

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

802.11 a/b/g PCI EXPRESS CARD

MODEL NUMBER: WM3965ABG

FCC ID: PD9WM3965ABG

REPORT NUMBER: 06U10130-2

ISSUE DATE: APRIL 10, 2006

Prepared for INTEL CORPORATION 2111 N.E.25TH AVE. HILLSBORO, OR 97124, USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
-	4/10/06	Initial Issue	D.G.

Page 2 of 2

TABLE OF CONTENTS

	AT	FESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
4	.1.	MEASURING INSTRUMENT CALIBRATION	
4	.2.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5	.1.	DESCRIPTION OF EUT	6
5	.2.	MAXIMUM OUTPUT POWER	
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	.4.	SOFTWARE AND FIRMWARE	6
5	.5.	WORST-CASE CONFIGURATION AND MODE	6
5	.6.	DESCRIPTION OF TEST SETUP	7
6.	TF	ST AND MEASUREMENT EQUIPMENT	
		SI AND MEASUREMENT EQUIPMENT	9
7.		IITS AND RESULTS	
		IITS AND RESULTS CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND	10
	LIN . <i>1</i> . 7.1.	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH	10 <i>10</i>
	LIN . <i>1</i> . 7.1. 7.1.	IITS AND RESULTS CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND 1. EMISSION BANDWIDTH 2. PEAK POWER	10
	LIN . <i>1</i> . 7.1.	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE	10 10 10 10 14 19
	LIN . <i>1</i> . 7.1. 7.1. 7.1.	MITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY	10 10 10 14 19 22 23
	LIN 7.1. 7.1. 7.1. 7.1. 7.1. 7.1.	MITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION	10 10 10 14 19 22 23 23 28
	LIN 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1.	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION 7. CONDUCTED SPURIOUS EMISSIONS	10 10 10 14 19 22 23 23 28 32
	LIN 7.1. 7.1. 7.1. 7.1. 7.1. 7.1.	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION 7. CONDUCTED SPURIOUS EMISSIONS	10 10 10 14 19 22 23 23 28 32
7.	LIN 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION 7. CONDUCTED SPURIOUS EMISSIONS 8. FREQUENCY STABILITY <i>RADIATED EMISSIONS</i>	10 10 10 10 14 19 22 23 23 28 32 36 39
7.	LIN 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1.	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION 7. CONDUCTED SPURIOUS EMISSIONS 8. FREQUENCY STABILITY <i>RADIATED EMISSIONS</i> 1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	10 10 10 10 14 19 22 23 28 32 36 39 39
7.	LIN 7.1. 7.2. 7.2. 7.2.	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION 7. CONDUCTED SPURIOUS EMISSIONS 8. FREQUENCY STABILITY <i>RADIATED EMISSIONS</i> 1. TRANSMITTER RADIATED SPURIOUS EMISSIONS 2. TRANSMITTER ABOVE 1 GHZ FOR 5150 TO 5350 MHz BAND	10 10 10 10 14 19 22 23 28 32 36 39 39 42
7.	LIN 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION 7. CONDUCTED SPURIOUS EMISSIONS 8. FREQUENCY STABILITY <i>RADIATED EMISSIONS</i> 1. TRANSMITTER RADIATED SPURIOUS EMISSIONS 2. TRANSMITTER ABOVE 1 GHZ FOR 5150 TO 5350 MHz BAND 3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 14 \\ 19 \\ 22 \\ 23 \\ 28 \\ 32 \\ 36 \\ 39 \\ 39 \\ 42 \\ 51 \\ \end{array} $
7.	LIN 7.1. 7.2. 7.2. 7.2.	IITS AND RESULTS <i>CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND</i> 1. EMISSION BANDWIDTH 2. PEAK POWER 3. MAXIMUM PERMISSIBLE EXPOSURE 4. AVERAGE POWER 5. PEAK POWER SPECTRAL DENSITY 6. PEAK EXCURSION 7. CONDUCTED SPURIOUS EMISSIONS 8. FREQUENCY STABILITY <i>RADIATED EMISSIONS</i> 1. TRANSMITTER RADIATED SPURIOUS EMISSIONS 2. TRANSMITTER ABOVE 1 GHZ FOR 5150 TO 5350 MHz BAND	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 14 \\ 19 \\ 22 \\ 23 \\ 28 \\ 32 \\ 36 \\ 39 \\ 39 \\ 42 \\ 51 \\ \end{array} $

1. ATTESTATION OF TEST RESULTS

FCC PART 15 S	UBPART C	NO NON-COMPLIANCE NOTED
STANDA	RD	TEST RESULTS
	APPLICAE	ELE STANDARDS
DATE TESTED:	MARCH 29 to A	APRIL 1, 2006
SERIAL NUMBER:	000529096	
MODEL:	WM3965ABG	
EUT DESCRIPTION:	802.11a/b/g PC	I EXPRESS CARD
	2111 N.E. 25TH HILLSBORO, (I AVE. DR 97124, USA
COMPANY NAME:	INTEL CORPC	

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

DAVID GARCIA EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Maukon pulm

THANH NGUYEN EMC TECHNICIAN COMPLIANCE CERTIFICATION SERVICES

Page 4 of 4

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g transceiver PCI Express card.

The radio module is manufactured by Intel Corporation.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

5150 to 5350 MHz Authorized Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5320	802.11a UNII	15.91	38.99

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes external WLAN self standing dual band vertically polarized antenna with a 1.5m cable and a stripline connector, the maximum gain -1.65 dBi in the 5.18 GHz band.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed in the host support equipment during testing were CRTU rev. 4.0.22. KIRTLAND for b and g mode, GRTT version 1.1.1 for a mode.

The test utility software used during testing was CRTU.EXE and GRTT.EXE.

5.5. WORST-CASE CONFIGURATION AND MODE

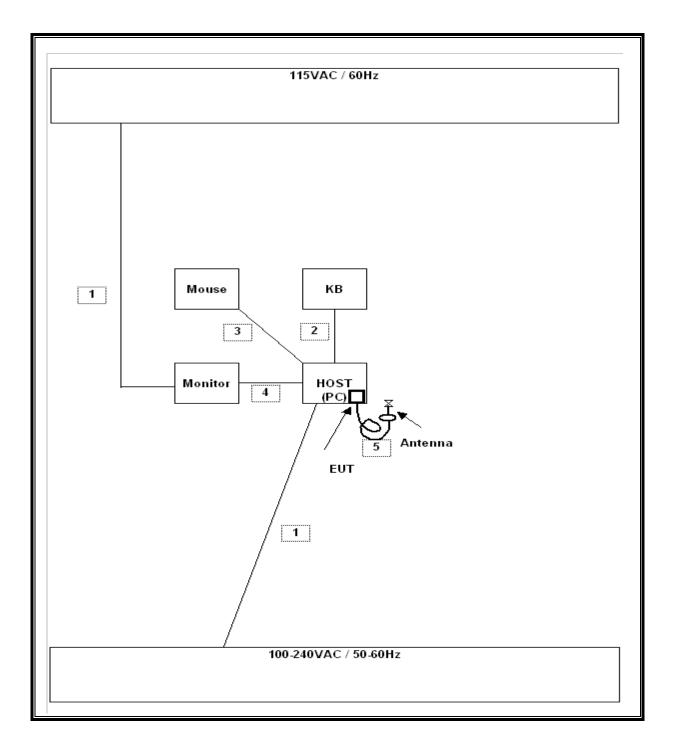
The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 5320 MHz for the 5150 to 5350 MHz band.

Page 6 of 6

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Description Manufacturer Model Serial Number FCC ID						
Desktop Computer	Intel	N/A	N/A	N/A			
Mouse	HP	M042KC	30536213	DoC			
Keyboard	HP	5183	BF32119779	E5XKB5183			
Monitor	NOKIA	920 C	973	N/A			


I/O CABLES

	I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical	Туре	Туре	Length			
		Ports						
1	AC	2	US 115V	Un-shielded	2m	No		
2	KB	1	PS/2	Shielded	2m	Yes		
3	Mouse	1	PS/2	Un-shielded	2m	Yes		
4	Video	1	DB15	Shielded	2m	Yes		
5	Antenna	1	Antenna	Un-shielded	1m	Yes		

TEST SETUP

The EUT is installed outside a host desktop computer via a PCI to PCI Express extension board during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

Page 8 of 8

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	Cal Due				
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	3/29/2007				
RF Filter Section	HP	85420E	3705A00256	3/29/2007				
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	3/3/2007				
Preamplifier, 1 ~ 26.5 GHz	Agilent	8449B	3008A00561	10/3/2007				
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29301	4/22/2006				
Antenna, Horn 18 ~ 26 GHz	ARA	MWH-1826/B	1049	9/12/2006				
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/2006				
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	8/30/2006				
EMI Test Receiver	R & S	ESHS 20	827129/006	6/3/2006				
AC Power Source, 10 kVA	ACS	AFC-10K-AFC-2	J1568	1/0/1900				
Peak / Average Power Sensor	Agilent	E9327A	US40440755	2/10/2007				
Peak Power Meter	Agilent	E4416A	GB41291160	2/9/2007				
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	US42510266	10/19/2006				

Page 9 of 9

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 5150 TO 5350 MHz BAND

7.1.1. EMISSION BANDWIDTH

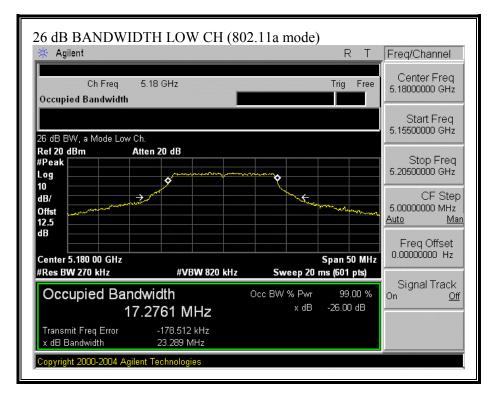
<u>LIMIT</u>

§15.403 (i) <u>Emission bandwidth</u>. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

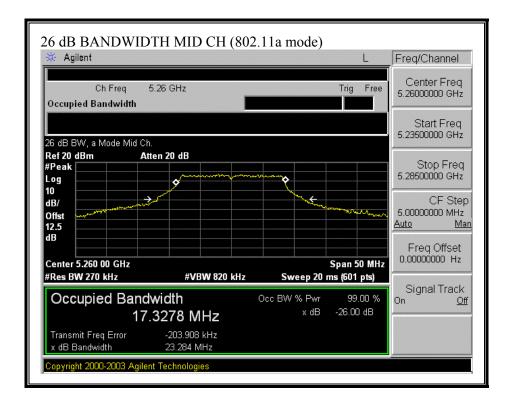
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

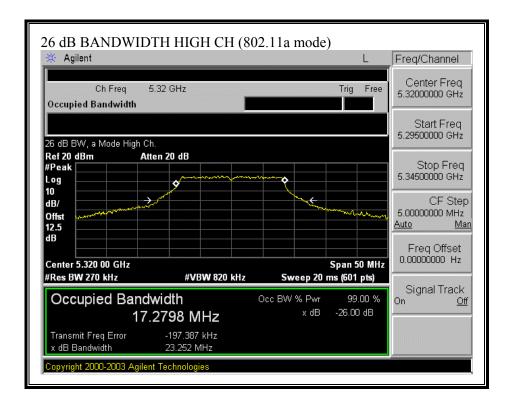
RESULTS


No non-compliance noted:

Channel	Frequency (MHz)	B (MHz)	10 Log B (dB)
Low	5180	23.29	13.67
Middle	5260	23.28	13.67
High	5320	23.25	13.66


802.11a Mode

Page 10 of 10


26 dB EMISSION BANDWIDTH (802.11a MODE)

Page 11 of 11

Page 12 of 12

Page 13 of 13

7.1.2. PEAK POWER

<u>LIMIT</u>

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

Page 14 of 14

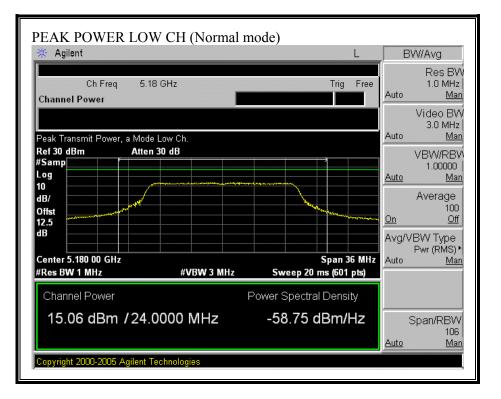
LIMITS AND RESULTS

No non-compliance noted:

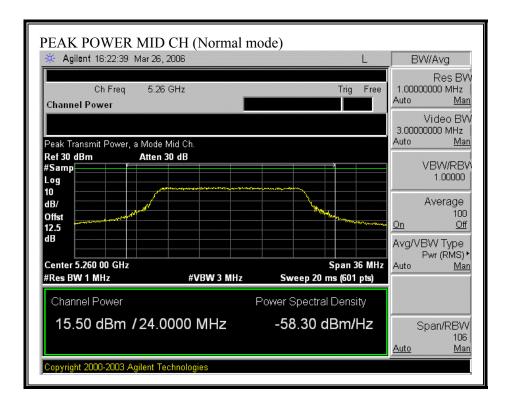
Limit in 5150 to 5250 MHz Band

Channel	Frequency	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	23.289	17.67	-1.65	17.00

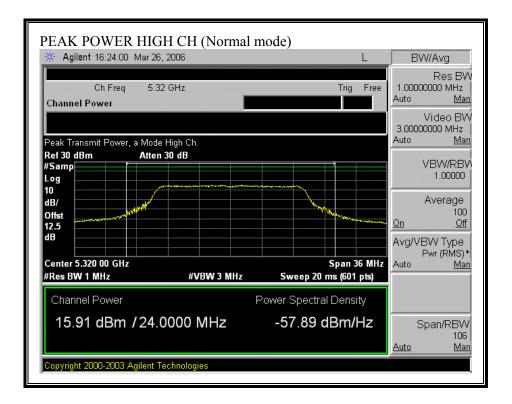
Limit in 5250 to 5350 MHz Band


Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Mid	5260	24	23.284	24.67	-1.65	24.00
High	5320	24	23.252	24.66	-1.65	24.00

Results


Channel	Frequency (MHz)	Power (dBm)	Limit (dBm)	Margin (dB)
Low	5180	15.06	17.00	-1.94
Mid	5260	15.50	24.00	-8.50
High	5320	15.91	24.00	-8.09

Page 15 of 15


PEAK POWER (NORMAL MODE)

Page 16 of 16

Page 17 of 17

Page 18 of 18

7.1.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	l/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4 <i>.89/</i> F 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100.000		0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 19 of 19

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2} / 3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10^{(P(dBm)/10)}$ and $G(numeric) = 10^{(G(dBi)/10)}$

yields

 $d = 0.282 * 10^{(P+G)} / 20) / \sqrt{S}$

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$

Page 20 of 20

LIMITS

From 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11a	20.0	15.91	-1.65	0.01

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 21 of 21

7.1.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.75 dB (including 10 dB pad and 1.75 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	5180	15.66	
Middle	5260	15.86	
High	5320	15.50	

Page 22 of 22

7.1.5. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

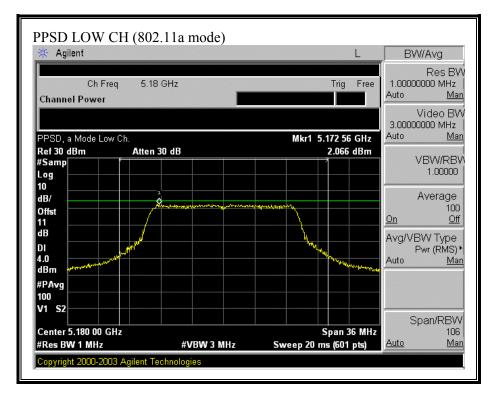
The maximum antenna gain = -1.65 dBi, therefore there is no reduction due to antenna gain.

TEST PROCEDURE

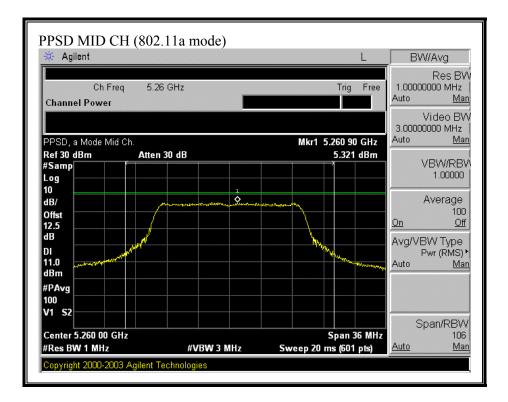
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Page 23 of 23

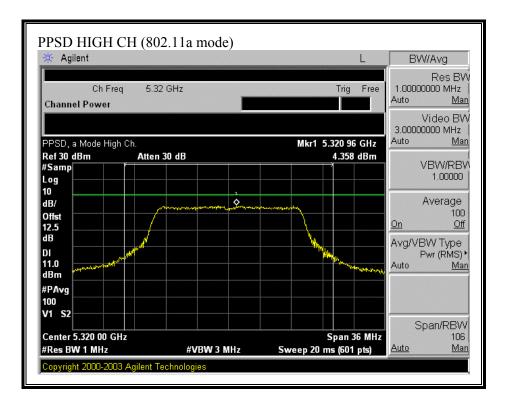
RESULTS


No non-compliance noted:

802.11a Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	2.07	4.00	-1.93
Mid	5260	5.32	11.00	-5.68
High	5320	4.36	11.00	-6.64

Page 24 of 24


PEAK POWER SPECTRAL DENSITY (802.11a MODE)

Page 25 of 25

Page 26 of 26

Page 27 of 27

7.1.6. PEAK EXCURSION

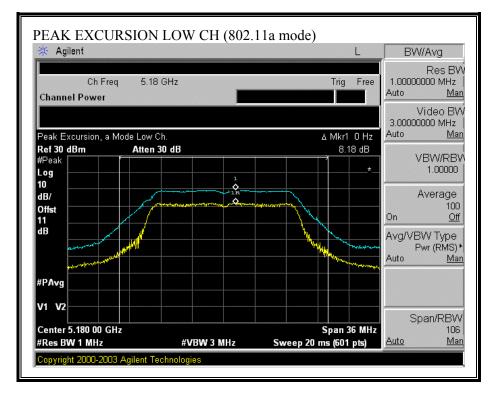
<u>LIMIT</u>

§15.407 (a) (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

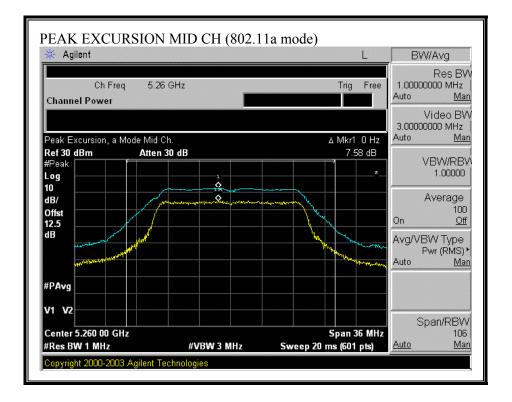
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

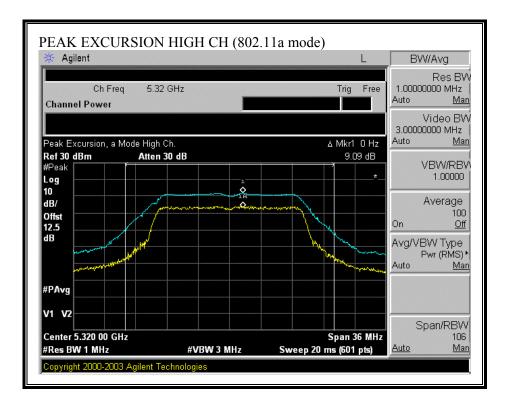
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

No non-compliance noted:


Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)
Low	5180	8.18	13	-4.82
Middle	5200	7.58	13	-5.42
High	5240	9.29	13	-3.71

802.11a Mode


PEAK EXCURSION (802.11a MODE)

Page 29 of 29

Page 30 of 30

Page 31 of 31

7.1.7. CONDUCTED SPURIOUS EMISSIONS

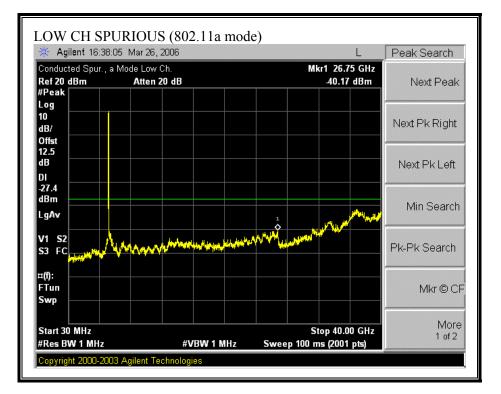
LIMITS

15.407 (b) (1 & 2) For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm / MHz.

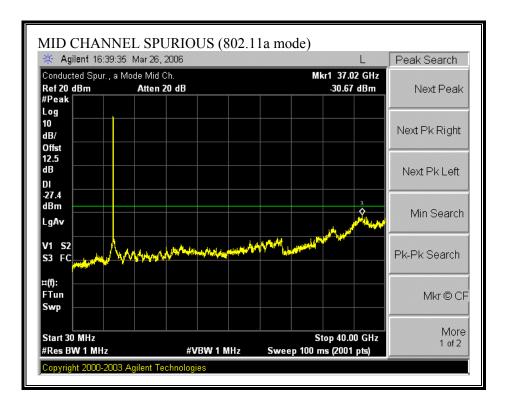
TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

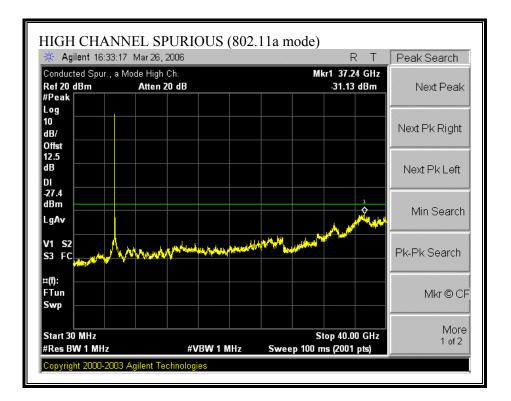
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

RESULTS


No non-compliance noted:

Page 32 of 32


SPURIOUS EMISSIONS (802.11a MODE)

Page 33 of 33

Page 34 of 34

Page 35 of 35

7.1.8. FREQUENCY STABILITY

<u>LIMIT</u>

§15.407 (g) Manufacturers of UNII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation as specified in the user manual.

TEST PROCEDURE

Frequency stability versus environmental temperature

The Host Desktop PC and equipment under test (EUT) were connected to an external AC power supply and the RF output was connected to a frequency counter via feed through attenuator. The Host Desktop PC and EUT were placed inside the temperature chamber, after the temperature stabilized for approximately 20 minutes; the frequency of the output signal was recorded from the counter.

Frequency Stability versus Input Voltage

At room temperature $(20\pm5^{\circ}C)$, an external variable AC power supply was connected to the Host Desktop PC and equipment under test (EUT). The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

RESULTS

No non-compliance noted.

Page 36 of 36

1) Transmit High channel 5320MHz

Linsite Mitching 4	Reference Frequency: High Channel 5.31999625GHz Limit: Within the band of operation (or +- 10 ppm) = 53.199963 kHz										
	Limit: Within the band of operation (or +- 10 ppm) =53.199963kHzPower SupplyEnvironmentFrequency Deviation Measureed with Time Elapse										
(Vac)	Temperature (*C)	(GHz)	Delta (ppm)	Limit (ppm)	Delta (kHz)						
115.00	50	5.319996160	0.017	+- 10	-0.090						
115.00	40	5.319996660	-0.077	+- 10	0.410						
115.00	30	5.319999170	-0.549	+- 10	2.920						
115.00	25	5.319996250	0.000	+- 10	0.000						
115.00	20	5.320005250	-1.692	+- 10	9.000						
115.00	10	5.320013920	-3.321	+- 10	17.670						
115.00	0	5.320022920	-5.013	+- 10	26.670						
115.00	-10	5.320025420	-5.483	+- 10	29.170						
115.00	-20	5.320023300	-5.085	+- 10	27.050						
115.00	-30	5.320011300	-2.829	+- 10	15.050						
97.75	20	5.320006500	-1.927	+- 10	10.250						
132.25	20	5.320006750	-1.974	+- 10	10.500						

Page 37 of 37

2) Transmit Low channel 5180MHz

	Reference Frequency: Low Channel 5.17999625GHz										
	Limit: Within the band of operation (or +- 10 ppm) =51.799963kHzPower SupplyEnvironmentFrequency Deviation Measureed with Time Elapse										
Power Supply	Environment	· · · · · ·									
(Vac)	Temperature (*C)	(GHz)	Delta (ppm)	Limit (ppm)	Delta (kHz)						
115.00	50	5.179997080	-0.160	+- 10	0.830						
115.00	40	5.179995250	0.193	+- 10	-1.000						
115.00	30	5.179999000	-0.531	+- 10	2.750						
115.00	25	5.179996250	0.000	+- 10	0.000						
115.00	20	5.180006420	-1.963	+- 10	10.170						
115.00	10	5.1800155100	-3.718	+- 10	19.260						
115.00	0	5.1800215400	-4.882	+- 10	25.290						
115.00	-10	5.1800252100	-5.591	+- 10	28.960						
115.00	-20	5.1800227000	-5.106	+- 10	26.450						
115.00	-30	5.1800103000	-2.712	+- 10	14.050						
97.75	20	5.180007840	-2.237	+- 10	11.590						
132.25	20	5.180006840	-2.044	+- 10	10.590						

Page 38 of 38

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

<u>LIMITS</u>

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 39 of 39

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

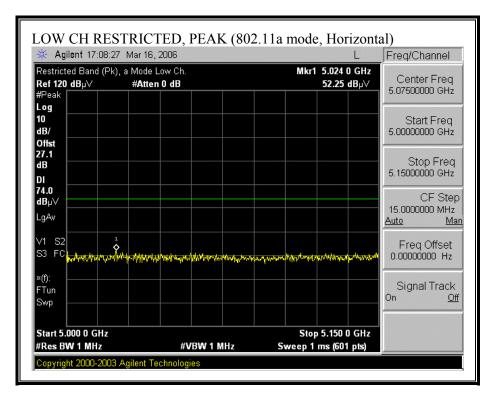
Page 40 of 40

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

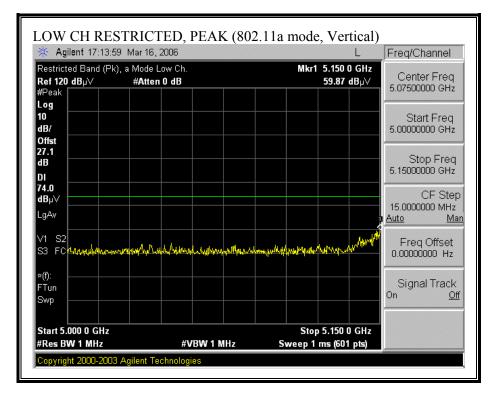

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 41 of 41

7.2.2. TRANSMITTER ABOVE 1 GHZ FOR 5150 TO 5350 MHz BAND

RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, HORIZONTAL)

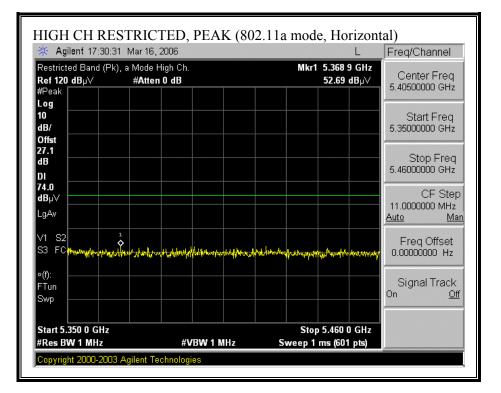


Page 42 of 42

🔆 Agilent 17:09	3:47 Mar 16, 2006	L	Freq/Channel
	Avg),a Mode Low Ch. # Atten 0 dB	Mkr1 5.150 0 GHz 41.04 dBµ∨	Center Freq 5.07500000 GHz
Log 10 dB/ Offst			Start Freq 5.0000000 GHz
dB DI			Stop Freq 5.1500000 GHz
54.0 dBµ∨ LgAv			CF Step 15.000000 MHz <u>Auto Ma</u>
∨1 S2 S3 FC			Freq Offset 0.00000000 Hz
*(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.000 0 GH; #Res BW 1 MHz	z #VBW 10 Hz	Stop 5.150 0 GHz Sweep 11.7 s (601 pts)	

Page 43 of 43

RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, VERTICAL)

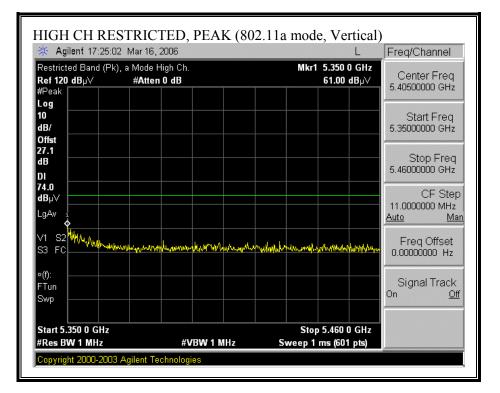


Page 44 of 44

🔆 Agilent 17:18	5:23 Mar 16, 2006	RL	Freq/Channel
Restricted Band (Ref 120 dB µ∨ #Peak	Avg),a Mode Low Ch. # Atten 0 dB	Mkr1 5.150 0 GHz 46.81 dBµ∀	Center Freq 5.07500000 GHz
Log 10 dB/ Offst			Start Freq 5.0000000 GHz
27.1 dB DI			Stop Freq 5.15000000 GHz
54.0 dBµ∨ LgAv			CF Step 15.000000 MHz <u>Auto Mar</u>
V1 S2 S3 FC			Freq Offset 0.00000000 Hz
×(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.000 0 GH #Res BW 1 MHz	z #VBW 10 Hz	Stop 5.150 0 GHz Sweep 11.7 s (601 pts)	

Page 45 of 45

RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, HORIZONTAL)



Page 46 of 46

🔆 Agilent 17:31	:38 Mar 16, 2006	L	Freq/Channel
Ref 120 dBµ∨	wg),a Mode High Ch. #Atten 0 dB	Mkr1 5.350 0 GHz 41.46 dBµ∨	Center Freq 5.40500000 GHz
#Peak			5.40500000 GH2
Log			Start Freq
dB/			5.3500000 GHz
Offst			
27.1			Stop Freq
			5.46000000 GHz
54.0			
dBµ∨			CF Step 11.0000000 MHz
LgAv			Auto Ma
V1 S2			
S3 FC			Freq Offset
1			0.0000000 H2
×(f):			Signal Track
FTun			Signal Track On Off
Swp			
Start 5.350 0 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 0 GHz Sweep 8.577 s (601 pts)	

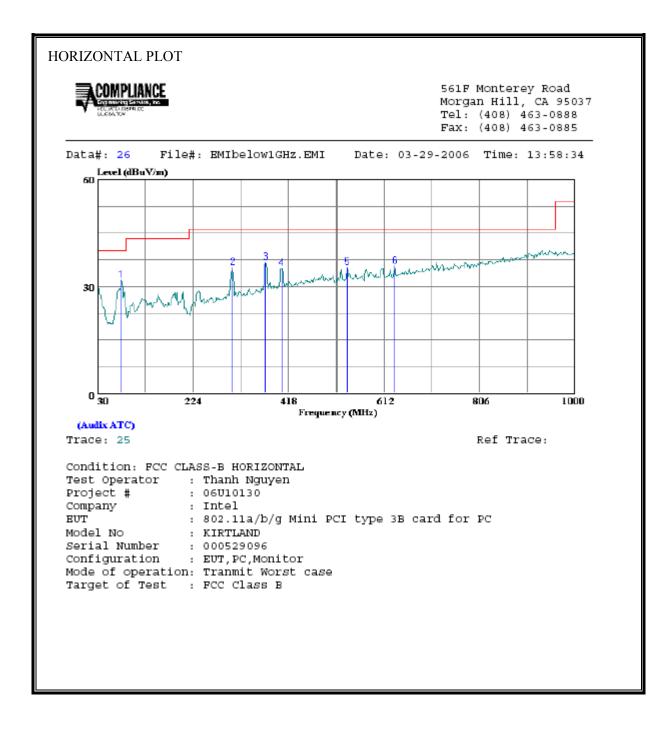
Page 47 of 47

RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, VERTICAL)

Page 48 of 48

🔆 Agilent 17:26:1	2 Mar 16, 2006	L	Freq/Channel
Restricted Band (Av Ref 120_dB µ∨		Mkr1 5.350 0 GHz 47.04 dBµ∀	Center Freq 5.40500000 GHz
#Peak Log			
10 dB/			Start Freq 5.3500000 GHz
Offst 27.1			
dB			Stop Freq 5.4600000 GHz
DI			3.40000000 0112
54.0 dBµ∨			CF Step 11.000000 MHz
LgAv			Auto Ma
V1 S2			Freq Offset
S3 FCi			0.00000000 Hz
×(f):			Signal Track
Swp			On <u>Of</u>
Start 5.350 0 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 0 GHz Sweep 8.577 s (601 pts)	

Page 49 of 49

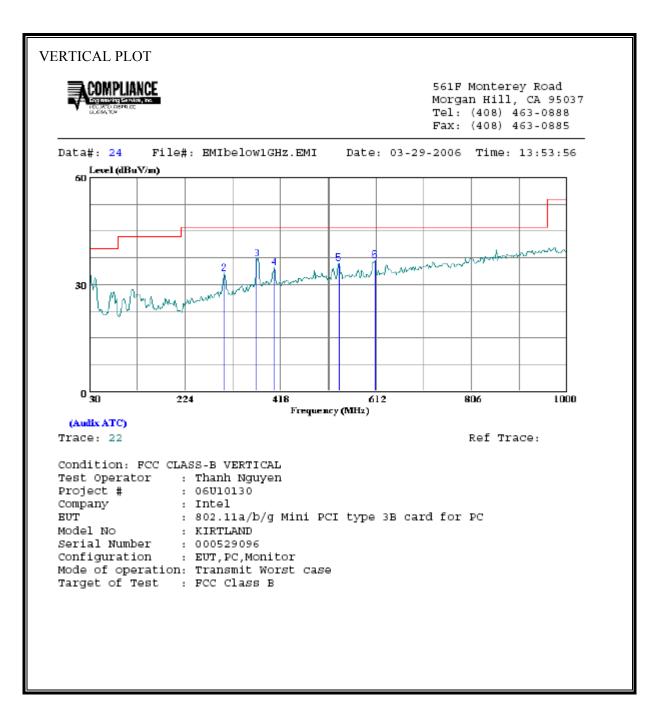

HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

Test En Project : Compan EUT De EUT M/ EUT S/N Test Tau Mode O	nce Ce: gineer: #: 06U1 y: Intel scriptio N: Kirt N: Kirt N: 00054 rget: FC of Opera	rtification Thanh Ngu 0130 n: 802.11 a land 47096(Care CC UNH W ttion: Tx a	a/b/g Mini P d #4) /LAN	lorgan l CI type	3 card	1		Bm							
Test Eq								2							
							-								1.1.1
	orn 1-			nplifer			Pre-am	plifer	26-40GH		н	orn > 180	GHZ		Limit FCC 15.209
I		601 @3m	• 1145 #	Agilent 3	5008A0					-				•	FCC 15.209
	uency Cab			fact -	able		10	foot c	able		LIDE			Pe	ak Measurements
	2 foot			foot c	aple						HPF	Re	ject Filte	R	BW=VBW=1MHz
Tha	nh 1770	/9008	•			•	Thanh	208946	•003		F_7.6GHz	•			rage Measurements 7=1MHz ; VBW=10Hz
f	Dist	Read Plr	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Tim	Pk Mar	Avg Ma	r Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	-			dB	dB	(V/H)
Tx Ch 64,			26.25	27.6	4.0						~ 1		10.5		
10.640 15.960	3.0 3.0	47.38 44.52	36.25 30.44	37.6 40.3	4.0 4.8	-34.2 -32.2	0.0 0.0	0.8 0.7	55.5 58.2	44.3 44.1	74 74	54 54	-18.5 -15.8	-9.7 -9.9	v
21.280	3.0	44.22	30.97	33.5	5.9	-32.2	0.0	0.0	51.4	38.1	74	54	-22.6	-15.9	Noise floor
10.640	3.0	46.28	35.58	37.6	4.0	-34.2	0.0	0.8	54.4	43.7	74	54	- 19.6	- 10.3	Н
15.960	3.0	40.30	30.43	40.3	4.8	-32.2	0.0	0.7	54.0	44.1	74	54	-20.0	-9.9	Н
21.280 Tx ch 52,	3.0	42.75	31.27	33.5	59	-32.2	0.0	0.0	49.9	38.4	74	54	-24.1	-15.6	Noise floor
10.520	3.0	46.57	36.86	37.6	39	-34.4	0.0	0.8	54.5	44.8	74	54	-19.5	-9.2	v
15.780	3.0	43.68	31.22	40.3	4.8	-32.2	0.0	0.7	57.2	44.7	74	54	-16.8	-9.3	v
21.040	3.0	42.16	30.76	33.5	5.8	-32.2	0.0	0.0	49.3	37.9	74	54	-24.7	- 16.1	Noise floor
10.520	3.0	47.34	32.43	37.6	39	-34.4	0.0	0.8	55.3	40.3	74	54	- 18.7	-13.7	Н
15.780	3.0	38.66	30.26	40.3	4.8	-32.2	0.0	0.7	52.2	43.8	74	54	-21.8	-10.2	H
21.040 Tx ch 36,	3.0 5180MH	42.86	31.78	33.5	5.8	-32.2	0.0	0.0	50.0	38.9	74	54	-24.0	-15.1	Noise floor
10.360	3.0	51.84	39.86	37.6	39	-34.6	0.0	0.8	59.5	47.6	74	54	-14.5	-6.4	v
15.540	3.0	45.73	30.27	40.1	4.7	-32.3	0.0	0.7	59.0	43.6	74	54	-15.0	-10.4	v
20.720	3.0	44.00	30.79	33.5	5.8	-32.2	0.0	0.1	51.2	38.0	74	54	-22.8	-16.0	Noise floor
10.340	3.0	49.55	37.40	37.6	39	-34.6	0.0	0.8	57.2	45.1	74	54	-16.8	-8.9	H
15.510 20.680	3.0 3.0	39.48 43.63	30.35 30.79	40.1 33.5	4.7 5.8	-32.3 -32.2	0.0 0.0	0.7 0.1	52.8 50.8	43.6 38.0	74 74	54 54	-21.2 -23.2	-10.4 -16.0	H Noise floor
_0.000			20112									5.			
Ne ether l	Harmonic	s emissions	were detected	above 3rd	l harmo	nic									
									1						
f Measurement Frequency Amp Preamp Gain Avg Lim Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Pk Lim Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Avg Mar Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Pk Mar Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Imagin vs. Peak Limit															

Page 50 of 50

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



Page 51 of 51

HORIZ	ONTAL DATA						
		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHZ	dBuV	dB	dBuV/m	dBuV/m	dB	
1	77.530	22.76	9.03	31.79	40.00	-8.21	Peak
2	305.480	19.52	15.80	35.32	46.00	-10.68	Peak
3	372.410	19.21	17.45	36.66	46.00	-9.34	Peak
4	404.420	16.91	18.15	35.06	46.00	-10.94	Peak
5	536.340	14.59	20.73	35.32	46.00	-10.68	Peak
6	633.340	13.59	22.05	35.64	46.00	-10.36	Peak

Page 52 of 52

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 53 of 53

	Read					
Freq		Factor	Level	Limit Line		Remark
MHZ	dBuV	dB	dBuV/m	dBuV/m	dB	
30.970	12.21	20.45	32.66	40.00	-7.34	Peak
304.510	17.33	15.78	33.11	46.00	-12.89	Peak
370.470	19.76	17.40	37.16	46.00	-8.84	Peak
406.360	16.55	18.20	34.74	46.00	-11.26	Peak
535.370	15.19	20.71	35.90	46.00	-10.10	Peak
609.090	15.17	21.66	36.83	46.00	-9.17	Peak
	MHZ 30.970 304.510 370.470 406.360 535.370	MHz dBuV 30.970 12.21 304.510 17.33 370.470 19.76 406.360 16.55 535.370 15.19	MHz dBuV dB 30.970 12.21 20.45 304.510 17.33 15.78 370.470 19.76 17.40 406.360 16.55 18.20 535.370 15.19 20.71	MHz dBuV dB dBuV/m 30.970 12.21 20.45 32.66 304.510 17.33 15.78 33.11 370.470 19.76 17.40 37.16 406.360 16.55 18.20 34.74 535.370 15.19 20.71 35.90	MHz dBuV dB dBuV/m dBuV/m 30.970 12.21 20.45 32.66 40.00 304.510 17.33 15.78 33.11 46.00 370.470 19.76 17.40 37.16 46.00 406.360 16.55 18.20 34.74 46.00 535.370 15.19 20.71 35.90 46.00	30.970 12.21 20.45 32.66 40.00 -7.34 304.510 17.33 15.78 33.11 46.00 -12.89 370.470 19.76 17.40 37.16 46.00 -8.84 406.360 16.55 18.20 34.74 46.00 -11.26 535.370 15.19 20.71 35.90 46.00 -10.10

Page 54 of 54

7.3. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 "
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

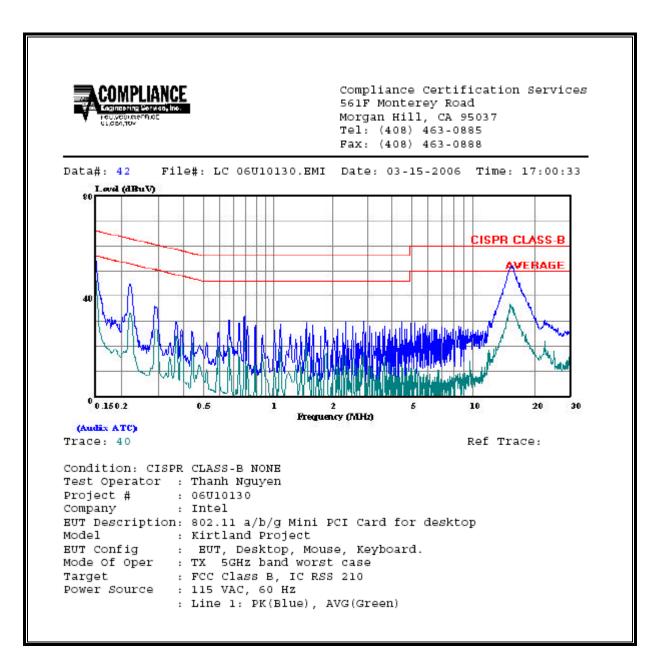
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

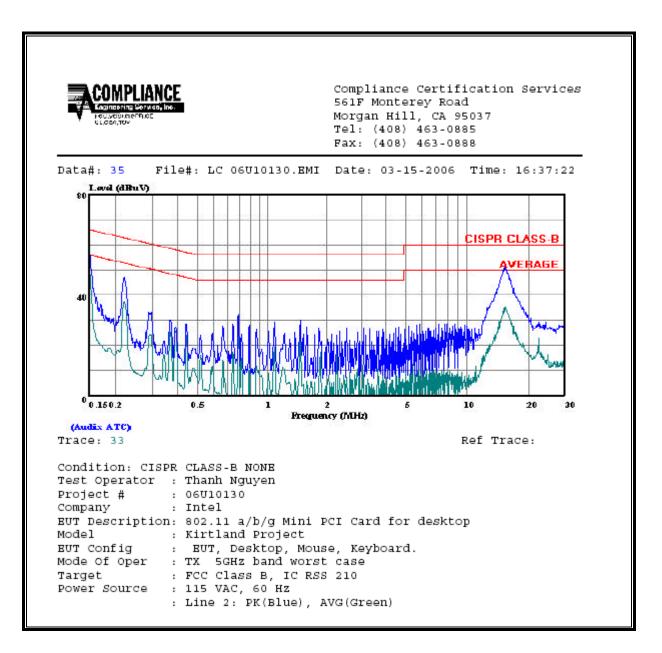
RESULTS

No non-compliance noted:


Page 55 of 55

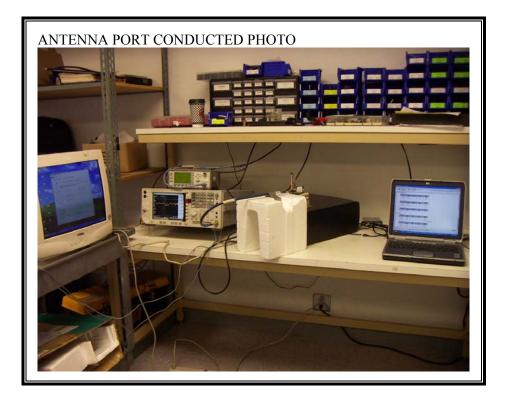
6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz) TX_5GHz									
Freq.	Reading			Closs	Limit	EN_B	Margin		Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.15	59.44		51.36	0.00	66.00	56.00	-6.56	-4.64	L1
0.22	44.64		33.41	0.00	62.86	52.86	-18.22	-19.45	L1
15.47	51.86		36.37	0.00	60.00	50.00	-8.14	-13.63	L1
0.15	59.06		51.33	0.00	66.00	56.00	-6.94	-4.67	L2
0.22	46.96		37.35	0.00	62.78	52.78	-15.82	-15.43	L2
15.63	50.58		35.10	0.00	60.00	50.00	-9.42	-14.90	L2
6 Worst Data									


Page 56 of 56

LINE 1 RESULTS

Page 57 of 57


LINE 2 RESULTS

Page 58 of 58

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP



Page 59 of 59

RADIATED RF MEASUREMENT SETUP

Page 60 of 60

Page 61 of 61

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 62 of 62

END OF REPORT

Page 63 of 63