

Page 1 of 28

FCC Test Report

Report No.	:	1815C50058112501
Applicant	:	RNG International Inc.
Address	:	5050 S Archibald Ave, Ontario, CA 91762, United States
Product Name	:	Lithium Iron Phosphate Battery
Report Date	:	Mar. 05, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Contents

1. General Information	6
 1.1. Client Information	
 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer	8 9 9
2. Antenna requirement	12
2.1. Conclusion	12
3. Conducted Emission at AC power line	13
3.1. EUT Operation 3.2. Test Setup 3.3. Test Data	13
4. 6dB Bandwidth	14
4.1. EUT Operation 4.2. Test Setup 4.3. Test Data	14
5. Maximum Conducted Output Power	
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	15 15
6. Power Spectral Density	
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	16 16
7. Emissions in non-restricted frequency bands	17
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	17
8. Band edge emissions (Radiated)	18
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	18
9. Emissions in frequency bands (below 1GHz)	20
9.1. EUT Operation 9.2. Test Setup 9.3. Test Data	21
10. Emissions in frequency bands (above 1GHz)	

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1815C50058112501 FCC ID: 2ANPB-RBT48105LFP

10.1. EUT Operation	24
10.2. Test Setup	
10.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	
APPENDIX II EXTERNAL PHOTOGRAPH	28
APPENDIX III INTERNAL PHOTOGRAPH	

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

TEST REPORT

Test Standard(s)	:	47 CFR Part 15.247 KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020
Rating(s)	:	Input: 58.4V=15A (with DC 51.2V, 105Ah Battery inside)
Trade Mark	:	N/A
Model No.	:	RBT48105LFP-GC
Product Name	:	Lithium Iron Phosphate Battery
Manufacturer	:	RENOGY New Energy Co., Ltd.
Applicant	:	RNG International Inc.

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Jan. 22, 2025

Date of Test:

Prepared By:

Jan. 22, 2025 to Feb. 14, 2025

Cecilia Chen

(Cecilia Chen)

Approved & Authorized Signer:

(Hugo Chen)

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email:service@anbotek.com

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Mar. 05, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

1. General Information

1.1. Client Information

Applicant	:	RNG International Inc.
Address	:	5050 S Archibald Ave, Ontario, CA 91762, United States
Manufacturer	:	RENOGY New Energy Co., Ltd.
Address	•	Room 624-625, Taicang German Overseas Students Pioneer Park, 66 Ningbo East Road, Taicang Economic Development Zone,China
Factory	:	RENOGY New Energy Co., Ltd.
Address		Room 624-625, Taicang German Overseas Students Pioneer Park, 66 Ningbo East Road, Taicang Economic Development Zone,China

1.2. Description of Device (EUT)

Product Name	:	Lithium Iron Phosphate Battery
Model No.	:	RBT48105LFP-GC
Trade Mark	:	N/A
Test Power Supply	:	DC 51.2V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	40
Modulation Type	:	GFSK
Antenna Type	:	External Antenna
Antenna Gain(Peak)	:	1.51dBi
		ation are provided by customer.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
1	/	1	1	

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT in continuously transmitting mode with GFSK modulation.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.2dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.64dB; 6G-18GHz: 4.82dB 18G-40GHz: 5.62dB
Radiated emissions (Below 30MHz)	3.26dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.70dB; Vertical: 4.42dB
The measurement uncertainty and decision risk ev	•

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	1	Р
Conducted Emission at AC power line	1	N
6dB Bandwidth	Mode1	Р
Maximum Conducted Output Power	Mode1	Р
Power Spectral Density	Mode1	Р
Emissions in non-restricted frequency bands	Mode1	Р
Band edge emissions (Radiated)	Mode1	Р
Emissions in frequency bands (below 1GHz)	Mode1	Р
Emissions in frequency bands (above 1GHz)	Mode1	Р
Note: P: Pass N: N/A, not applicable	·	

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Conducted Emission at AC power line					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2025-01-13	2026-01-12
Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/
EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08
	Equipment L.I.S.N. Artificial Mains Network Three Phase V- type Artificial Power Network Software Name EZ-EMC EMI Test	EquipmentManufacturerL.I.S.N. Artificial Mains NetworkRohde & SchwarzThree Phase V- type Artificial Power NetworkCYBERTEKSoftware Name EZ-EMCFarad TechnologyEMI TestRohde & Schwarz	EquipmentManufacturerModel No.L.I.S.N. Artificial Mains NetworkRohde & SchwarzENV216Three Phase V- type Artificial Power NetworkCYBERTEKEM5040DTSoftware Name EZ-EMCFarad TechnologyANB-03AEMI TestRohde & SchwarzESPI3	EquipmentManufacturerModel No.Serial No.L.I.S.N. Artificial Mains NetworkRohde & SchwarzENV216100055Three Phase V- type Artificial Power NetworkCYBERTEKEM5040DTE215040D T001Software Name EZ-EMCFarad TechnologyANB-03AN/AEMI TestRohde & SchwarzESPI3100926	EquipmentManufacturerModel No.Serial No.Last Cal.L.I.S.N. Artificial Mains NetworkRohde & SchwarzENV2161000552024-09-09Three Phase V- type Artificial Power NetworkCYBERTEKEM5040DTE215040D

Maxir Powe	6dB Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2025-01-14	2026-01-13

	Band edge emissions (Radiated)					
Emise	sions in frequency b	ands (above 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2 EMI Preamplifier SKET Electronic LNPA- SKET-PA- 0118G-45 002		2025-01-13	2026-01-12			
3	3 Double Ridged Horn Antenna SCHWARZ		BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	Horn Antenna	A-INFO	LB-180400- KF	J2110606 28	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Emis	Emissions in frequency bands (below 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	1

Shenzhen Anbotek Compliance Laboratory Limited

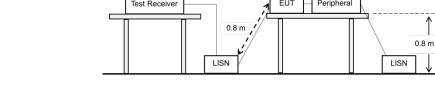
2. Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

2.1. Conclusion

The antenna is a External Antenna which permanently attached, and the best case gain of the antenna is 1.51dBi. It complies with the standard requirement.

motationy Linhia



3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Exception, for an intentional radiator public utility (AC) power line, the reback onto the AC power line on are band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be cor adio frequency voltage that by frequency or frequencies t exceed the limits in the f	nnected to the at is conducted es, within the following table, as	
	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
Test Limit:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of the frequency.			
Test Method:	ANSI C63.10-2020 section 6.2			
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un		od for ac power-	

3.1. EUT Operation

Operating Env	ironment:
Test mode:	1
3.2. Test Set	up
	0.1 m ->i < Test Receiver

3.3. Test Data

Not applicable for DC power device.

4. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude". 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.1. EUT Operation

Operating Envi	Operating Environment:		
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.		

4.2. Test Setup

EUT Spectrum Analyzer

4.3. Test Data

Temperature:	21 °C	Humidity:	32 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

Operating Envir	ronment:
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

5.2. Test Setup

|--|

5.3. Test Data

Temperature:	21 °C	Humidity:	32 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Envir	ronment:
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

6.2. Test Setup

		EUT	Spectrum Analyzer	
--	--	-----	-------------------	--

6.3. Test Data

Temperature: 21 °C	Humidity:	32 %	Atmospheric Pressure:	101 kPa
--------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Envir	ronment:
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

7.2. Test Setup

		EUT	Spectrum Analyzer
--	--	-----	-------------------

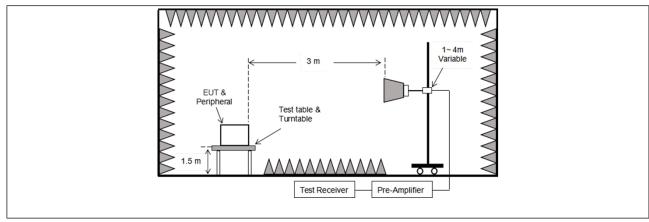
7.3. Test Data

Temperature:	21 °C	Humidity:	32 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500 www.anbotek.com


8. Band edge emissions (Radiated)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
Test Limit:	intentional radiators operat frequency bands 54-72 MF However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	aragraph (g), fundamental emiss ing under this section shall not b Iz, 76-88 MHz, 174-216 MHz or these frequency bands is permit is 15.231 and 15.241. e, the tighter limit applies at the b in the above table are based on peak detector except for the free above 1000 MHz. Radiated emis	e located in the 470-806 MHz. ted under other oand edges. measurements juency bands 9– ssion limits in		
Test Method:	ANSI C63.10-2020 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02				
Procedure:	ANSI C63.10-2020 section	6.10.5.2			

8.1. EUT Operation

Operating Envir	ronment:
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

8.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Report No.:1815C50058112501 FCC ID: 2ANPB-RBT48105LFP

Temperature:	21 °C	Humidity:	32 %	Atmosph	eric Pressure:	101 kPa
	remperature: 21 °C Humidity: 32 % Atmospheric Pressure: 101 kPa Interview 1000 Interview Inter					
TM1 / CH: L Section (P) Section (P) <th col<="" td=""></th>						
Ref Level 107.00 dBµV Offset Att 10 dB SWT SGL Count 50/50	0.50 dB ● RBW 1 MHz 15.1 μs ● VBW 3 MHz Mode Auto FF	т	Ref Level 107.00 Att SGL Count 50/50	0 dBμV Offset 0.50 dB 10 dB SWT 15.1 μs	RBW 1 MHz VBW 3 MHz Mode Auto FFT	(*
	M1[1]	3	7.58 dBµV		M1[1]	
		2.3				2.390000 GH
			D1 74.0	100 dBuV		
70 dBµV			70 dBµV			
60 dBµV			60 dBµV-			
50 dBµV			50 dBµV-			
	A Martin Martin Martin	man Mi	40 dBµV	AM manor	man	mmt m
	~~~~		30 dBµV			
20 dBµV			20 dBµV			
		Stop			691 pts	Stop 2.41 GHz
Type         Ref         Trc         X-value           M1         1         2.3	Y-value         Function           19 GHz         37.58 dBµV	Function Result	Type Ref Trc M1 1	2.39 GHz	Y-value Function 36.85 dBµV	Function Result
		Ready 🗰			Read	ly
	Peak Value(Vertica	al)		Peak	Value(Horizonta	l)
	mperature:       21 °C       Humidity:       32 %       Atmospheric Pressure:       101 kPa         Inter CH: L         minimum characterization       Inter CH: L					
		Т	M1 / CH: H			
Temperature:       21 °C       Humidity:       32 %       Atmospheric Pressure:       101 kPa         Image: Discourse of the top of the to						
Reflevel 97.50 dBuV Offset (			Att SGL Count 50/50			
Temperature:       21 °C       Humidity:       32 %       Atmospheric Pressure:       101 kPa         IMPRITE: INFORMATION OF THE INFORMATION OF T						
Att 0 dB SWT SGL Count 50/50			6.41 dBµV		M1[1]	
Att 0 dB SWT SGL Count 50/50 1Pk Max			6.41 dBµV	$\uparrow \vdash$	M1[1]	
Att 0 dB SWT     SGL Count 50/50     1Pk Max     90 dBµV     80 dBµV			6.41 dBμV 35000 GHz 80 dBμV		M1[1]	
Att 0 dB SWT     SGL Count 50/50     DPL Max     90 dBµV     01 74.500 dBµV			6.41 dBμV 35000 GHz 80 dBμV 01 74.5	000 dBµV	M1[1]	
Att 0 d8 SWT     SQL Count 50/50     SPK Max     90 d8µV     01 74,500 d8µV     70 d8µV			6.41 dBµV 35000 GHz 80 dBµV 70 dBµV 01 74.5	000 dBµV	M1[1]	
Att 0 d8 SWT     SQL Count 50/50     1Pk Max     90 dBµV     01 74.500 dBµV     01 80,00     d0 dBµV			6.41 dBµV 35000 GHz 80 dBµV 70 dBµV 60 dBµV	000 dBµV	M1[1]	
Att 0 dB SWT SGL count 50/50 (*) IPk Max 90 dBµV 70 dBµV 174.500 dBµV 50 dBµV	M1[1]		6.41 dBµV 30000 GHz 90 dBµV 90 dBµV 01 74.5 70 dBµV 50 dBµV		M1[1]	
Att         0 dB         SWT           SGL count 60,50         91/k Max           91/k Max         90 dBµV         90 dBµV           90 dBµV         01 74.500 dBµV           70 dBµV         01 74.500 dBµV           50 dBµV         01 4.500 dBµV           40 dBµV         01 4.500 dBµV	M1[1]		6.41 dBµV 35000 GHz 80 dBµV 70 dBµV 50 dBµV 40 dBµV		M1[1]	
Att         0 dB         SWT           SGL Count 0,50         90         91/2         90           91/2         Max         90         90         90           90         04,1/2         0         74,500         68,1/4           90         04,1/2         0         74,500         68,1/4           90         04,1/2         0         74,500         68,1/4           90         04,1/2         0         49,1/4         40         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1/4         40,1	M1[1]		6.41 dBµV 35000 GH2 90 dBµV 10 dBµV 10 dBµV 01 74.5 70 dBµV 50 dBµV 40 dBµV 30 dBµV		M1[1]	
Att 0 dB SWT     SGL Count 50/50     1Pik Max     90 dBµV     01 74.500 dBµV     01 74.500 dBµV     04 dBµV     01 74.500 dBµV     01 30 dBµV     01 34.500 dBµV	M1[1]		6.41 dBµV 35000 GH2 90 dBµV 10 dBµV 10 dBµV 01 74.5 00 dBµV 00 dBµV		M1[1]	
Att 0 dB SWT     SGL Count 50/50      1Pk Max     0 dB JV     70 dB JV     0 1 74.500 dB JV     0 1 74.500 dB JV     0 dB	M1[1]		6.41 dBµV 35000 GH2 80 dBµV 70 dBµV 01 74.5 70 dBµV 00 dBµV 00 dBµV 20 dBµV 20 dBµV 10 dBµV 10 dBµV			
Att 0 d8 SWT     SQL Count 50/50     1Pik Max     90 dBµV     01 74.500 dBµV     01 74.500 dBµV     0 dBµ			6.41 dBµV 35000 GHz 80 dBµV 70 dBµV 01 74.5 60 dBµV 50 dBµV 40 dBµV 20 dBµV 20 dBµV 10 dBµV 10 dBµV 20 dBµV 10 dBµV 10 dBµV 10 dBµV			2.4835000 GH
Att 0 d8 SWT SGL Count 50/50 PIPk Max 90 dBµV 01 74.500 dBµV 70 dBµV 01 74.500 dBµV 70 dBµV 01 74.500 dBµV 10 dBµV 20 dBµV 10	MI[1]	2.48:	6.41 dBµV 35000 GHz 90 dBµV 10 dBµV 01 74.5 00 dBµV 01 74.5 00 dBµV 00 dBµV 00 dBµV 20 dBµV 20 dBµV 10 dBµV 10 dBµV 20 dBµV 10 dBµV	X-value	691 pts	2.4835000 GH
Att 0 d8 SWT SQL Count 50/50 1Pk Max 90 dBµV 01 74.500 dBµV 70 dBµV 01 74.500 dBµV 70 dBµV 10 dBµV	M1 M1 M1 M1 691 pts 15 GHz 36.41 dBµV	2.48:	6.41 dBµV 35000 GHz 80 dBµV 10 dBµV 10 dBµV 01 74.5 00 dBµV 01 74.5 00 dBµV 00 dBµV 10 dBµV 20 dBµV 10 dBµV 10 dBµV 20 dBµV 10 dBµV	X-value	691 pts	2.4835000 GH
Att         0 dB         SWT           SGL Count SOL         SGL Count SOL         SGL Count SOL           91Pk Max         90 dBµV         90 dBµV         90 dBµV           90 dBµV         01 74.500 dBµV         90 dBµV         90 dBµV           70 dBµV         01 74.500 dBµV         90 dBµV         90 dBµV           70 dBµV         01 74.500 dBµV         90 dBµV         90 dBµV           30 dBµV         90 dBµV         90 dBµV         90 dBµV         90 dBµV           10 dBµV         90 dBµV         90 dBµV         90 dBµV         90 dBµV         90 dBµV           10 dBµV         10 dBµV         10 dBµV         10 dBµV         10 dBµV         10 dBµV           10 dBµV         11 2,443         2,483         11 2,443	M1[1] M1[1] M1 M1 691 pts 691 pts Function 15 GHz 36.41 dBµV	2.48:	6.41 dBµV 35000 GHz 80 dBµV 10 dBµV 10 dBµV 01 74.5 00 dBµV 01 74.5 00 dBµV 00 dBµV 10 dBµV 20 dBµV 10 dBµV 10 dBµV 20 dBµV 10 dBµV	X-value 2.4835 GHz	691 pts Y-value 37.31 dBµV Read	2.4835000 GH

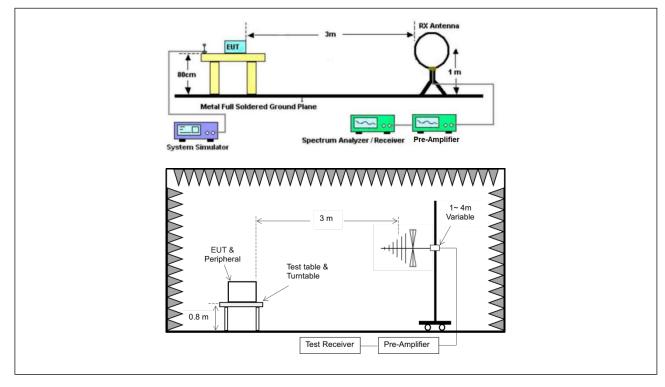
Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.





# 9. Emissions in frequency bands (below 1GHz)

Test Requirement:	radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in partice intentional radiators operate frequency bands 54-72 MH However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500 aragraph (g), fundamental emiss ing under this section shall not b iz, 76-88 MHz, 174-216 MHz or these frequency bands is permit	Measurement distance (meters) 300 30 30 30 3 3 3 3 3 3 3 3 3 3 3 3 3			
	detector.					
Test Method:						
Procedure:	ANSI C63.10-2020 section 6.6.4					


#### 9.1. EUT Operation

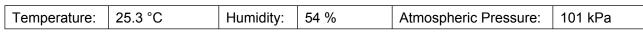
Operating Envir	ronment:
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

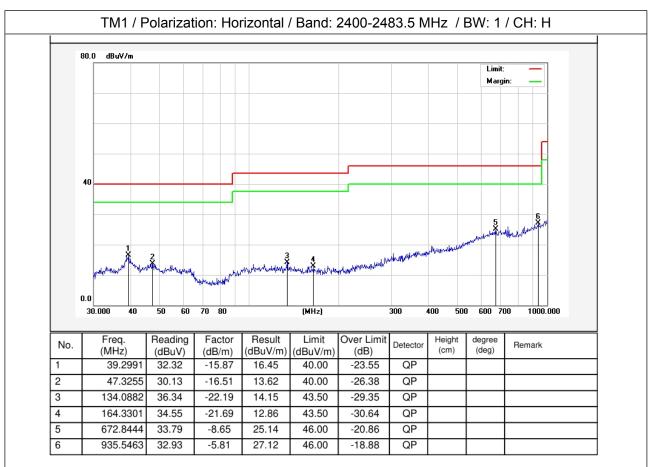




#### 9.2. Test Setup




#### Shenzhen Anbotek Compliance Laboratory Limited


Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

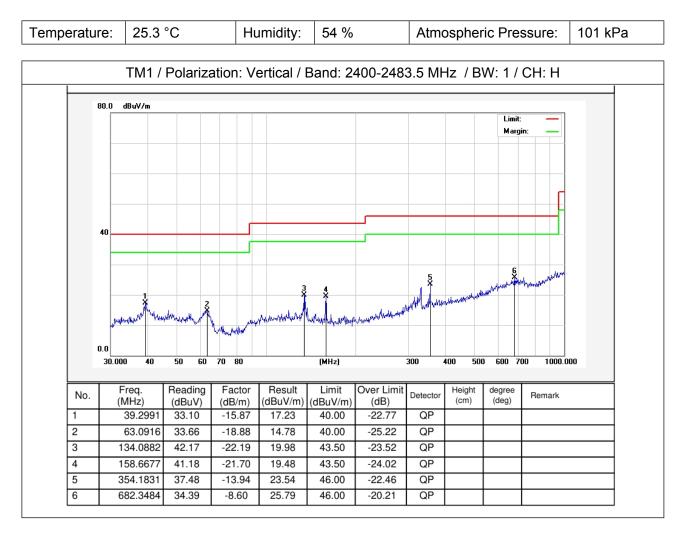


#### 9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.






#### Shenzhen Anbotek Compliance Laboratory Limited



lia

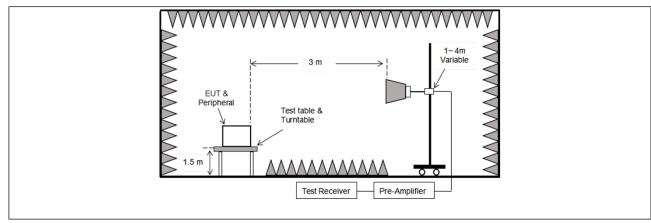


#### Report No.:1815C50058112501 FCC ID: 2ANPB-RBT48105LFP



Note: Only record the worst data in the report.




# 10. Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in p intentional radiators opera frequency bands 54-72 MI However, operation within sections of this part, e.g., s In the emission table above The emission limits shown employing a CISPR quasi-	Field strength (microvolts/meter)         2400/F(kHz)         24000/F(kHz)         30         100 **         150 **         200 **         500         aragraph (g), fundamental emiss ting under this section shall not be Hz, 76-88 MHz, 174-216 MHz or these frequency bands is permit	be located in the 470-806 MHz. Ited under other band edges. In measurements quency bands 9–			
	these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2020 section	ו 6.6.4				

#### 10.1. EUT Operation

Operating Envir	rating Environment: mode: 1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode with GFSK modulation.

#### 10.2. Test Setup



#### Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com





#### Report No.:1815C50058112501 FCC ID: 2ANPB-RBT48105LFP

#### 10.3. Test Data

Temperature:	25.3 °C	Humidity:	54 %	Atmospher	ic Pressure:	101 kPa		
		٦	「M1 / CH: L					
Peak value:								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization		
4804.00	31.55	15.27	46.82	74.00	-27.18	Vertical		
7206.00	31.08	18.09	49.17	74.00	-24.83	Vertical		
9608.00	32.99	23.76	56.75	74.00	-17.25	Vertical		
12010.00	*			74.00		Vertical		
14412.00	*			74.00		Vertical		
4804.00	30.95	15.27	46.22	74.00	-27.78	Horizontal		
7206.00	32.75	18.09	50.84	74.00	-23.16	Horizontal		
9608.00	29.44	23.76	53.20	74.00	-20.80	Horizontal		
12010.00	*			74.00		Horizontal		
14412.00	*			74.00		Horizontal		
Average value	:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization		
4804.00	19.82	15.27	35.09	54.00	-18.91	Vertical		
7206.00	20.13	18.09	38.22	54.00	-15.78	Vertical		
9608.00	22.46	23.76	46.22	54.00	-7.78	Vertical		
12010.00	*			54.00		Vertical		
14412.00	*			54.00		Vertical		
4804.00	19.28	15.27	34.55	54.00	-19.45	Horizontal		
7206.00	21.78	18.09	39.87	54.00	-14.13	Horizontal		
9608.00	18.95	23.76	42.71	54.00	-11.29	Horizontal		
12010.00	*			54.00		Horizontal		
14412.00	*			54.00		Horizontal		





#### Report No.:1815C50058112501 FCC ID: 2ANPB-RBT48105LFP

TM1 / CH: M								
Peak value:								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization		
4880.00	31.10	15.42	46.52	74.00	-27.48	Vertical		
7320.00	31.05	18.02	49.07	74.00	-24.93	Vertical		
9760.00	32.49	23.80	56.29	74.00	-17.71	Vertical		
12200.00	*			74.00		Vertical		
14640.00	*			74.00		Vertical		
4880.00	30.76	15.42	46.18	74.00	-27.82	Horizontal		
7320.00	32.62	18.02	50.64	74.00	-23.36	Horizontal		
9760.00	29.16	23.80	52.96	74.00	-21.04	Horizontal		
12200.00	*			74.00		Horizontal		
14640.00	*			74.00		Horizontal		
Average value:								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization		
4880.00	19.91	15.42	35.33	54.00	-18.67	Vertical		
7320.00	19.99	18.02	38.01	54.00	-15.99	Vertical		
9760.00	22.31	23.80	46.11	54.00	-7.89	Vertical		
12200.00	*			54.00		Vertical		
14640.00	*			54.00		Vertical		
4880.00	19.39	15.42	34.81	54.00	-19.19	Horizontal		
7320.00	22.13	18.02	40.15	54.00	-13.85	Horizontal		
9760.00	19.25	23.80	43.05	54.00	-10.95	Horizontal		
12200.00	*			54.00		Horizontal		
14640.00	*			54.00		Horizontal		



TM1 / CH: H								
Peak value:	Peak value:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization		
4960.00	31.23	15.58	46.81	74.00	-27.19	Vertical		
7440.00	31.21	17.93	49.14	74.00	-24.86	Vertical		
9920.00	33.19	23.83	57.02	74.00	-16.98	Vertical		
12400.00	*			74.00		Vertical		
14880.00	*			74.00		Vertical		
4960.00	30.90	15.58	46.48	74.00	-27.52	Horizontal		
7440.00	32.83	17.93	50.76	74.00	-23.24	Horizontal		
9920.00	29.54	23.83	53.37	74.00	-20.63	Horizontal		
12400.00	*			74.00		Horizontal		
14880.00	*			74.00		Horizontal		
Average value:								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization		
4960.00	21.03	15.58	36.61	54.00	-17.39	Vertical		
7440.00	21.26	17.93	39.19	54.00	-14.81	Vertical		
9920.00	22.96	23.83	46.79	54.00	-7.21	Vertical		
12400.00	*			54.00		Vertical		
14880.00	*			54.00		Vertical		
4960.00	20.57	15.58	36.15	54.00	-17.85	Horizontal		
7440.00	22.93	17.93	40.86	54.00	-13.14	Horizontal		
9920.00	19.40	23.83	43.23	54.00	-10.77	Horizontal		
12400.00	*			54.00		Horizontal		
14880.00	*			54.00		Horizontal		

#### Remark:

1. Result =Reading + Factor

2. Test frequency are from 1GHz to 25GHz, "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.





# **APPENDIX I -- TEST SETUP PHOTOGRAPH**

Please refer to separated files Appendix I -- Test Setup Photograph_RF

# **APPENDIX II -- EXTERNAL PHOTOGRAPH**

Please refer to separated files Appendix II -- External Photograph

# **APPENDIX III -- INTERNAL PHOTOGRAPH**

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----



