

Global United Technology Services Co., Ltd.

Report No.: GTSE15040040101

FCC REPORT

Applicant: Coros Wearables Inc.

Address of Applicant: 2755 S. Norfolk St. Apt 311, San Mateo, CA 94403 USA

Equipment Under Test (EUT)

Product Name: Smart Watch

Model No.: Coros LIVE

FCC ID: 2AEHH-CB08

FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014 **Applicable standards:**

Date of sample receipt: April 08, 2015

Date of Test: April 08-14, 2015

Date of report issued: April 14, 2015

Test Result: PASS *

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	April 14, 2015	Original

Prepared By:	Bolward. Pan	Date:	April 14, 2015
	Project Engineer	<u> </u>	
Check By:	hank your	Date:	April 14, 2015
	Reviewer		

3 Contents

			Page
1	COV	'ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1 7.6.2		
	7.0.2 7.7	Padiated Emission Method	
	7.7.1		
	7.7.1		
8		T SETUP PHOTO	
۵		CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Coros Wearables Inc.
Address of Applicant:	2755 S. Norfolk St. Apt 311,San Mateo, CA 94403 USA
Manufacturer:	Coros Wearables Inc.
Address of Manufacturer:	2755 S. Norfolk St. Apt 311,San Mateo, CA 94403 USA

5.2 General Description of EUT

Product Name:	Smart Watch
Model No.:	Coros LIVE
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	Integral antenna
Antenna Gain:	3dBi (declare by Applicant)
Power Supply:	DC 3.7V 160mAh Li-ion Battery
	Charging voltage: DC 5.0V, 1A

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
•	. :	. !!	. !	• !	•		. !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.3 Test mode

	Transmitting mode	Keep the EUT in continuously transmitting mode
--	-------------------	--

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Apple	PC	A1278	C1MN99ERDTY3	DoC

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 29 2015	Mar. 28 2016	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jul. 01 2014	Jun 30 2015	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 01 2014	Jun 30 2015	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jul. 01 2014	Jun 30 2015	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 27 2014	June 26 2015	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 28 2015	Mar. 27 2016	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 29 2015	Mar. 28 2016	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 29 2015	Mar. 28 2016	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 29 2015	Mar. 28 2016	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 29 2015	Mar. 28 2016	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 01 2014	Jun. 30, 2015	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 01 2014	Jun. 30, 2015	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 27 2014	June 26 2015	
16	Band filter	Amindeon	82346	GTS219	Mar. 29 2015	Mar. 28 2016	
17	Power Meter	Anritsu	ML2495A	GTS540	July 01 2014	June 30 2015	
18	Power Sensor	Anritsu	MA2411B	GTS541	July 01 2014	June 30 2015	

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	July 01 2014	June 30 2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015		
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Gen	eral used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015

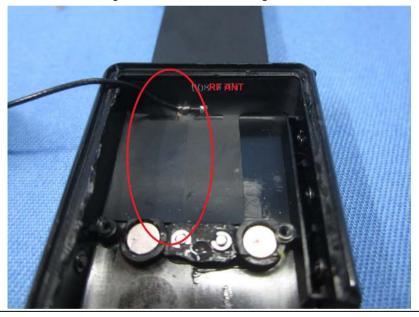
Page 8 of 40

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

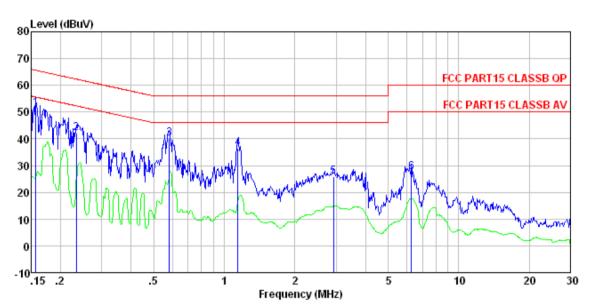
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is integral antenna, the best case gain of the antenna is 3dBi

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.4:2009		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto	
Limit:	Francisco de CALLEY	Limit (c	dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	n of the frequency.	
Test setup:	Reference Plane		
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	
Test procedure:	The E.U.T is connected to stabilization network (L.I.S. impedance for the measuring to the measuring terms of the measuring terms.)	N.). This provides a 50	
	2. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs).	n/50uH coupling imped	lance with 50ohm
	Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.4: 2	d the maximum emission all of the interface cab	on, the relative les must be changed
Test Instruments:	Refer to section 6.0 for details	·	
Test mode:	Refer to section 5.3 for details	·	
Test results:	Pass		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

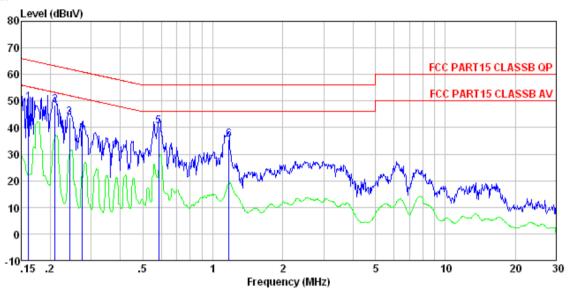
Measurement data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0401RF

Test mode : Bluetooth mode


Test Engineer: Qing

	Freq		LISN Factor					Remark
	MHz	dBu₹	d₿	dB	dBuV	dBuV	dB	
1 2 3	0.234	41.98 39.97	0.15 0.12 0.13 0.13	0.12 0.12	42. 22 40. 22	62.30 56.00	-20.08 -15.78	QP QP
4 5 6	2.931	25.63	0.15 0.23	0.15	25.93	56.00	-30.07	QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

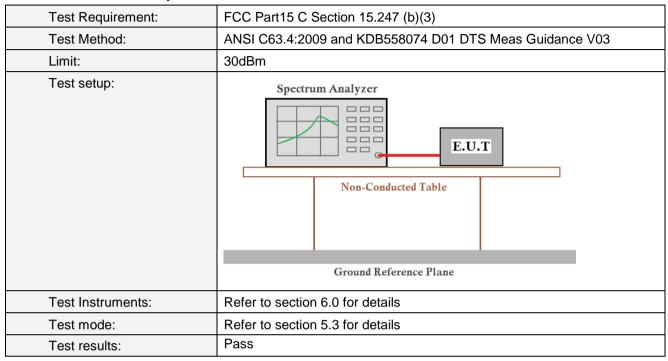
Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0401RF

Test mode : Bluetooth mode

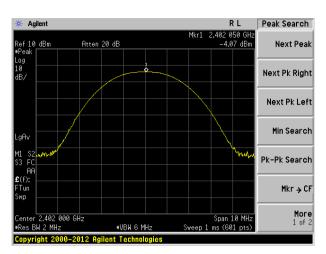
Test Engineer: Qing


	Freq		LISN Factor					Remark
	MHz	dBuV	dB	₫B	dBuV	dBuV	dB	
1 2 3 4 5	0. 242 0. 274	48.30 43.75 38.44	0.07	0.12 0.10	48.50 43.93 38.60	63. 23 62. 04 60. 98	-14.73 -18.11 -22.38	QP QP QP
6	1.172	35.36	0.08	0.13	35.57	56.00	-20.43	QP

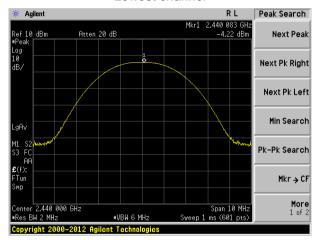
Notes:

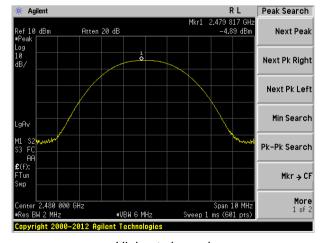
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

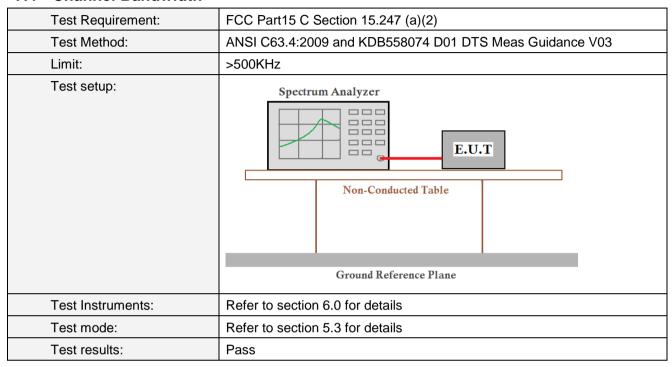


Measurement Data


Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-4.07		
Middle	-4.22	30.00	Pass
Highest	-4.89		

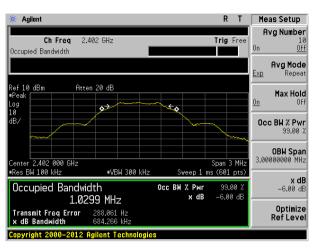

Test plot as follows:

Lowest channel

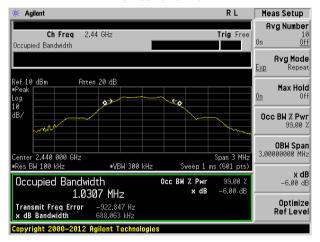

Middle channel

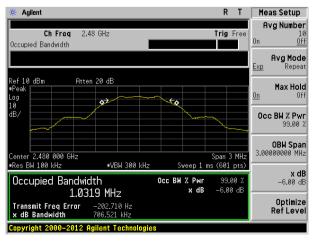
Highest channel

7.4 Channel Bandwidth

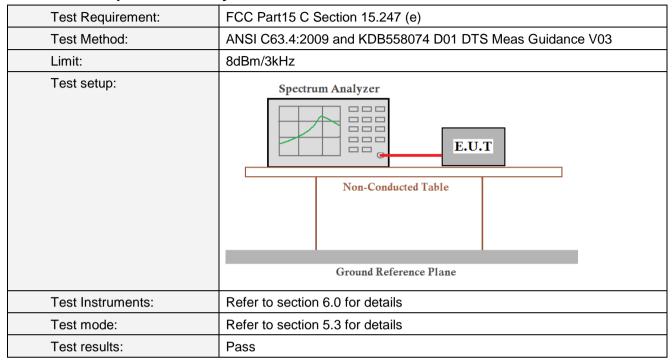


Measurement Data


Test channel	Channel Bandwidth (KHz)	Limit(KHz)	Result
Lowest	684.266		
Middle	688.063	>500	Pass
Highest	706.521		

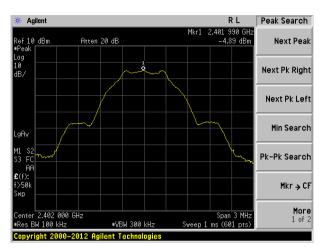

Test plot as follows:

Lowest channel

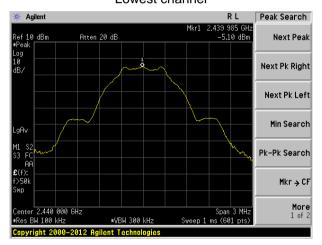

Middle channel

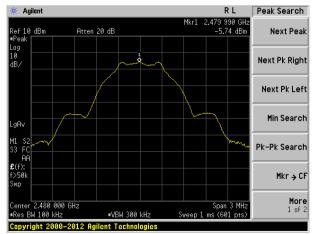
Highest channel

7.5 Power Spectral Density



Measurement Data

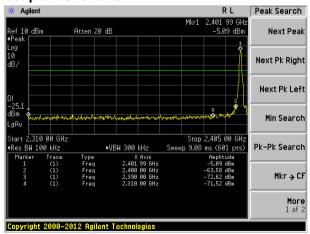

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-4.89		
Middle	-5.10	8.00	Pass
Highest	-5.74		

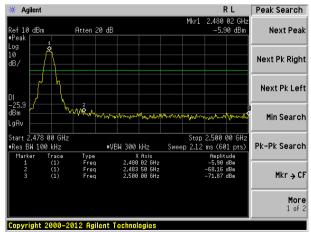

Test plot as follows:

Lowest channel

Middle channel

Highest channel




7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Test plot as follows:

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.4: 20				
Test Frequency Range:		t bands were	tested, only	the worst b	and's (2310MHz to
Test site:	Measurement D				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
		Peak	1MHz	3MHz	Peak
	Above 1GHz	RMS	1MHz	3MHz	Average
Limit:	Freque		Limit (dBuV/	·	Value
			54.0	,	Average
	Above 1	GHz –	74.0		Peak
Test setup:	EUT Turn Table 0	3m 4m 4m 8m Im A A		Antenna Tower Horn Antenna Spectrum Analyzer Amplifier	
Test Procedure:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-rece Specified Bail 6. If the emission limit specified the EUT wou 10dB margin average meth 7. The radiation And found the second	a 3 meter can be position of the set 3 meters of was mounted the ight is varied termine the mad vertical polar of the set	nber. The take highest race away from the don the top of from one maximum value izations of the con, the EUT valued from 0 decents set to Peake aximum Hole EUT in peake could be stop Otherwise the sted one by the dand then rest are performoning which it	ole was rotaliation. The interference of a variable of the field of the field of the antenna and was arrangents from 1 mgrees to 360 kg. The discounting the discounting of the emission one using peported in a med in X, Y, to is worse case interference of the control of the emission one using peported in a med in X, Y, to is worse case interference of the interfer	e-height antenna meters above the strength. Both are set to make the ed to its worst case neter to 4 meters of degrees to find anction and lodB lower than the e peak values of s that did not have eak, quasi-peak or
Test Instruments:	Refer to section				
Test mode:	Refer to section	5.3 for details			
Test results:	Pass				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel: Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	46.03	27.91	5.30	30.37	48.87	74.00	-25.13	Vertical
2390.00	45.67	27.59	5.38	30.18	48.46	74.00	-25.54	Vertical
2400.00	50.11	27.58	5.39	30.18	52.90	74.00	-21.10	Vertical
2310.00	46.08	27.91	5.30	30.37	48.92	74.00	-25.08	Horizontal
2390.00	46.08	27.59	5.38	30.18	48.87	74.00	-25.13	Horizontal
2400.00	47.32	27.58	5.39	30.18	50.11	74.00	-23.89	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	35.61	27.91	5.30	30.37	38.45	54.00	-15.55	Vertical
2390.00	35.25	27.59	5.38	30.18	38.04	54.00	-15.96	Vertical
2400.00	37.36	27.58	5.39	30.18	40.15	54.00	-13.85	Vertical
2310.00	35.60	27.91	5.30	30.37	38.44	54.00	-15.56	Horizontal
2390.00	35.32	27.59	5.38	30.18	38.11	54.00	-15.89	Horizontal
2400.00	36.06	27.58	5.39	30.18	38.85	54.00	-15.15	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	47.00	27.53	5.47	29.93	50.07	74.00	-23.93	Vertical
2500.00	44.99	27.55	5.49	29.93	48.10	74.00	-25.90	Vertical
2483.50	44.70	27.53	5.47	29.93	47.77	74.00	-26.23	Horizontal
2500.00	45.19	27.55	5.49	29.93	48.30	74.00	-25.70	Horizontal

Average value:

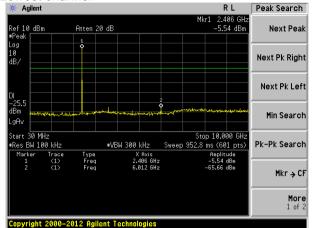
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.88	27.53	5.47	29.93	37.95	54.00	-16.05	Vertical
2500.00	33.80	27.55	5.49	29.93	36.91	54.00	-17.09	Vertical
2483.50	35.05	27.53	5.47	29.93	38.12	54.00	-15.88	Horizontal
2500.00	33.74	27.55	5.49	29.93	36.85	54.00	-17.15	Horizontal

Remark:

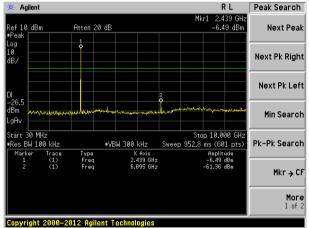
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

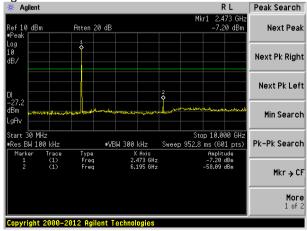
7.7 Spurious Emission

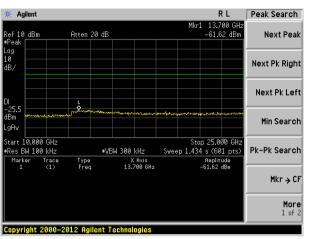

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

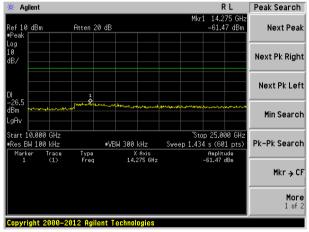

Test plot as follows:

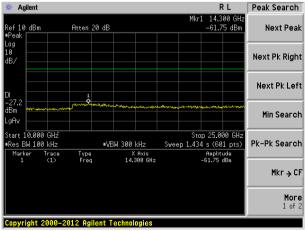
Lowest channel


30MHz~10GHz



30MHz~10GHz


Highest channel


30MHz~10GHz

10GHz~25GHz

10GHz~25GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.4: 2009									
Test Frequency Range:	30MHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	Frequency Detector RBW VBW								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above 1G112	RMS	1MHz	3MHz	Average					
Limit:	Frequen	су	Limit (dBuV/	/m @3m)	Value					
	30MHz-88	MHz	40.0	0	Quasi-peak					
	88MHz-216	6MHz	43.5	0	Quasi-peak					
	216MHz-96	0MHz	46.0	0	Quasi-peak					
	960MHz-1	GHz	54.0	0	Quasi-peak					
	Abovo 10	\U-7	54.0	0	Average					
	Above 10	Above 1GHz 74.00								
	Ground Plane — Above 1GHz	4m	Hot	Search Antenna RF Test Receiver Intenna Tower rn Antenna etrum						

Toot Propodure:	4. The FLIT was placed on the top of a retation table 0.0 material at the
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
49.53	26.61	15.28	0.77	30.00	12.66	40.00	-27.34	Vertical
100.23	28.26	15.11	1.19	29.70	14.86	43.50	-28.64	Vertical
245.95	32.34	14.08	2.10	29.61	18.91	46.00	-27.09	Vertical
492.47	32.24	18.39	3.27	29.32	24.58	46.00	-21.42	Vertical
768.75	29.07	21.68	4.35	29.20	25.90	46.00	-20.10	Vertical
932.27	27.93	23.31	4.98	29.10	27.12	46.00	-18.88	Vertical
42.30	26.36	15.57	0.69	30.03	12.59	40.00	-27.41	Horizontal
162.61	33.04	10.74	1.65	29.35	16.08	43.50	-27.42	Horizontal
303.54	30.37	15.11	2.38	29.98	17.88	46.00	-28.12	Horizontal
472.18	25.53	17.89	3.19	29.35	17.26	46.00	-28.74	Horizontal
691.99	24.85	20.78	4.06	29.21	20.48	46.00	-25.52	Horizontal
932.27	25.40	23.31	4.98	29.10	24.59	46.00	-21.41	Horizontal

■ Above 1GHz

Test channel	Test channel: Lowest							
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.21	31.78	8.60	32.09	44.50	74.00	-29.50	Vertical
7206.00	38.31	36.15	11.65	32.00	54.11	74.00	-19.89	Vertical
9608.00	36.46	37.95	14.14	31.62	56.93	74.00	-17.07	Vertical
12010.00	28.76	39.08	15.03	35.51	47.36	74.00	-26.64	Vertical
14412.00	*					74.00		Vertical
4804.00	36.50	31.78	8.60	32.09	44.79	74.00	-29.21	Horizontal
7206.00	42.68	36.15	11.65	32.00	58.48	74.00	-15.52	Horizontal
9608.00	30.81	37.95	14.14	31.62	51.28	74.00	-22.72	Horizontal
12010.00	29.08	39.08	15.03	35.51	47.68	74.00	-26.32	Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	26.77	31.78	8.60	32.09	35.06	54.00	-18.94	Vertical
7206.00	28.53	36.15	11.65	32.00	44.33	54.00	-9.67	Vertical
9608.00	26.65	37.95	14.14	31.62	47.12	54.00	-6.88	Vertical
12010.00	18.87	39.08	15.03	35.51	37.47	54.00	-16.53	Vertical
14412.00	*					54.00		Vertical
4804.00	26.93	31.78	8.60	32.09	35.22	54.00	-18.78	Horizontal
7206.00	32.66	36.15	11.65	32.00	48.46	54.00	-5.54	Horizontal
9608.00	21.62	37.95	14.14	31.62	42.09	54.00	-11.91	Horizontal
12010.00	18.34	39.08	15.03	35.51	36.94	54.00	-17.06	Horizontal
14412.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			Mid	ldle			
Peak value:		T	1	T	1		1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	38.36	31.85	8.66	32.12	46.75	74.00	-27.25	Vertical
7320.00	37.01	36.37	11.72	31.89	53.21	74.00	-20.79	Vertical
9760.00	31.88	38.35	14.25	31.59	52.89	74.00	-21.11	Vertical
12200.00	29.56	38.92	15.14	35.65	47.97	74.00	-26.03	Vertical
14652.00	*					74.00		Vertical
4880.00	36.65	31.85	8.66	32.12	45.04	74.00	-28.96	Horizontal
7320.00	41.39	36.37	11.72	31.89	57.59	74.00	-16.41	Horizontal
9760.00	30.75	38.35	14.25	31.59	51.76	74.00	-22.24	Horizontal
12200.00	28.39	38.92	15.14	35.65	46.80	74.00	-27.20	Horizontal
14652.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	28.05	31.85	8.66	32.12	36.44	54.00	-17.56	Vertical
7320.00	31.86	36.37	11.72	31.89	48.06	54.00	-5.94	Vertical
9760.00	20.96	38.35	14.25	31.59	41.97	54.00	-12.03	Vertical
12200.00	19.03	38.92	15.14	35.65	37.44	54.00	-16.56	Vertical
14652.00	*					54.00		Vertical
4880.00	28.27	31.85	8.66	32.12	36.66	54.00	-17.34	Horizontal
7320.00	27.14	36.37	11.72	31.89	43.34	54.00	-10.66	Horizontal
9760.00	22.32	38.35	14.25	31.59	43.33	54.00	-10.67	Horizontal
12200.00	19.52	38.92	15.14	35.65	37.93	54.00	-16.07	Horizontal
14652.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel	:			Hig	hest			
Peak value:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.14	31.93	8.73	32.16	43.64	74.00	-30.36	Vertical
7440.00	34.02	36.59	11.79	31.78	50.62	74.00	-23.38	Vertical
9920.00	33.24	38.81	14.38	31.88	54.55	74.00	-19.45	Vertical
12400.00	28.75	38.76	15.27	35.27	47.51	74.00	-26.49	Vertical
14880.00	*					74.00		Vertical
4960.00	34.08	31.93	8.73	32.16	42.58	74.00	-31.42	Horizontal
7440.00	39.36	36.59	11.79	31.78	55.96	74.00	-18.04	Horizontal
9920.00	29.03	38.81	14.38	31.88	50.34	74.00	-23.66	Horizontal
12400.00	29.81	38.76	15.27	35.27	48.57	74.00	-25.43	Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:	•	l				l	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.21	31.93	8.73	32.16	33.71	54.00	-20.29	Vertical
7440.00	24.70	36.59	11.79	31.78	41.30	54.00	-12.70	Vertical
9920.00	23.87	38.81	14.38	31.88	45.18	54.00	-8.82	Vertical
12400.00	19.29	38.76	15.27	35.27	38.05	54.00	-15.95	Vertical
14880.00	*					54.00		Vertical
4960.00	23.93	31.93	8.73	32.16	32.43	54.00	-21.57	Horizontal
7440.00	29.43	36.59	11.79	31.78	46.03	54.00	-7.97	Horizontal
9920.00	19.62	38.81	14.38	31.88	40.93	54.00	-13.07	Horizontal
12400.00	19.73	38.76	15.27	35.27	38.49	54.00	-15.51	Horizontal
14880.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

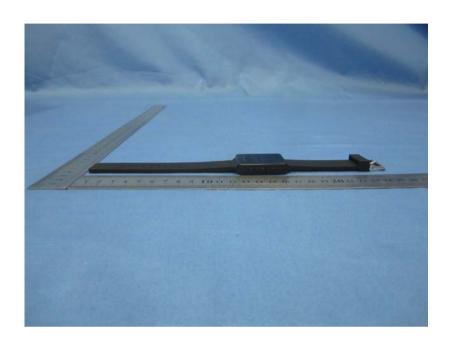
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

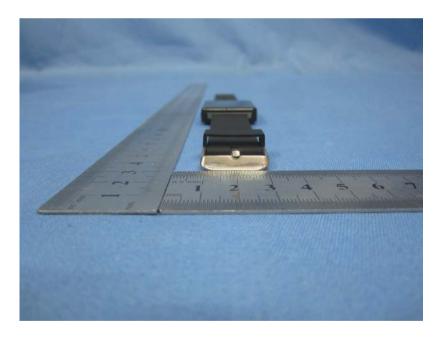
8 Test Setup Photo

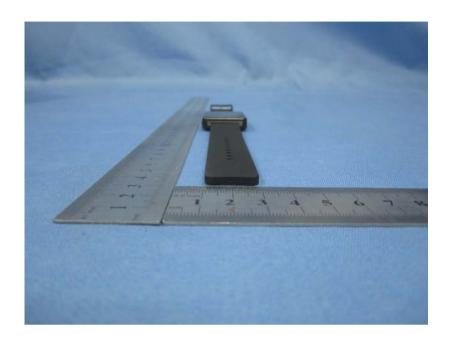
Radiated Emission

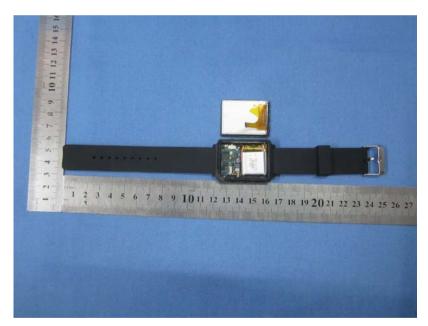
Conducted Emission

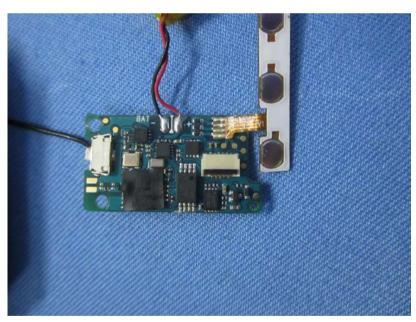

9 EUT Constructional Details

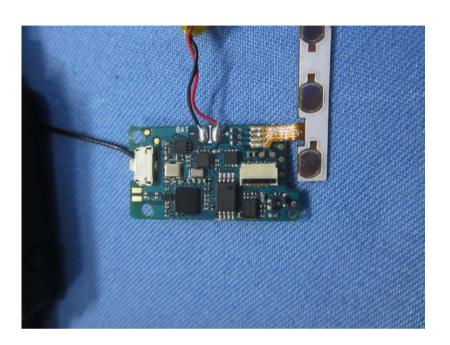


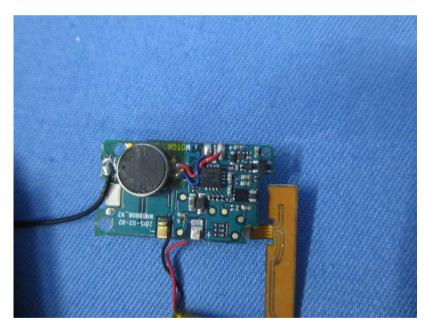


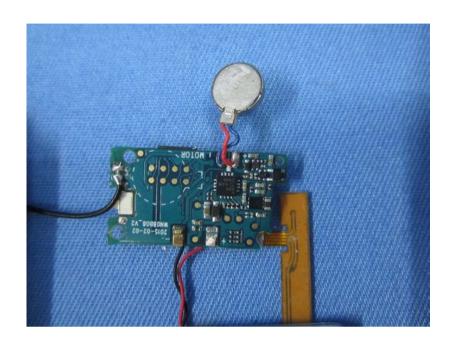












-----End-----