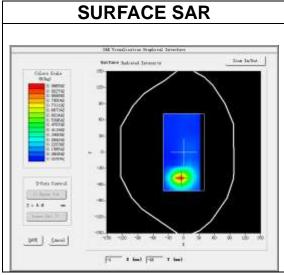
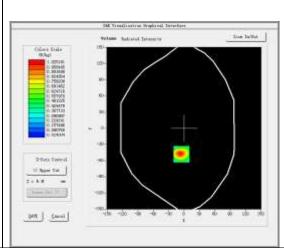


Cartificate #4295.01 Page 161 of 244

Report No.: S24091001706001

MEASUREMENT 32

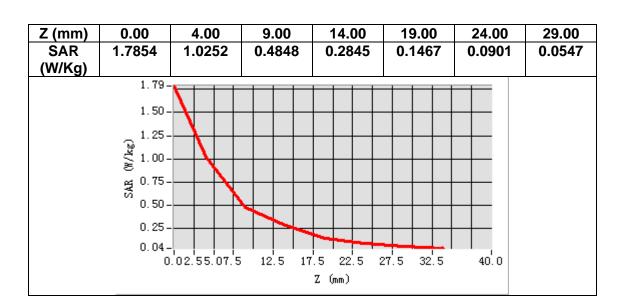

Date of measurement: 13/10/2024

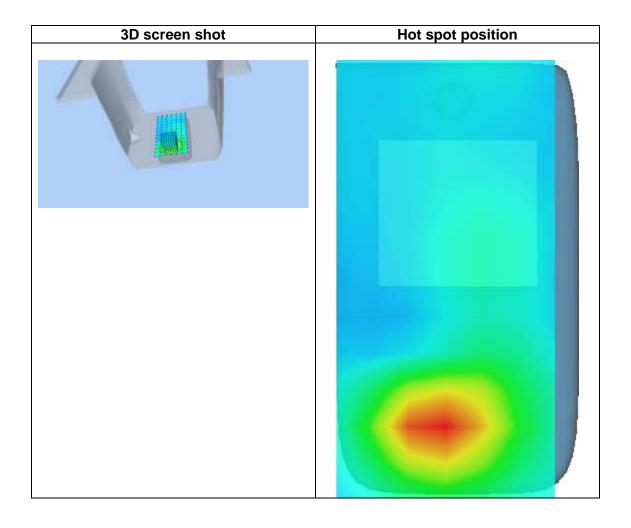

A. Experimental conditions.

7 11 = A D O I I I I I I I I I I I I I I I I I I		
Area Scan	dx=12mm dy=12mm, h= 5.00 mm	
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm	
Phantom	Validation plane	
Device Position	<u>Body</u>	
<u>Band</u>	LTE band 41	
Channels	<u>Middle</u>	
Signal	LTE (Crest factor: 1.0)	
ConvF	<u>2.51</u>	

B. SAR Measurement Results

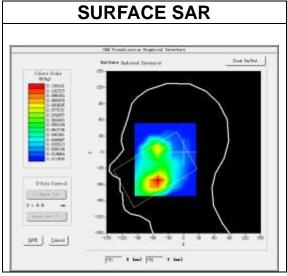
<u> </u>		
Frequency (MHz)	2593.000000	
Relative permittivity (real part)	39.004242	
Relative permittivity (imaginary part)	14.080588	
Conductivity (S/m)	2.028387	
Variation (%)	2.430000	

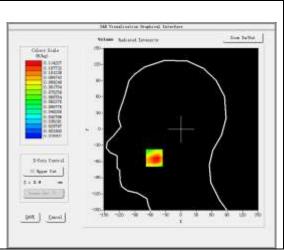

VOLUME SAR


Maximum location: X=-5.00, Y=-48.00 SAR Peak: 1.67 W/kg

SAR 10g (W/Kg)	0.472978
SAR 1g (W/Kg)	0.970560

MEASUREMENT 33


Date of measurement: 13/9/2024

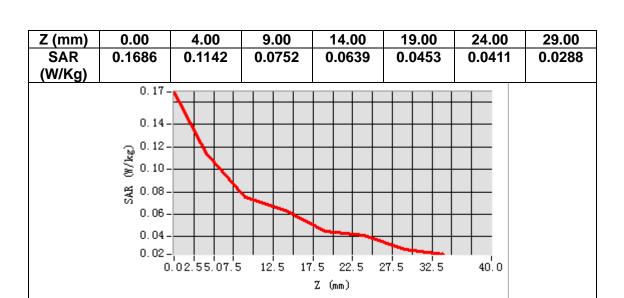

A. Experimental conditions.

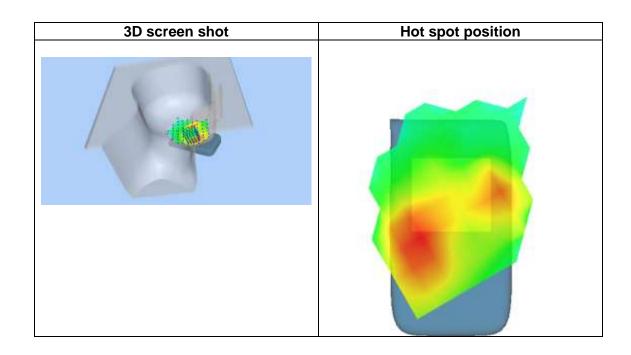
- 11 =	<u> </u>	
Area Scan	dx=15mm dy=15mm, h= 5.00 mm	
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	<u>Left head</u>	
Device Position	<u>Cheek</u>	
<u>Band</u>	FDDBand66	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	(Crest factor: 1.0)	
ConvF	2.45	

B. SAR Measurement Results

Frequency (MHz)	1745.000000	
Relative permittivity (real part)	39.716206	
Relative permittivity (imaginary part)	13.676889	
Conductivity (S/m)	1.325898	
Variation (%)	4.250000	

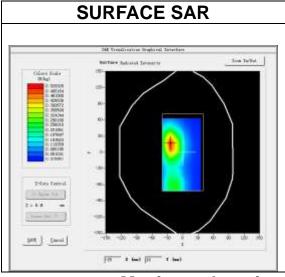
VOLUME SAR

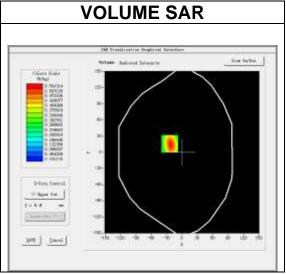

Maximum location: X=-52.00, Y=-53.00


SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.075440
SAR 1g (W/Kg)	0.111881

MEASUREMENT 34

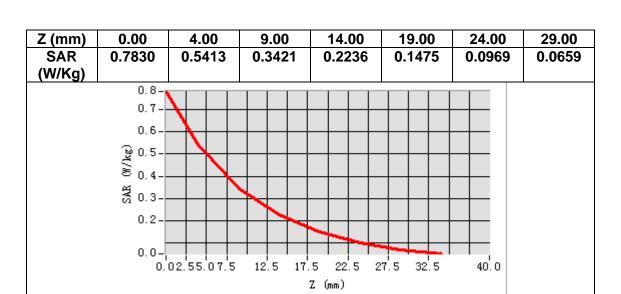

Date of measurement: 13/9/2024

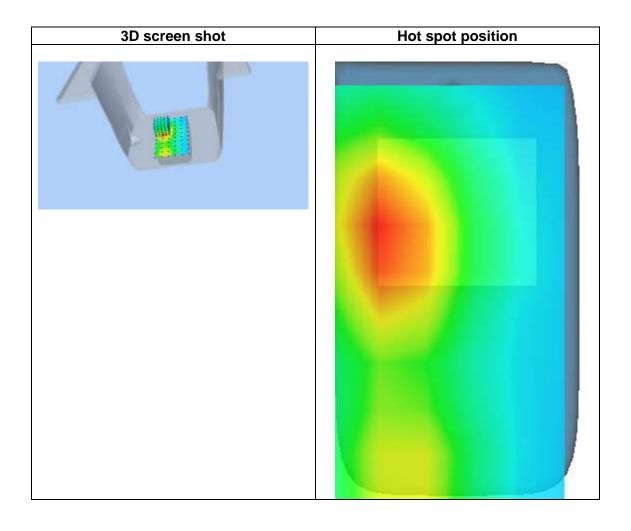

A. Experimental conditions.

7 ti = 2/ por initionitali o o nantionio:		
<u>Area Scan</u>	dx=15mm dy=15mm, h= 5.00 mm	
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	Validation plane	
Device Position	<u>Body</u>	
<u>Band</u>	FDDBand66	
<u>Channels</u>	<u>Middle</u>	
Signal	(Crest factor: 1.0)	
ConvF	2.45	

B. SAR Measurement Results

Tit moacaromont recare	
Frequency (MHz)	1745.000000
Relative permittivity (real part)	39.716206
Relative permittivity (imaginary part)	13.676889
Conductivity (S/m)	1.325898
Variation (%)	-0.800000




Maximum location: X=-24.00, Y=16.00

SAR Peak: 0.79 W/kg

SAR 10g (W/Kg)	0.310315
SAR 1g (W/Kg)	0.522298

13. Appendix D. Calibration Certificate

Table of contents
E Field Probe - 3423-EPGO-426
E Field Probe - 4024-EPGO-442
750 MHz Dipole - SN 03/15 DIP 0G750-355
835 MHz Dipole - SN 03/15 DIP 0G835-347
1800 MHz Dipole - SN 03/15 DIP 1G800-349
1900 MHz Dipole - SN 03/15 DIP 1G900-350
2450 MHz Dipole - SN 03/15 DIP 2G450-352
2600 MHz Dipole - SN 03/15 DIP 2G600-356
5000-6000 MHz Dipole - SN 13/14 WGA 33

COMOSAR E-Field Probe Calibration Report

Ref: ACR.261.11.23.BES.A

Report No.: S24091001706001

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 3423-EPGO-426

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 09/18/2023

Accreditations #2-6789 Scope available on www.cofrac.fr

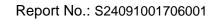
The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 261 11.23 BES.A


	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	9/18/2023	(28)
Checked & approved by:	Jérôme Luc	Technical Manager	9/18/2023	25
Authorized by:	Yann Toutain	Laboratory Director	9/19/2023	Yana TOUTACLA

Signature Yann numérique de Yann Toutain ID Toutain ID Date: 2023.09.19 09:08:14 +02'00"

	Customer Name
Distribution:	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
A	Cyrille ONNEE	9/18/2023	Initial release
	1		
	1		+

Ref ACR 261 11.23 BES A

TABLE OF CONTENTS

L	Dev	rice Under Test4	
2		duct Description4	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Sensitivity	4
	3.2	Linearity	5
	3.3	Isotropy	5
	3.4	Boundary Effect	5
4	Me	asurement Uncertainty6	
5	Cal	ibration Results6	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Ver	ification Results8	
7	List	t of Equipment9	

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 261 11 23 BES A

DEVICE UNDER TEST

Device Under Test			
Device Type COMOSAR DOSIMETRIC E FIELD			
Manufacturer	MVG		
Model	SSE2		
Serial Number	3423-EPGO-426		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.261 MΩ		
	Dipole 2: R2=0.213 MΩ		
	Dipole 3: R3=0.233 MΩ		

PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page 172 of 244

Ref. ACR 261 11 23 BES A

Report No.: S24091001706001

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{de} along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2 d_{\mathrm{step}}} \, \frac{\left(\mathrm{e}^{-d_{\mathrm{eq}}/(\delta \rho)}\right)}{\delta / 2} \quad \mathrm{for} \, \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \; \mathrm{mm}$$

where

SARuncertainty is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 Δ_{step} is the separation distance between the first and second measurement points that

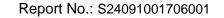
are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SARbe in percent of SAR is the deviation between the measured SAR value, at the


distance dbe from the boundary, and the analytical SAR value.

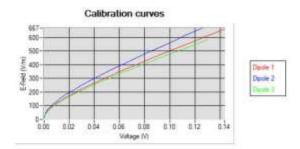
The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%).

Ref. ACR 261 11 23 BES A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition			
Liquid Temperature 20 +/- 1 °C			
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

5.1 <u>CALIBRATION IN AIR</u>

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe

Normi=dipole sensitivity given below for the 3 channels of the probe

Page: 6/10

Ref. ACR 261 11 23 BES A

Report No.: S24091001706001

Normx dipole	Normy dipole	Normz dipole
1 (μV/(V/m) ²)	2 (μV/(V/m) ²)	3 (μV/(V/m) ²)
0.78	0.62	0.85

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
105	108	107

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$

where

σ=the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid

dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

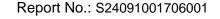
$$SAR = \frac{4p_W}{ab\delta}e^{\frac{-12}{\delta}}$$

where

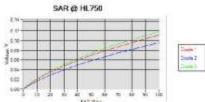
a=the larger cross-sectional of the waveguide

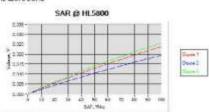
b=the smaller cross-sectional of the waveguide

δ=the skin depth for the liquid in the waveguide


Pw=the power delivered to the liquid

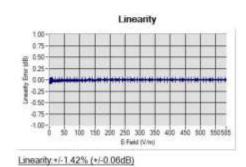
Page: 7/10

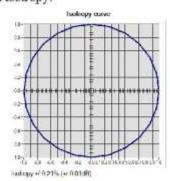



Ref ACR 261 11.23 BES A

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

<u>Liquid</u>	Frequency (MHz*)	ConvF	
HL750	750	2.37	
HL850	835	2.32	
HL900	900	2.23	
HL1800	1800	2.45	
HL1900	1900	2.63	
HL2000	2000	2.83	
HL2300	2300	2.81	
HL2450	2450	2.85	
HL2600	2600	2.65	
HL3300	3300	2.21	
HL3500	3500	2.20	
HL3700	3700	2.11	
HL3900	3900	2.40	
HL4200	4200	2.40	
HL4600	4600	2.33	
HL4900	4900	2.37	
HL5200	5200	2.07	
HL5400	5400	2.11	
HL5600	5600	2.20	
HL5800	5800	2.04	


(*) Frequency validity is #-50MHz below 600MHz, #-100MHz from 600MHz to 5GHz and #-700MHz above 6GHz



6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Page: 8/10

Template_ACR,DDD.N.YYMVGB,ISSUE_COMOSAR Probe vl.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 261 11.23 BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No cal required.

Page: 9/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref ACR 261 11.23 BES A

Waveguide Liquid transition	MVG MVG	SN 32/16 WG10_1 SN 32/16	Validated. No cal required. Validated. No cal	Validated, No cal required. Validated, No cal
Waveguide	MVG			
Liquid transition	MVG	WGLIQ_1G800H_1	required.	required.
Liquid transition	MVG	WGLIQ_1G800B_1 SN 32/16	Validated. No cal	required. Validated. No cal
Waveguide	MVG	SN 32/16 WG8_1 SN 32/16	required. No cal Validated. No cal	required. No cal Validated. No cal
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated, No cal required, Validated, No cal	Validated. No cal required. Validated. No cal
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No ca required.

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-Field Probe Calibration Report

Ref: ACR.278.12.24.BES.A

Report No.: S24091001706001

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 4024-EPGO-442

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 10/04/2024

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 278 12 24 BES A

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	10/4/2024	(28)
Checked & approved by:	Pedro Ruiz	Technical Manager	10/4/2024	fidufuz
Authorized by:	Pedro Ruiz	Laboratory Director	10/4/2024 —Assin	ade por

Pedro RUIZ -20092631C46F428...

	Customer Name	
Distribution:	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.	

fications

Carthoate #4398.01 Page 180 of 244

Report No.: S24091001706001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1818DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 278.12.24 BES.A.

TABLE OF CONTENTS

1	Dev	vice Under Test4	
2	Pro	duct Description	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Sensitivity	4
	3.2	Linearity	5
	3.3	Isotropy	5
	3.4	Boundary Effect	5
	3.5	Probe Modulation Response	6
4	Me	asurement Uncertainty6	
5	Cal	ibration Results6	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Ver	rification Results	
7		t of Equipment9	

Page 181 of 244

Report No.: S24091001706001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 278 12 24 BES.A.

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	4024-EPGO-442		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.206 MΩ		
	Dipole 2: R2=0.223 MΩ		
	Dipole 3: R3=0.235 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page 182 of 244

Report No.: S24091001706001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref ACR 278 12 24 BES A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{dep} along lines that are approximately normal to the surface:

$$SAR_{uncertainty} [\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{ex}\beta(\delta B)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$

where

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 Δ_{step} is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%).

Page 183 of 244

Report No.: S24091001706001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref ACR 278 12 24 BES A

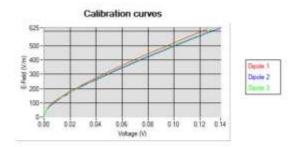
3.5 PROBE MODULATION RESPONSE

MVG's probe were evaluated experimentally with various modulated signal and the deviation from CW response were found neglectable in the used power range of the probe. So the correction to taking into account the linearization parameters for different modulation is null, therefore the CW factor given in this report can be used whatever the measured modulation

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

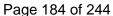
The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition			
Liquid Temperature 20 +/- 1 °C			
Lab Temperature	20 +/- 1 °C		
Lab Humidity 30-70 %			

5.1 CALIBRATION IN AIR


The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

Page: 6/10

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 278 12 24 BES A

where

Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe

Normi=dipole sensitivity given below for the 3 channels of the probe

Normx dipole	Normy dipole	Normz dipole
1 (μV/(V/m) ²)	2 (μV/(V/m) ²)	3 (μV/(V/m) ²)
0.73	0.79	0.78

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
105	109	103

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho \, SAR}{\sigma}$$

where

σ=the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4PW}{av^2}e^{\frac{-2z}{\delta}}$$

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vM

This document shall not be reproduced, escept in field or in part, without the written approval of MVG. The information contained here in is to be used only for the purpose for which it is admitted and is not to be released in whole or part without written approval of MVG.

Page 185 of 244

Report No.: S24091001706001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

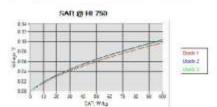
COMOSAR E-FIELD PROBE CALIBRATION REPORT

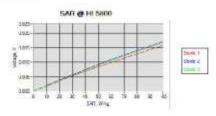
Ref ACR 278 12 24 BES A

where

a=the larger cross-sectional of the waveguide

b=the smaller cross-sectional of the waveguide


δ=the skin depth for the liquid in the waveguide


Pw=the power delivered to the liquid

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

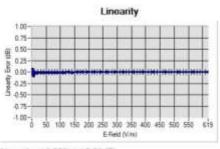
Liquid	Frequency (MHz*)	ConvF
HL750	750	2.42
HL850	835	2.34
HL900	900	2.24
HL1800	1800	2.51
HL1900	1900	2.57
HL2000	2000	2.64
HL2300	2300	2.73
HL2450	2450	2.74
HL2600	2600	2.51
HL3300	3300	2.11
HL3500	3500	2.15
HL3700	3700	2.08
HL3900	3900	2.27
HL4200	4200	2.39
HL4600	4600	2.30
HL4900	4900	2.13
HL5200	5200	1.89
HL5400	5400	1.97
HL5600	5600	1.88
HL5800	5800	1.90

(*) Frequency validity is +4-50MHz below 500MHz, +4-100MHz from 600MHz to 5GHz and +4-700MHz above 6GHz

Page 186 of 244

of 244 Report No.: S24091001706001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3



COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref ACR 278 12 24 BES A

6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Linearity:+/-1.90% (+/-0.08dB)

7 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated, No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2026
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2026
USB Sensor	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
luoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.

Page: 9/10

Caroficate #4395.01 Page 187 of 244

Report No.: S24091001706001

Docusign Envelope ID: 223C1A7C-4751-4895-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref ACR 278 12 24 BES A

emperature / Humidity Sensor	Testo 184 H1	44235403	02/2024	02/2027
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated, No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated, No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated, No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated, No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.

SAR Reference Dipole Calibration Report

Ref: ACR.53.23.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: SN 03/15DIP0G750-355

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

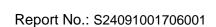
Accreditations #2-6789 and #2-6814 Scope available on www.coffuc.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT


REF : ACR 53:23:24 BES A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	2/22/2024	- fedurating
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	75
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Yann TOUTHAN

Signature Yann numérique de Yann Toutain ID Toutain ID Date: 2024.02.27 08:54:37 +01'00'

Customer Name SHENZHEN NTEK TESTING Distribution: TECHNOLOGY CO., LTD.

Name	Date	Modifications
Pedro Ruiz	2/22/2024	Initial release
	Pedro Ruiz	Pedro Ruiz 2/22/2024

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF : ACR 53:23:24 BES A

TABLE OF CONTENTS

1	Inti	reduction4	
2	De	vice Under Test4	
3	Pro	oduct Description	
	3.1	General Information	4
4	Me	easurement Method	
	4,1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	easurement Uncertainty	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	.5
	5.3	SAR	5
6	Cal	libration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment8	

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF : ACR 53:23:24 BES A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID750				
Serial Number	SN 03/15DIP0G750-355				
Product Condition (new / used)	Used				

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 53 23 24 RES A

MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

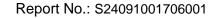
For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 <u>SAR</u>

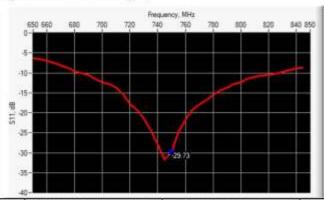
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.


The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF : ACR 53 23 24 BES A


CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

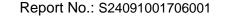
L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
÷	176.00 +/- 2%	-	100.00 +/- 2%		6.35 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

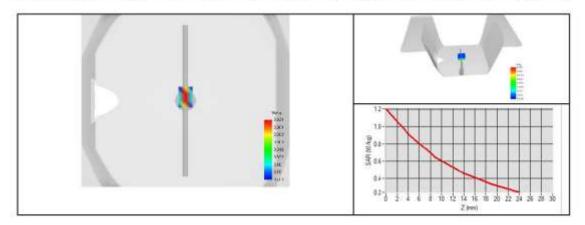
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
750	-29.73	-20	$52.5\Omega + 2.2i\Omega$

6.3 SAR


The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



SAR REFERENCE DIPOLE CALIBRATION REPORT

REF : ACR 53:23:24 BES: A

Software	OPENSAR V5		
Phantom	SN 13/09 SAM68		
Probe	3523-EPGO-429		
Liquid	Head Liquid Values: eps': 45.0 sigma: 0.87		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm		
Frequency	750 MHz		
Input power	20 dBm		
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
750 MHz	0.86	8.60	8.49	0.58	5.78	5.55

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF: ACR 53 23 24 BES A

7 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.			
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024			
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025			
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025			
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024			
Multimeter	Keithley 2000	4013982	02/2023	02/2026			
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025			
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	NI-USB 5680	170100013	06/2021	06/2024			
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025			
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024			

SAR Reference Dipole Calibration Report

Ref: ACR.53.24.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 03/15DIP0G835-347

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

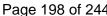
Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

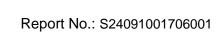
The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref ACR 53 24 24 BES A


	Name	Function	Date	Signature
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	fedurflus,
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JE
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gana 70 UTAcki

Yann Signature numérique de Yann Toutain ID Dute: 2024.02.27 08.55:11 +01'00'

3	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

ications
5015-E91-0-1001-
_

Ref. ACR 53 24 24 BES A

TABLE OF CONTENTS

1	Inti	roduction4	
2		vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	libration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment8	

Ref. ACR 53.24.24 BES A

Report No.: S24091001706001

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID835			
Serial Number	SN 03/15DIP0G835-347			
Product Condition (new / used)	Used			

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page 200 of 244

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 53 24 24 BES A

Report No.: S24091001706001

MEASUREMENT METHOD

MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

SAR REQUIREMENTS 4.3

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

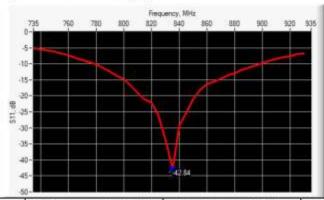
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Ref: ACR 53:24:24 BES A

Report No.: S24091001706001


CALIBRATION RESULTS

MECHANICAL DIMENSIONS

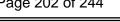
L	mm	h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
19	161.00 +/- 2%	-	89.80 +/- 2%		3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

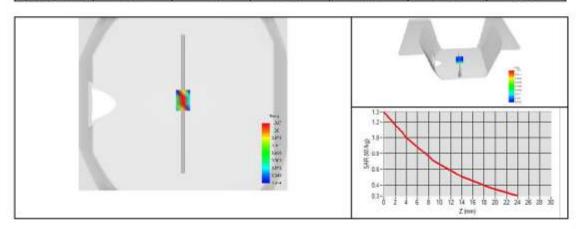
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
835	-42.84	-20	$50.5\Omega + 0.5i\Omega$

6.3 SAR

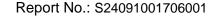

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



Ref. ACR 53 24 24 BES.A.


Report No.: S24091001706001

Software	OPENSAR V5		
Phantom	SN 13/09 SAM68		
Probe	3523-EPGO-429		
Liquid	Head Liquid Values: eps': 44.8 sigma: 0.90		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm		
Frequency	835 MHz		
Input power	20 dBm		
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		g)
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
835 MHz	0.94	9.40	9.56	0.63	6.28	6.22

Caroficate #4395.01 Page 203 of 244

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 53 24 24 BES A

7 LIST OF EQUIPMENT

	Equ	ipment Summary 5	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	4 (1988년 1일 - 이 전 시에 사람들은 1일 1일 1일 시에 시에 가게 살아보다 다 없다.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

SAR Reference Dipole Calibration Report

Ref: ACR.53.26.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ

SERIAL NO.: SN 03/15DIP1G800-349

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.oofrac.fr

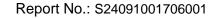
The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 53 26 24 BES A


	Name	Function	Date	Signature	
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	fidufling	
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JE	
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gan Williach	

Signature Yann numérique de Yann Toutain ID Toutain ID Date: 2024.02.27 08:56:12 +01'00'

Customer Name SHENZHEN NTEK TESTING Distribution: TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	2/22/2024	Initial release

Ref ACR 53 26 24 BES A

TABLE OF CONTENTS

1	Inti	roduction4	
2		vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	libration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment8	

SAR REFERENCE DIPOLE CALIBRATION REPORT

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID1800				
Serial Number	SN 03/15DIP1G800-349				
Product Condition (new / used)	Used				

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Ref ACR 53 26 24 BES A

MEASUREMENT METHOD

MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

SAR REQUIREMENTS 4.3

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

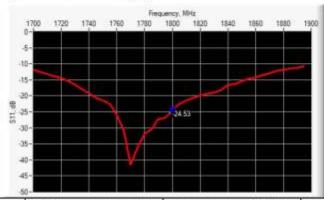
5.3 SAR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Ref. ACR 53:26:24 BES A


CALIBRATION RESULTS

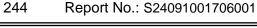
MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
19	72.00 +/- 2%		41.70 +/- 2%	. н	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

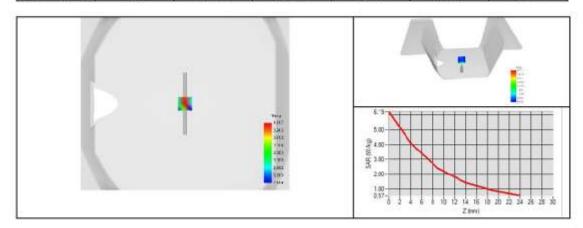
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
1800	-24.53	-20	$44.8\Omega + 2.0i\Omega$


6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



Ref ACR 53 26 24 BES A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps': 42.7 sigma: 1.36
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency		g SAR (W/kg)		10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
1800 MHz	3.71	37.06	38.40	2.00	20.01	20.10

Page 211 of 244

Report No.: S24091001706001

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 53 26 24 BES A

7 LIST OF EQUIPMENT

		ipment Summary 5	1972	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

SAR Reference Dipole Calibration Report

Ref: ACR.53.27.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 03/15DIP1G900-350

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise - 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

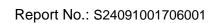
Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF: ACR 53.27.24 BES A


	Name	Function	Date	Signature
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	federaling
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JS
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gana TOUTACLE

Yann

Signature numérique de Yann Toutain ID Toutain ID Date: 2024.02.27 08:56:45 +01'00'

Customer Name SHENZHEN NTEK TESTING Distribution: TECHNOLOGY CO., LTD.

Name	Date	Modifications
Pedro Ruiz	2/22/2024	Initial release
A STANSANCE STAN		
	Pedro Ruiz	Pedro Ruiz 2/22/2024

REF: ACR 53 27 24 BES A

TABLE OF CONTENTS

1	Inti	roduction4	
2		vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	libration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment 8	

REF: ACR 53.27.24 BES A

Report No.: S24091001706001

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID1900				
Serial Number	SN 03/15DIP1G900-350				
Product Condition (new / used)	Used				

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

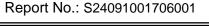

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

REF: ACR 53.27.24 BES A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REOUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

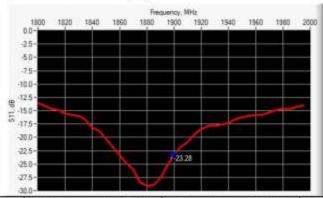
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

REF: ACR 53.27.24 BES A

Report No.: S24091001706001

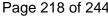

CALIBRATION RESULTS

MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
19	68.00 +/- 2%		39.50 +/- 2%		3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

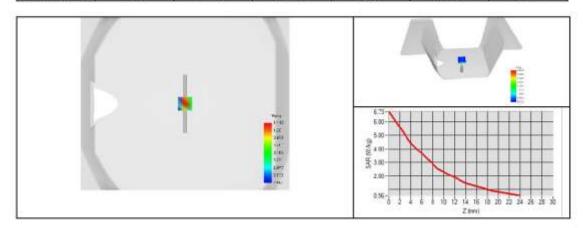

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
1900	-23.28	-20	$46.2\Omega + 5.4i\Omega$

6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


REF: ACR 53.27.24 BES A

Report No.: S24091001706001

SAR REFERENCE DIPOLE CALIBRATION REPORT

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps': 42.5 sigma: 1.39
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
1900 MHz	3.97	39.69	39.70	2.09	20.92	20.50

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF: ACR 53 27 24 BES A

7 LIST OF EQUIPMENT

		ipment Summary 5	1972	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

SAR Reference Dipole Calibration Report

Ref: ACR.53.29.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 03/15DIP2G450-352

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

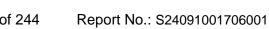
Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 53 29 24 BES A

	Name	Function	Date	Signature
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	feduraling
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	25
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Yann TOUTHORN


Signature Yann numérique de Yann Toutain ID Toutain ID Date: 2024.02.27 08:57:39 +01'00'

Customer Name SHENZHEN NTEK TESTING Distribution: TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	2/22/2024	Initial release
3000			

Ref: ACR 53 29 24 BES A

TABLE OF CONTENTS

1	Inti	roduction4	
2	De	vice Under Test	
3	Pro	duct Description4	
	3,1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	libration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment8	

Ref. ACR 53 29 24 BES A

Report No.: S24091001706001

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID2450			
Serial Number	SN 03/15DIP2G450-352			
Product Condition (new / used)	Used			

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Ref. ACR 53 29 24 BES A

Report No.: S24091001706001

MEASUREMENT METHOD

MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

SAR REQUIREMENTS 4.3

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

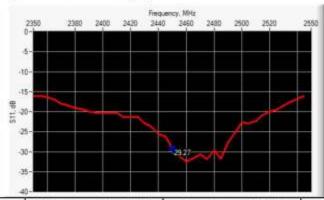
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Ref: ACR 53 29 24 BES A

Report No.: S24091001706001


CALIBRATION RESULTS

MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
19	51.50 +/- 2%		30.40 +/- 2%	-	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

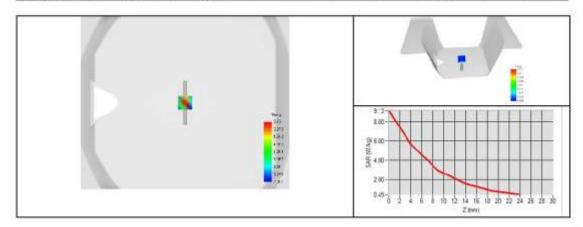
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2450	-29.27	-20	$53.6\Omega + 0.1i\Omega$

6.3 SAR

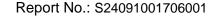
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.



SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref ACR 53 29 24 BES A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps' : 42.1 sigma : 1.83
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2450 MHz	5.00	50.05	52.40	2.38	23.80	24.00

Page 227 of 244

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 53 29 24 BES A

7 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025	
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024	
Multimeter	Keithley 2000	4013982	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025 Characterized prior to test. No cal required.	
Amplifier	MVG	MODU-023-C-0002	4. (BORESTON OF STONES IN SPECIAL STONES OF STONE		
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

SAR Reference Dipole Calibration Report

Ref: ACR.53.30.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2600 MHZ

SERIAL NO.: SN 03/15DIP2G600-356

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

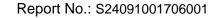
Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 53 30.24 BES A

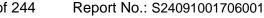
	Name	Function	Date	Signature	
Prepared by :	Pedro Ruiz	Ruiz Measurement Responsible		feduraling	
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JS	
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Yana MUTANIN	


Yann Toutain ID

Signature numérique de Yann Toutain ID Date: 2024.02.27 08:58:12 +01'00'

	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	2/22/2024	Initial release
	Anaroditora torra		Supplied that the second of the second



Ref: ACR 53 30 24 BES A

TABLE OF CONTENTS

1	Inti	roduction4	
2	De	vice Under Test	
3	Pro	duct Description4	
	3,1	General Information	4
4	Me	asurement Method5	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	libration Results 6	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment8	

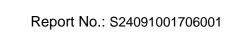
Ref. ACR 53 30 24 BES A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2600	
Serial Number	SN 03/15DIP2G600-356	
Product Condition (new / used)	Used	


3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Ref. ACR 53 30 24 BES A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REOUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

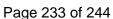
For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR


The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

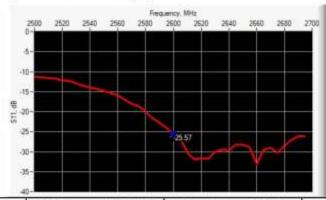
The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 53 30:24 BES A

Report No.: S24091001706001


CALIBRATION RESULTS

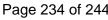
MECHANICAL DIMENSIONS

L mm		L mm h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
19	48.50 +/- 2%		28.80 +/- 2%	:4	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

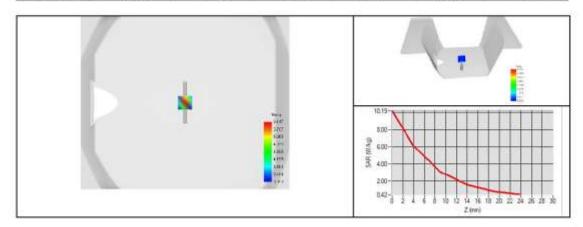
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2600	-25.57	-20	$54.5\Omega - 3.2j\Omega$


6.3 SAR

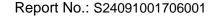
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 53 30 24 BES A


Report No.: S24091001706001

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps' : 41.3 sigma : 1.95
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency		lg SAR (W/kg	0	1	0g SAR (W/kg	g)
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2600 MHz	5,42	54.16	55.30	2.49	24.85	24.60

Page 235 of 244

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 53 30 24 BES A

7 LIST OF EQUIPMENT

		70	- March			
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024		
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025		
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025		
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024		
Multimeter	Keithley 2000	4013982	02/2023	02/2026		
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025		
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	NI-USB 5680	170100013	06/2021	06/2024		
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025		
Directional Coupler	Krytar 158020	131467		Characterized prior to test. No cal required.		
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024		

SAR Reference Waveguide Calibration Report

Ref: ACR.53.31.24.BES.A

Report No.: S24091001706001

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE WAVEGUIDE

> FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 13/14 WGA 33

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.coffuc.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Cartholite #4798.01 Page 237 of 244

Report No.: S24091001706001

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

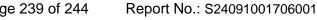
Ref : ACR 53:31:24 BES A


	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	2/22/2024	fedurating.
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	Je
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Janu HELLINGEN

Signature Yann numérique de Yann Toutain ID Date: 2024/02/27 08:58:45 +01100*

15	Customer Name
Distribution:	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	2/22/2024	Initial release



Ref : ACR 53:31:24 BES A

TABLE OF CONTENTS

1	Intr	oduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Mechanical Requirements	4
	4.2	S11 parameter Requirements	4
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	ibration Results5	
	6.1	Mechanical Dimensions	5
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment 9	

Ref - ACR 53 31 24 BES A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

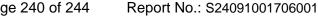
2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 13/14 WGA 33
Product Condition (new / used)	Used

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.


MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -8 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

Ref - ACR 53 31 24 BES A

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

The estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

Frequency	L 0	L (mm)		W (mm)		mm)	Wr	(mm)
(MHz)	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	40,39 ± 0.13		20.19 ± 0.13	- 12	81.03 ± 0.13	32	61.98 ± 0.13	- 22

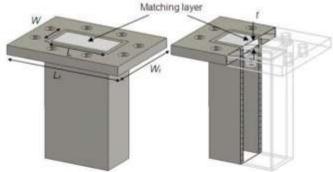
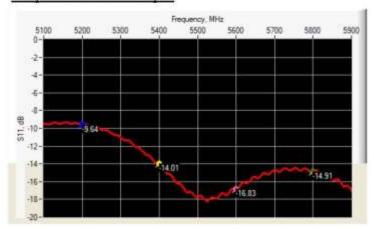


Figure 1: Validation Waveguide Dimensions

Page: 5/9

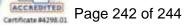


Ref : ACR 53.31.24 BES A

6.2 S11 PARAMETER

6.2.1 S11 parameter In Head Liquid

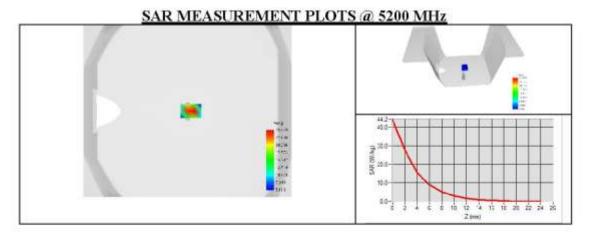
Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
5200	-9.64	-8	25.80 Ω - 6.58 jΩ
5400	-14.01	-8	51.53 Ω + 20.60 jΩ
5600	-16.83	-8	44.12 Ω - 12.35 jΩ
5800	-14.91	-8	38.53 Ω + 11.21 jΩ


6.3 SAR

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

6.3.1 SAR With Head Liquid

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.



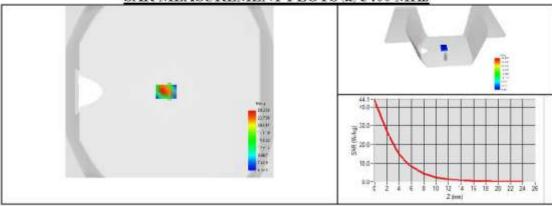
Ref : ACR 53 31 24 BES A

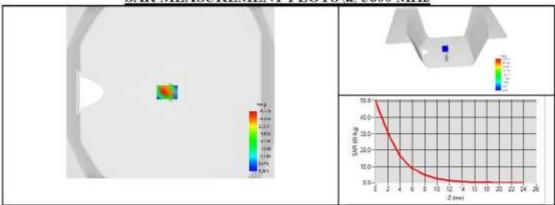
Report No.: S24091001706001

Software	OPENSAR V5		
Phantom	SN 13/09 SAM68		
Probe	3523-EPGO-429		
Liquid	Head Liquid Values 5200 MHz: eps':34.16 sigma: 4.4 Head Liquid Values 5400 MHz: eps':33.63 sigma: 4.6 Head Liquid Values 5600 MHz: eps':33.12 sigma: 4.8 Head Liquid Values 5800 MHz: eps':32.57 sigma: 5.1		
Distance between dipole waveguide and liquid	0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm		
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz		
Input power	20 dBm		
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

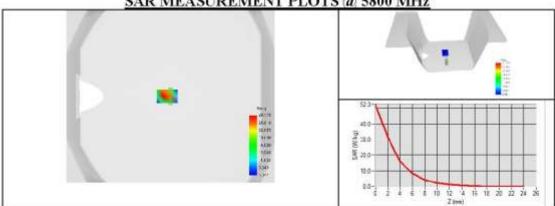
Frequency (MHz)	1 g SAR (W/kg)			10 g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
5200	16.26	162.59	159.00	5.62	56.21	56.90
5400	15.98	159.81	166.40	5.50	55.00	58.43
5600	17.91	179.15	173.80	6.10	61.01	59.97
5800	18.22	182.20	181.20	6.13	61.32	61.50

Page: 7/9


Report No.: S24091001706001


SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR 53 31 24 BES A



SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 8/9

Ref : ACR 53 31 24 BES A

Report No.: S24091001706001

7 LIST OF EQUIPMENT

Equipment Summary Sheet								
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.				
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024				
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025				
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025				
Reference Probe	MVG	3623-EPGO-431	11/2023	11/2024				
Multimeter	Keithley 2000	4013982	02/2023	02/2026				
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025				
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	NI-USB 5680	170100013	06/2021	06/2024				
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025				
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024				

Page: 9/9