rotating tablet keyboard	N/A	Q5-7	N/A	EUT
E-2	Adapter	N/A	BCTC005	N/A	Auxiliary

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.5M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

The EUT is Continue Transmitting.

The software is installed in operation system, named "RFTestTool.apk", Version 1.0.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting (conducted emission and Radiated emission)					

5. TEST FACILITY AND TEST INSTRUMENT USED

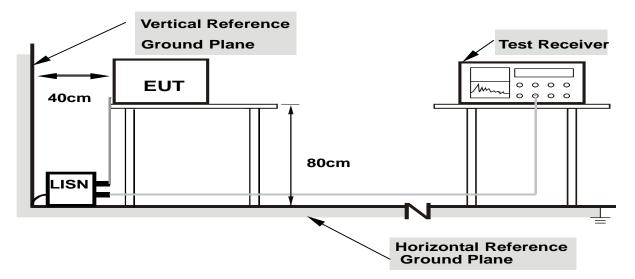
5.1 Test Facility

All measurement facilities used to collect the measurement data are located at BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Item	Equipment	Manufacturer		Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4407B	MY45109572	Jun. 13, 2019	Jun. 12, 2020
2	Test Receiver (9kHz-7GHz)	R&S	ESR7	101154	Jun. 13, 2019	Jun. 12, 2020
3	Bilog Antenna (30MHz-3GHz)	SCHWARZBE CK	VULB9163	VULB9163-94 2	Jun. 22, 2019	Jun. 21, 2020
4	Horn Antenna (1GHz-18GHz)	SCHWARZBE CK	BBHA9120D	1541	Jun. 22, 2019	Jun. 21, 2020
5	Horn Antenna (18GHz-40GHz)	SCHWARZBE CK	BBHA9170	822	Jun. 22, 2019	Jun. 21, 2020
6	Amplifier (9KHz-6GHz)	SCHWARZBE CK	BBV9744	9744-0037	Jun. 25, 2019	Jun. 24, 2020
7	Amplifier (0.5GHz-18GHz)	SCHWARZBE CK	BBV9718	9718-309	Jun. 25, 2019	Jun. 24, 2020
8	Amplifier (18GHz-40GHz)	MITEQ	TTA1840-35- HG	2034381	Jun. 17, 2019	Jun. 16, 2020
9	Loop Antenna (9KHz-30MHz)	SCHWARZBE CK	FMZB1519B	014	Jul. 02, 2019	Jul. 01, 2020
10	RF cables1 (9kHz-30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-000 8	Jun. 25, 2019	Jun. 24, 2020
11	RF cables2 (30MHz-1GHz)	Huber+Suhnar	30MHz-1GHz	1486150	Jun. 25, 2019	Jun. 24, 2020
12	RF cables3 (1GHz-40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	Jun. 25, 2019	Jun. 24, 2020
13	Power Metter	Keysight	E4419B	١	Jun. 17, 2019	Jun. 16, 2020
14	Power Sensor (AV)	Keysight	E9 300A	١	Jun. 17, 2019	Jun. 16, 2020
15	Spectrum Analyzer 20kHz-26.5GHz	KEYSIGHT	N9020A	MY49100060	Jun. 13, 2019	Jun. 12, 2020
16	Spectrum Analyzer 9kHz-40GHz	Aglient	FSP40	100363	Jun. 13, 2019	Jun. 12, 2020
17	D.C. Power Supply	LongWei	TPR-6405D	١	\	\
18	Software	Frad	EZ-EMC	FA-03A2 RE	/	\

RF conduction and RadiationTest equipment


Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Test Receiver	R&S	ESR3	102075	Jun. 13, 2019	Jun. 12, 2020
2	LISN	SCHWARZBE CK	NSLK8127	8127739	Jun. 13, 2019	Jun. 12, 2020
3	LISN	R&S	ENV216	101375	Jun. 13, 2019	Jun. 12, 2020
4	RF cables	Huber+Suhnar	9kHz-30MHz	B1702988-00 08	Jun. 25, 2019	Jun. 24, 2020
5	Software	Frad	EZ-EMC	EMC-CON 3A1	\	١

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

6.2 Limit

FREQUENCY (MHz)	Limit (Standard	
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

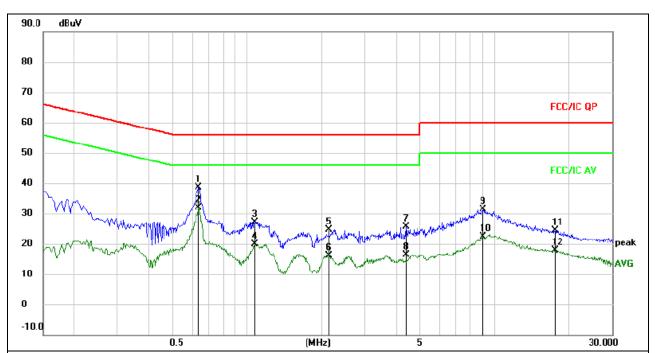
6.3 Test procedure

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.


d. LISN at least 80 cm from nearest part of EUT chassis.

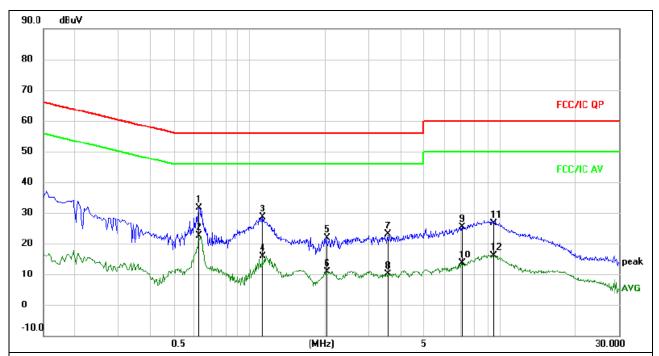
e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

6.4 Test Result

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 2

Remark:

1. All readings are Quasi-Peak and Average values.

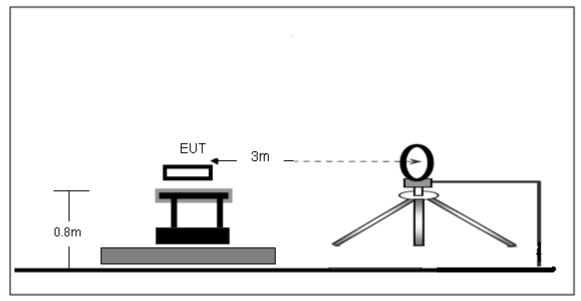

2. Factor <u>= Insertion Loss + Cable Loss</u>.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV		dBuV	dBuV	dB	Detector	Comment
1	0.6380	28.69	9.87	38.56	56.00	-17.44	QP	
2 *	0.6380	22.03	9.87	31.90	46.00	-14.10	AVG	
3	1.0740	17.68	9.57	27.25	56.00	-28.75	QP	
4	1.0740	10.28	9.57	19.85	46.00	-26.15	AVG	
5	2.1540	15.11	9.60	24.71	56.00	-31.29	QP	
6	2.1540	6.58	9.60	16.18	46.00	-29.82	AVG	
7	4.4140	15.80	9.76	25.56	56.00	-30.44	QP	
8	4.4140	6.52	9.76	16.28	46.00	-29.72	AVG	
9	8.9660	21.72	9.70	31.42	60.00	-28.58	QP	
10	8.9660	12.70	9.70	22.40	50.00	-27.60	AVG	
11	17.7099	14.61	9.75	24.36	60.00	-35.64	QP	
12	17.7099	8.25	9.75	18.00	50.00	-32.00	AVG	

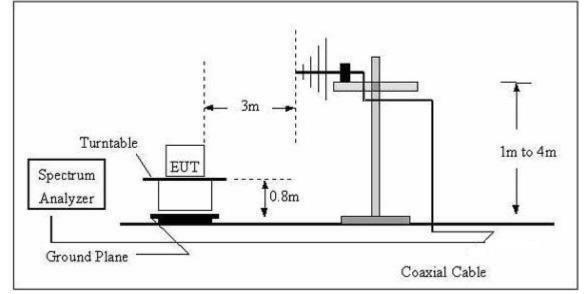
Report No.: BCTC1912000272E

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 2

Remark:

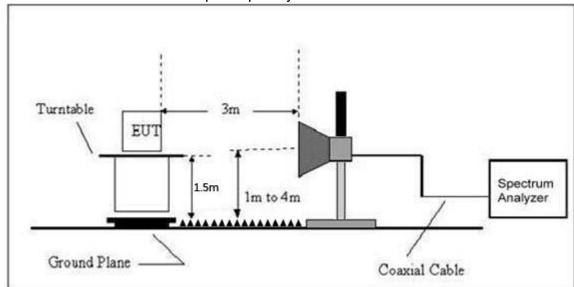

^{1.} All readings are Quasi-Peak and Average values.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV		dBuV	dBuV	dB	Detector	Comment
1	0.6300	21.70	9.89	31.59	56.00	-24.41	QP	
2 *	0.6300	12.62	9.89	22.51	46.00	-23.49	AVG	
3	1.1300	19.10	9.57	28.67	56.00	-27.33	QP	
4	1.1300	6.35	9.57	15.92	46.00	-30.08	AVG	
5	2.0420	12.32	9.59	21.91	56.00	-34.09	QP	
6	2.0420	1.30	9.59	10.89	46.00	-35.11	AVG	
7	3.5820	13.33	9.70	23.03	56.00	-32.97	QP	
8	3.5820	0.46	9.70	10.16	46.00	-35.84	AVG	
9	7.0260	15.74	9.72	25.46	60.00	-34.54	QP	
10	7.0260	3.90	9.72	13.62	50.00	-36.38	AVG	
11	9.4700	16.98	9.70	26.68	60.00	-33.32	QP	
12	9.4700	6.32	9.70	16.02	50.00	-33.98	AVG	



7. RADIATED EMISSIONS

- 7.1 Block Diagram Of Test Setup
 - (A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Shenzhen BCTC Testing Co., Ltd.

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 Test Result

Between 9KHz – 30MHz

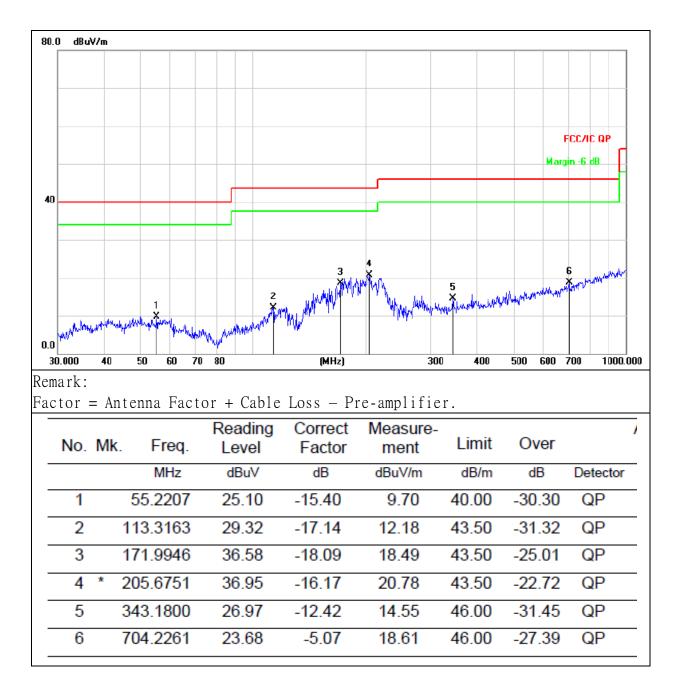
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 2	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

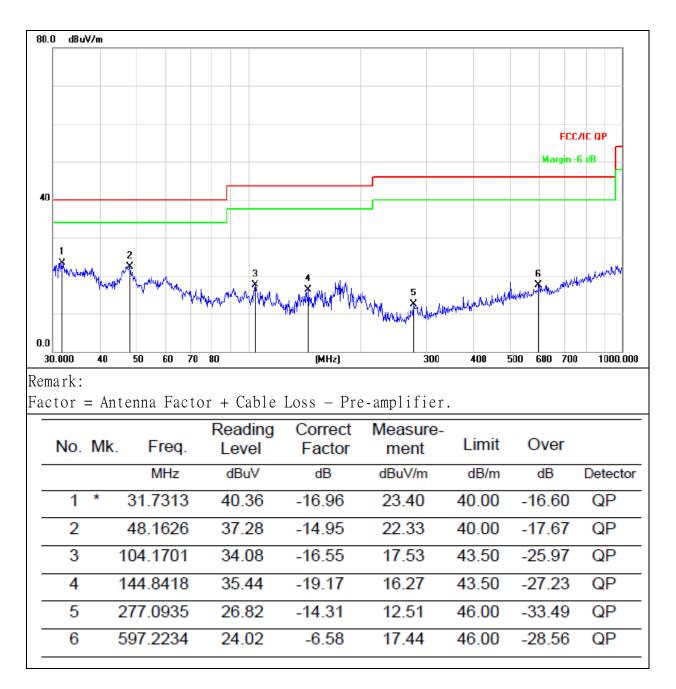
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


Limit line = specific limits(dBuv) + distance extrapolation factor.

Test all the modes and only worst case was reported.


Between	30MHz -	- 1GHz
----------------	---------	--------

Temperature:	26 ℃	Relative Humidtity:	54%
Pressure:	101kPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 2	Polarization :	Horizontal

Temperature:	26 ℃	Relative Humidtity:	54%		
Pressure:	101kPa	Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 2	Polarization :	Vertical		

Remark:

Test all the modes and only worst case was reported.

Shenzhen BCTC Testing Co., Ltd.

	Between 1-25GHz											
Polar (H/V)	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector			
	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре			
	GFSK Low Channel:2402MHz											
V	4804.00	50.22	39.55	7.77	25.66	44.10	74.00	-29.90	Pk			
V	4804.00	43.14	39.55	7.77	25.66	37.02	54.00	-16.98	AV			
V	7206.00	51.25	38.33	7.3	24.55	44.77	74.00	-29.23	Pk			
V	7206.00	43.16	38.33	7.3	24.55	36.68	54.00	-17.32	AV			
V	15453.36	50.91	35.23	6.6	26.59	48.87	74.00	-25.13	Pk			
Н	4804.00	50.10	39.55	7.77	25.66	43.98	74.00	-30.02	Pk			
Н	4804.00	43.88	39.55	7.77	25.66	37.76	54.00	-16.24	AV			
Н	7206.00	54.45	38.33	7.3	23.55	46.97	74.00	-27.03	Pk			
Н	7206.00	43.32	38.33	7.3	23.22	35.51	54.00	-18.49	AV			
Н	15450.09	50.73	35.45	6.6	27.88	49.76	74.00	-24.24	Pk			

Botwoon 1-25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector			
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре			
	GFSK Middle Channel:2441MHz											
V	4882.00	54.16	38.89	7.57	25.45	48.29	74.00	-25.71	Pk			
V	4882.00	43.22	38.89	7.57	25.45	37.35	54.00	-16.65	AV			
V	7323.00	51.56	38.78	7.35	24.78	44.91	74.00	-29.09	Pk			
V	7323.00	43.60	38.78	7.35	24.78	36.95	54.00	-17.05	AV			
V	15454.70	52.16	35.89	6.42	26.47	49.16	74.00	-24.84	Pk			
Н	4882.00	50.00	38.89	7.57	25.45	44.13	74.00	-29.87	Pk			
Н	4882.00	43.15	38.89	7.57	25.45	37.28	54.00	-16.72	AV			
Н	7323.00	52.61	38.78	7.35	24.78	45.96	74.00	-28.04	Pk			
Н	7323.00	43.63	38.78	7.35	24.78	36.98	54.00	-17.02	AV			
Н	15453.96	53.02	36.68	6.42	26.65	49.41	74.00	-24.59	Pk			

	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detecto
	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	r Type
			GFS	SK High (Channel:248	30MHz			
V	4960.00	52.93	38.75	7.38	25.45	47.01	74.00	-26.99	Pk
V	4960.00	43.78	38.75	7.38	25.45	37.86	54.00	-16.14	AV
V	7440.00	53.36	38.65	7.15	24.78	46.64	74.00	-27.36	Pk
V	7440.00	43.19	38.65	7.15	24.78	36.47	54.00	-17.53	AV
V	15457.71	53.08	35.58	6.25	26.47	50.22	74.00	-23.78	Pk
Н	4960.00	54.25	38.75	7.38	25.45	48.33	74.00	-25.67	Pk
Н	4960.00	43.15	38.75	7.38	25.45	37.23	54.00	-16.77	AV
Н	7440.00	54.15	38.65	7.15	24.78	47.43	74.00	-26.57	Pk
Н	7440.00	43.99	38.65	7.15	24.78	37.27	54.00	-16.73	AV
Н	15457.01	50.14	36.42	6.25	26.65	46.62	74.00	-27.38	Pk

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

7.5 RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BANDS OF OPERATION

Test Requirement:

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	2300MHz					
Stop Frequency	2520					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average					

TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:

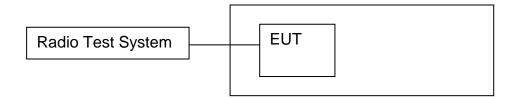
Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported

TEST RESULT

Polar (H/V)	Frequency (MHz)	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission evel (dBuV/m)			Result	
		(ubuv)	(UD)	(UB)	(ab/m)	PK	□PK	AV		
Low Channel 2402MHz										
Н	2390.00	61.55	38.06	7.42	20.15	51.06	74.00	54.00	PASS	
Н	2400.00	54.54	38.06	7.42	20.15	44.05	74.00	54.00	PASS	
V	2390.00	63.32	38.06	7.42	20.15	52.83	74.00	54.00	PASS	
V	2400.00	54.82	38.06	7.42	20.15	44.33	74.00	54.00	PASS	
High Channel 2480MHz										
Η	2483.50	61.98	38.17	7.45	20.54	51.80	74.00	54.00	PASS	
Н	2485.50	54.20	38.17	7.45	20.54	44.02	74.00	54.00	PASS	
V	2483.50	60.53	38.2	7.45	20.54	50.32	74.00	54.00	PASS	
V	2485.50	51.17	38.2	7.45	20.54	40.96	74.00	54.00	PASS	
	(H/V) H H V V V H H H V	(H/V) (MHz) H 2390.00 H 2400.00 V 2390.00 V 2390.00 V 2400.00 H 2400.00 V 2400.00 H 2483.50 H 2485.50 V 2483.50	Polar (H/V) Frequency (MHz) Reading (dBuV) H 2390.00 61.55 H 2400.00 54.54 V 2390.00 63.32 V 2400.00 54.82 H 2483.50 61.98 H 2483.50 61.98 H 2483.50 60.53	Polar (H/V) Frequency (MHz) Reading (dBuV) amplifier (dB) H 2390.00 61.55 38.06 H 2400.00 54.54 38.06 V 2390.00 63.32 38.06 V 2390.00 63.32 38.06 V 2400.00 54.82 38.06 V 2400.00 54.82 38.06 H 2483.50 61.98 38.17 H 2483.50 54.20 38.17 V 2483.50 60.53 38.2	Polar (H/V) Frequency (MHz) Reading (dBuV) amplifier (dB) Loss (dB) H 2390.00 61.55 38.06 7.42 H 2390.00 61.55 38.06 7.42 H 2400.00 54.54 38.06 7.42 V 2390.00 63.32 38.06 7.42 V 2400.00 54.82 38.06 7.42 V 2400.00 54.82 38.06 7.42 H 2483.50 61.98 38.17 7.45 H 2483.50 54.20 38.17 7.45 V 2483.50 60.53 38.2 7.45	Polar (H/V) Frequency (MHz) Reading (dBuV) amplifier (dB) Loss (dB) Factor (dB) H 2390.00 61.55 38.06 7.42 20.15 H 2400.00 54.54 38.06 7.42 20.15 V 2390.00 63.32 38.06 7.42 20.15 V 2390.00 63.32 38.06 7.42 20.15 V 2400.00 54.82 38.06 7.42 20.15 V 2400.00 54.82 38.06 7.42 20.15 H 2483.50 61.98 38.17 7.45 20.54 H 2483.50 54.20 38.17 7.45 20.54 V 2483.50 60.53 38.2 7.45 20.54	Polar (H/V) Frequency (MHz) Meter Reading (dBuV) Pre- amplifier (dB) Cable Loss Antenna Factor (dB) evel (dBuV/m) H 2390.00 61.55 38.06 7.42 20.15 51.06 H 2390.00 61.55 38.06 7.42 20.15 51.06 H 2400.00 54.54 38.06 7.42 20.15 52.83 V 2390.00 63.32 38.06 7.42 20.15 52.83 V 2400.00 54.82 38.06 7.42 20.15 44.33 V 2400.00 54.82 38.06 7.42 20.15 44.33 H 2483.50 61.98 38.17 7.45 20.54 51.80 H 2483.50 54.20 38.17 7.45 20.54 44.02 V 2483.50 60.53 38.2 7.45 20.54 50.32	Polar (H/V) Frequency (MHz) Meter Reading (dBuV) Pre- amplifier (dB) Cable Loss (dB) Antenna (dB,m) evel (dBuV,m) Lin (dBuV,m) H 2390.00 61.55 38.06 7.42 20.15 51.06 74.00 H 2390.00 61.55 38.06 7.42 20.15 51.06 74.00 H 2400.00 54.54 38.06 7.42 20.15 52.83 74.00 V 2390.00 63.32 38.06 7.42 20.15 52.83 74.00 V 2400.00 54.82 38.06 7.42 20.15 44.33 74.00 V 2400.00 54.82 38.06 7.42 20.15 44.33 74.00 V 2400.00 54.82 38.17 7.45 20.54 51.80 74.00 H 2483.50 61.98 38.17 7.45 20.54 44.02 74.00 H 2483.50 60.53 38.2 7.45 20.54 50.32<		

Remark:


1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

 If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

8. CONDUCTED EMISSION

8.1 Block Diagram Of Test Setup

8.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

8.3 Test procedure

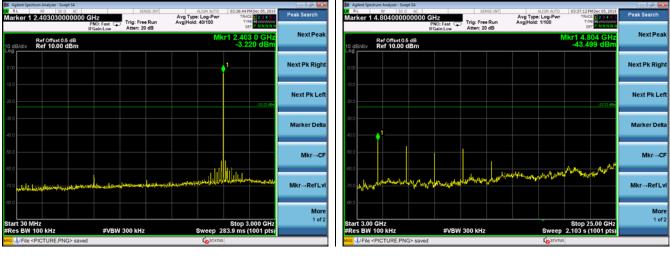
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer:

Blow 30MHz:

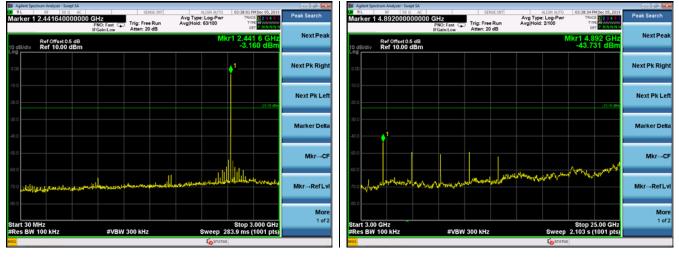
RBW = 100kHz, VBW = 300kHz, Sweep = auto

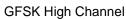
Detector function = peak, Trace = max hold

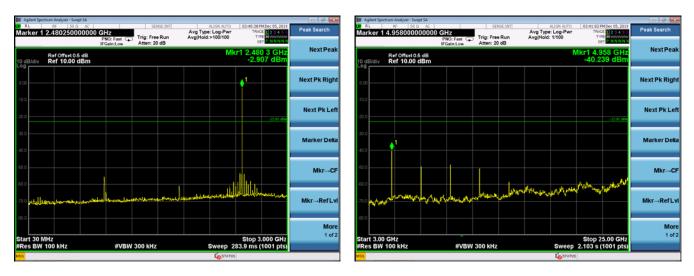

Above 30MHz:

RBW = 100KHz, VBW = 300KHz, Sweep = auto

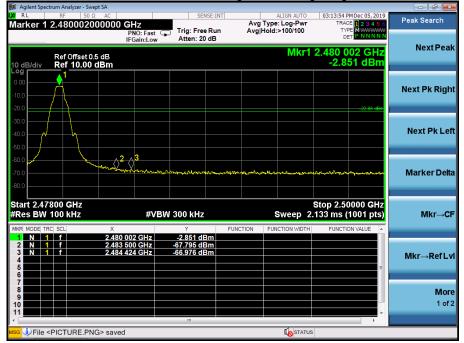

Detector function = peak, Trace = max hold




8.4 Test Result

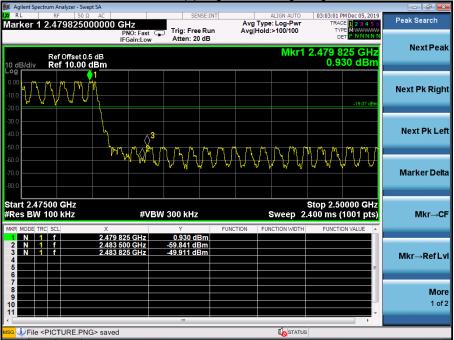


30MHz – 25GHz GFSK Low Channel

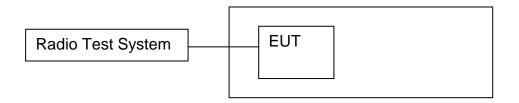

				<u> </u>						
- 6								um Analyzer -	nt Spectr	
Peak Search	03:16:15 PM Dec 05, 2019	ALIGN AUTO		NSE:INT	SEN		50 Ω AC			RL
reak Search	TRACE 1 2 3 4 5 6	e: Log-Pwr		_			00000000	2.40190	er 1 🕻	ark
	DET P N N N N	:>100/100	Avg Ho		Trig: Free	PNO: Fast				
	DET) dB	Atten: 20	IFGain:Low				
NextPea	1 2.401 9 GHz	Mk								
	-3.112 dBm						et 0.5 dB	Ref Offse		
	-3.112 UBIII						00 dBm	Ref 10.0	div) dB
	<u>_1</u>									^{og} [
										.00
Next Pk Rig	1									nn
	-23.11 dBm									0.0
										0.0
Next Pk Le	/ \									0.0
		8								
	2									0.0
	() ² \ [] _b [/]									0.0
					1		A			
Marker Del	and the state of t	to be call make the star	www.humphand	And the second second	entrand sharmanted	and the register of the party o	and and and a second	1" USU 100 Barren 20 and	- Allena State	0.0 🖛
										0.0
	Stop 2.41000 GHz							00 GHz	2 240	to the
	Stop 2.4 1000 GHZ					40 (D)				
Mkr→C	600 ms (1001 pts)	sweep 9.			N 300 kHz	#VB		00 kHz	BW .	Res
	FUNCTION VALUE	NCTION WIDTH	ICTION F	FUI	Y		X	SCL		KRI MO
				3m	-3.112 dE	01 9 GHz	2.4	f	v i 1	1
					-63.791 dE	00 0 GHz		f	N 1	2
Mkr→RefL				3m	-53.915 dE	78 0 GHz	2.3	f	1	3
										4
	=								_	5
										<u>6</u>
Ma										8
Мо										9
1 of										0
	-									1
	P.				III					
		STATUS								G

GFSK Transmitting Band edge-left side

GFSK Hopping Band edge-left side



GFSK Transmitting Band edge-right side


GFSK Hopping Band edge-right side

9. 20 DB BANDWIDTH

9.1 Block Diagram Of Test Setup

9.2 Limit

N/A

- 9.3 Test procedure
- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

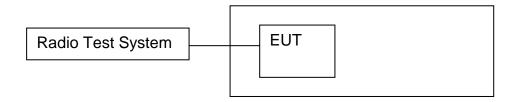
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

9.4 Test Result

Modulation	Test Channel	Bandwidth(MHz)
GFSK	Low	1.096
GFSK	Middle	1.095
GFSK	High	1.093

Test plots

GFSK Middle Channel


GFSK High Channel

10. MAXIMUM PEAK OUTPUT POWER

10.1 Block Diagram Of Test Setup

10.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

10.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.

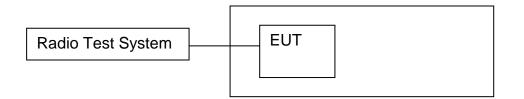
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.4 Test Result

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	-2.77	21
GFSK	Middle	-2.74	21
GFSK	High	-2.58	21

Test plots GFSK Low Channel

GFSK Middle Channel


GFSK High Channel

11. HOPPING CHANNEL SEPARATION

11.1 Block Diagram Of Test Setup

11.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

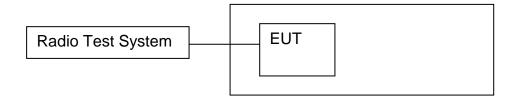
3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.4 Test Result

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	1.002	0.731	PASS
GFSK	Middle	1.000	0.730	PASS
GFSK	High	1.000	0.729	PASS

Test plots GFSK Low Channel

GFSK Middle Channel


GFSK High Channel

12. NUMBER OF HOPPING FREQUENCY

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

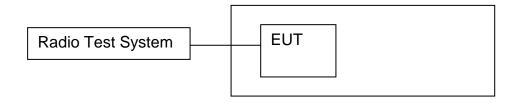
12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;


12.4 Test Result

	10	GFSK	lotal	
III Agilent Spectrum Analyzer - Swept SA XIIIRE RF 50 Ω AC Marker 1 Δ 78.406500000		Avg Type: Lo Run Avg Hold:>10	N AUTO 02:57:46 PM Dec 05, 2019 gg-Pwr TRACE 2345 6 100/100 TYPE MUNICIPAL DET P. NNNNN	Marker Select Marker
Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBm			∆Mkr1 78.406 5 MHz 0.680 dB	1
		┍╷┍╷┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍ ┍		Norma
			AD HAR A A A A A A A A A A A A A A A A A A	Delta
40.0				Fixed▷
50.0 J				Of
70.0				Properties •
80.0 Start 2.40000 GHz Res BW 100 kHz	#VBW 300 kHz	Sw	Stop 2.48350 GHz eep 8.000 ms (1001 pts)	More 1 of 2
Isg File <picture.png> saved</picture.png>			STATUS	

13. DWELL TIME

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

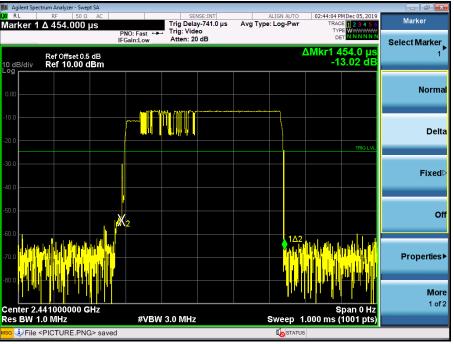
2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

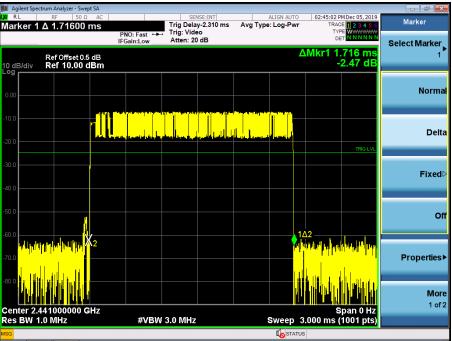
13.4 Test Result

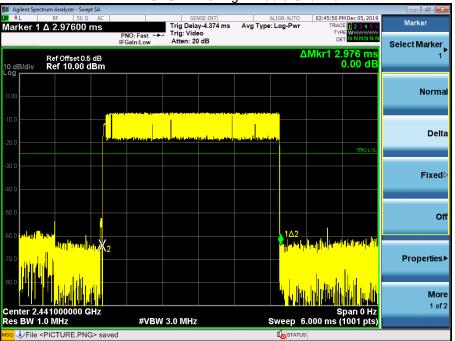
DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).


DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/4*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.


Modulation	Channel Data	Packet	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	Middle	DH1	0.454	0.145	0.4
		DH3	1.716	0.275	0.4
		DH5	2.976	0.317	0.4



Test Plots GFSK DH1 Middle Channel

GFSK DH3 Middle Channel

GFSK DH5 High Middle Channel

14. ANTENNA REQUIREMENT

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT antenna is PCB antenna, antenna Gain 2.78dBi. It comply with the standard requirement.

15. EUT PHOTOGRAPHS

EUT Photo 1

EUT Photo 2

16. EUT TEST SETUP PHOTOGRAPHS

Spurious emissions

Conducted emissions

********** END OF REPORT ********