RF Exposure Evaluation

According to KDB 447498 D01 General RF Exposure Guidance v06 and part 2.1091, Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition(s), listed below, is (are) satisfied.

Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3–3.0	614	1.63	*(100)	6					
3.0–30	1842/f	4.89/f	*(900/f ²)	6					
30–300	61.4	0.163	1.0	6					
300–1500			f/300	6					
1500–100,000			5	6					
(B) Limits for General Population/Uncontrolled Exposure									
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f ²)	30					
30–300	27.5	0.073	0.2	30					
300–1500			f/1500	30					
1500–100,000			1.0	30					

Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz

Friis transmission formula: Pd = (Pout*G)/(4*pi*r²)

Where

Pd = power density in mW/cm², **Pout** = output power to antenna in mW;

G = gain of antenna in linear scale, Pi = 3.1416;

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

EIRP=E_{Meas}+20log(d_{Meas})-104.7

EIRP is the equivalent isotropically radiated power, in dBm

 E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m

d_{Meas} is the measurement distance, in m

Frequency MHz	Field strength (dBuV/m)	EIRP (dBm)	Max tune-up (mW)	Power Density at R=20cm (mW/cm2)	Limit (mW/c m2)	Result
315.00	63.88	-31.28	0.000745	0.000000148	1.0	PASS
433.92	70.33	-24.83	0.00329	0.000000655	1.0	PASS

So a SAR test is not required