

TEST REPORT

65, Sin Suwon-si, (fins KCTL Co.,Ltd. won-ro, Yeongtong-gu, Gyeonggi-do, 16677, Korea 8-1021 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u>	Report No.: KR23-SRF0273 Page (1) of (32)	🔅 eurofins
1. Client			
∘ Name	: Linkface Co., Ltd		
∘ Addres	s : 501-ho, 11, Gu Republic of Korea		Seongnam-si, Gyeonggi-do,
 Date of 	Receipt : 2023-08-03		ation of the second s
2. Use of Rej	oort : Certification		
3. Name of P	roduct / Model : De	arBuds PE / DBPE-23	
4. Manufactu	irer / Country of Origin : Lin	kface Co., Ltd. / Korea	
5. FCC ID	: 2A9UW-DBPE-2	23	
5. Date of Te	st : 2023-09-25 to 2	023-10-04	2년 18 - 이상의 2년 18년 18일 2년 19일 - 18일 - 18일 - 19일 2년 19일 - 18일 - 18일 - 19일 - 19일 - 19일
6. Location o	of Test : ■ Permanent Testin (Address:65, Sinwo		esting n-si, Gyeonggi-do, 16677, Korea)
7. Test meth	od used : FCC Part 15 Sul		
8. Test Resu	It : Refer to the test	result in the test repor	t
	Tested by	Technical M	anager
Affirmation			Off
	Name : Donghun Lee	Name : Hees	su Ahn (Signature)
			2023-12-22
			2020-12-22
	Eurofins	KCTL Co.,Ltd.	
ntee the who	sult of the sample which was ble product quality. This test re r Eurofins KCTL Co.,Ltd.		

KCTL-TIR001-003/7 (220705)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (2) of (32)

KCTL

REPORT REVISION HISTORY

Date	Revision	Page No
2023-12-22	Originally issued	-

This report shall not be reproduced except in full, without the written approval of Eurofins KCTL Co.,Ltd. This document may be altered or revised by Eurofins KCTL Co.,Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by Eurofins KCTL Co.,Ltd. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests

(may be required by the product standard or client)

Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0273 Page (3) of (32)

KCTL

CONTENTS

1.	General information	4
2.	Device information	4
2.1	Frequency/channel operations	5
2.2	2. Duty Cycle Factor	5
2.3	8. RF power setting in TEST SW	5
3.	Antenna requirement	6
4.	Summary of tests	7
5.	Measurement uncertainty	8
6.	Measurement results explanation example	9
7.	Test results	10
7.1		
7.2	2. Peak Power Spectral Density	13
7.3	8. 6 dB Bandwidth(DTS Channel Bandwidth)	15
7.4	Spurious Emission, Band Edge and Restricted bands	17
7.5	5. Conducted Spurious Emission	30
8.	Measurement equipment	32

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0273 Page (4) of (32)

General information 1.

Client	: Linkface Co., Ltd.
Address	501-ho, 11, Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
Manufacturer	: Linkface Co., Ltd.
Address	501-ho, 11, Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
Laboratory	: Eurofins KCTL Co.,Ltd.
Address	: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	: FCC Site Designation No: KR0040, FCC Site Registration No: 687132
	VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
	CAB Identifier: KR0040
	ISED Number: 8035A
	KOLAS No.: KT231

2. **Device information**

Equipment under test	:	DearBuds PE
Model	:	DBPE-23
Modulation technique	:	GFSK
Number of channels	:	40 ch
Power source	:	DC 3.7 V
Antenna specification	:	Chip Antenna
Antenna gain	:	-0.5 dBi
Frequency range	:	2 402 MHz ~ 2 480 MHz
Software version	:	SW ver1
Hardware version	:	HW ver2
Test device serial No.	:	0033221540
Operation temperature	:	-10 °C ~ 50 °C

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (5) of (32)

KCTL

2.1 Frequency/channel operations

This device contains the following capabilities: Bluetooth Low Energy

Ch.	Frequency (Mz)
00	2 402
-	-
19	2 440
-	-
39	2 480
Table 0.4.4 Dluck	a ath Law Enarmy

Table 2.1.1. Bluetooth Low Energy

2.2. Duty Cycle Factor

Test mode	Period	On time	Duty o	cycle	Duty Cycle Factor
Test mode	(ms)	(ms)	(Linear)	(%)	(dB)
1M Bits/s, 37 Packet	0.625 2	0.395 4	<mark>0.63</mark> 2 4	63.24	1.99

Notes.

- 1. Duty cycle (Linear) = T_{on} time / Period
- 2. DCF(Duty cycle factor) = 10log(1/duty cycle)
- 3. DCF is not compensated to average result if the duty cycle is more than 98%

	Ref Level 10.00 dBm Offset 0.50 dB RBW Att 10 dB SVMT 3 ms VBW TROWD DD TROWD THE "TROWN" TROWD THE "TROWN" TROWD THE "TROWN" 12 cro Span 0 dBm 0 dBm 0 dBm 10 dBm				
	TRG-MD TDF "TXPORTI" 1 Zero Span 0 dBm	10 MHz			
	1 Zero Span 0 d8m				
Image: Contract of the second secon	=10 dBm				
Alberting Generation Historical	i dun				
Alberting Generation Historical	-20 dBm				
i de seu de s		D2			
	-30 dBm TRG -30.000 upm	on 1			
	-40 dBm	¢.			
		41. 20	The second	10 C	
and distribution and distribution in the second secon	-50 dBm			- Disanativas	
	-60 dBm	a state that	ALC: NO PERSONAL PROPERTY.	Badebilk Marth 1	Mail
	-60 dBm			-	
	-70 dBm				
	-80 dBm				
		100	01 pts		300.0 µs
10001 pts 300.0 µ		Y-Value	Function		esult
	-70 dBm -80 dBm CF 2.402 GHz Z Marker Table	100	01 pts		
	CE 2 402 GHz	100	01 ots		300.0

2.3. RF power setting in TEST SW

Ch.	Frequency (Mb)	RF Power setting value	Software Program
	2 402		
1Mbps / 37packet	2 440	-8 dBm	nRF Connect
	2 480		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (6) of (32)

KCTL

3. Antenna requirement

Requirement of FCC part section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The transmitter has attached Chip Antenna (internal antenna) on the board.

- The E.U.T Complies with the requirement of §15.203, §15.247.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (7) of (32)

4. Summary of tests

FCC Part section(s)	Parameter	Test Condition	Test results
15.247(b)(3)	Maximum Peak Output Power		Pass
15.247(e)	Peak Power Spectral Density		Pass
15.247(a)(2)	6 dB Channel Bandwidth	Conducted	Pass
15.207(a)	AC Conducted Emissions		Pass
15.247(d)	Conducted Spurious Emissions		Pass
15.205(a),	Spurious emission	Dediated	Pass
15.209(a)	Band-edge, restricted band	Radiated	Pass

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
 - The worst case is stand-alone without connecting accessories.
- 2. According to exploratory test no any obvious emission were detected from 9 kl to 30 Ml. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that **X** orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in **X** orientation.
- 4. Test mode is 1Mbits/s, Packet length 37Bytes only.
- 5. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - KDB 558074 D01 v05r02

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (8) of (32)

KCTL

5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (±)			
Conducted RF power		0.9 dB		
Conducted spurious emissions		1.3 dB		
	9 kHz ~ 30 MHz	2.3 dB		
Radiated spurious emissions	30 MHz ~ 1 000 MHz	2.5 dB		
	1 000 MHz ~ 18 000 MHz	4.8 dB		
	Above 18 000 GHz	4.8 dB		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

6. Measurement results explanation example

The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer.

With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Frequency (Mz)	Factor(dB)	Frequency (Mb)	Factor(dB)
30	10.23	9 000	12.52
50	10.26	10 000	12.05
100	10.26	11 000	12.25
200	10.56	12 000	12.32
300	10.69	13 000	12.50
400	10.63	14 000	12.59
500	10.71	15 000	12.40
600	10.81	<mark>16</mark> 000	12.89
700	10.88	<mark>1</mark> 7 000	13.09
800	10.86	18 000	12.86
900	11.00	19 <mark>000</mark>	13.23
1 000	10.88	20 000	13.54
2 000	11.35	21 000	13.05
3 000	11.84	22 000	13.39
4 000	11.81	23 000	13.65
5 000	12.25	24 000	13.69
6 000	12.24	25 000	13.96
7 000	12.44	26 000	13.60
8 000	12.01	26 500	13.89

Note.

Offset(dB) = RF cable loss(dB) + Attenuator(dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (10) of (32)

KCTL

7. Test results 7.1. Maximum Peak Output Power Test setup

EUT		Attenuator		Power sensor
-----	--	------------	--	--------------

<u>Limit</u>

According to §15.247(b)(3) For systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

ANSI C63.10 - Section 11.9 Used test method is section 11.9.1.3 and 11.9.2.3.1

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0273 Page (11) of (32)

Test settings

General

Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth (see ANSI C63.10 for measurement guidance).

When using a spectrum analyzer or EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW to set a bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins.

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level. The intent is to test at 100 % duty cycle; however a small reduction in duty cycle (to no lower than 98 %) is permitted, if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

If continuous transmission (or at least 98 % duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level, with the transmit duration as long as possible, and the duty cycle as high as possible during which sweep triggering/signal gating techniques may be used to perform the measurement over the transmission duration.

11.9.1. Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

11.9.1.1. RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW \geq DTS bandwidth.
- b) Set $VBW \ge [3 \times RBW]$.
- c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

11.9.1.3. PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth an shall use a fast-responding diode detector.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

KCTL

11.9.2.3.1. Measurement using a power meter (PM)

Method AVGPM is a measurement using an RF average power meter, as follows:

- a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied:
 - 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
 - 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
 - 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6.
- c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- d) Adjust the measurement in dBm by adding [10 log(1/D)], where D is the duty cycle Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

Test results

- (177.)	Data rate Packet length		Measured outp	Measured output power (dBm)			
Frequency(Mb)	(Bits/s)	(Bytes)	Peak	Average	Limit(dBm)		
2 402			-7.67	-9.27			
2 440	1M	37	-7.48	-8.96	30.00		
2 480			-7.28	-8.70			

<u>Note</u>

Measured output power(Average) = reading value of average power + D.C.F

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0273 Page (13) of (32)

KCTL

7.2. Peak Power Spectral Density

<u>Test setup</u>

FUT	Attenuator	Spectrum analyzer
EUT	Allendaloi	Spectrum analyzer

<u>Limit</u>

According to \$15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test procedure

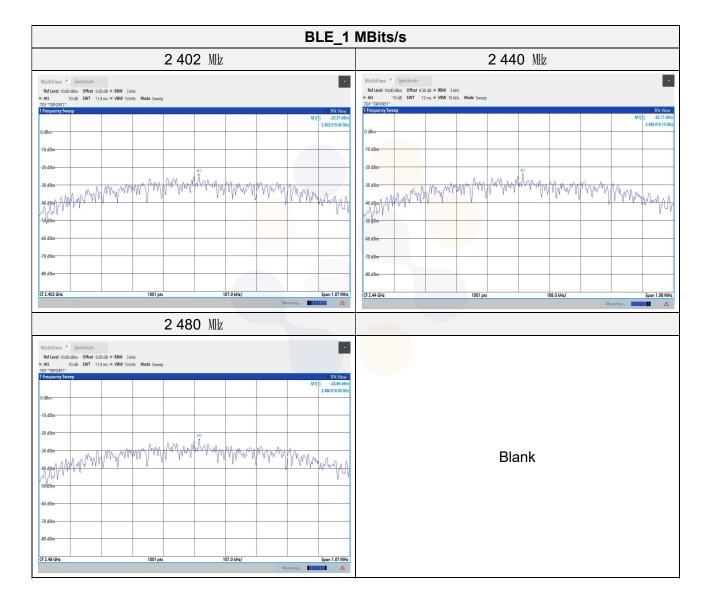
ANSI C63.10 - Section 11.10.2

Test settings

Method PKPSD (peak PSD)

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set the span to 1.5 times the DTS bandwidth.
- 3) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4) Set the VBW \geq 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10) If measured value exceeds limit, reduce RBW (no less than 3 klb) and repeat.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (14) of (32)

KCTL

Test results

Frequency(Mb)	Data rate (Bits/s)	Packet length (Bytes)	PSD(dBm/3 ktz)	Limit(dBm/3 kHz)
2 402			-25.37	
2 440	1M	37	-25.17	8.00
2 480			-24.89	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (15) of (32)

7.3. 6 dB Bandwidth(DTS Channel Bandwidth)

<u>Test setup</u>

	Attenuator	Spectrum analyzer
EUT	Allendaloi	Spectrum analyzer

<u>Limit</u>

According to §15.247(a)(2), For Systems using digital modulation techniques may operate in the 902–928 Mz, 2 400–2 483.5 Mz, and 5 725–5 850 Mz bands. The minimum 6 dB bandwidth shall be at least 500 kt.

Test procedure

ANSI C63.10 – Section 11.8.2

Test settings

DTS bandwidth

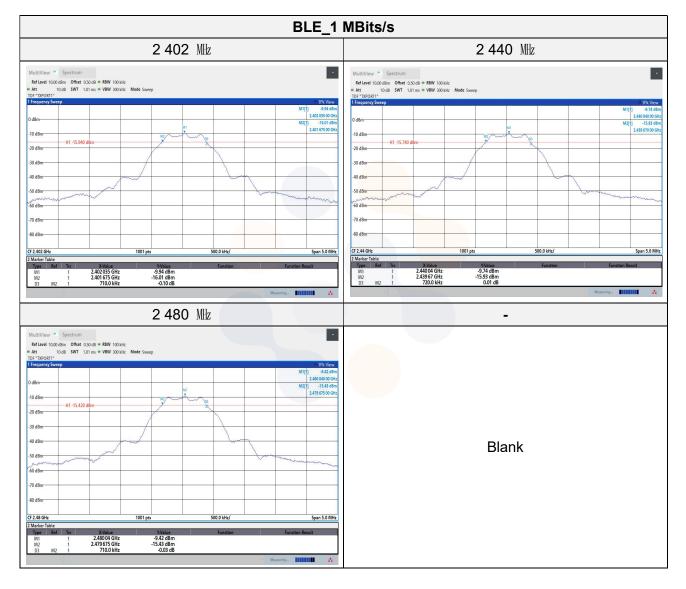
One of the following procedures may be used to determine the modulated DTS bandwidth.

Option 1

- 1) Set RBW = 100 kHz.
- 2) Set the video bandwidth (VBW) \ge 3 x RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Sweep = auto couple.
- 6) Allow the trace to stabilize.
- 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2

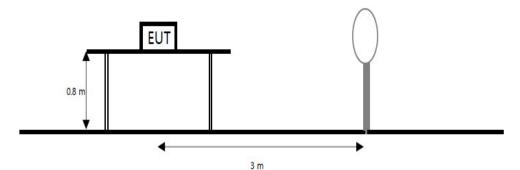
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \ge 3 \times RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

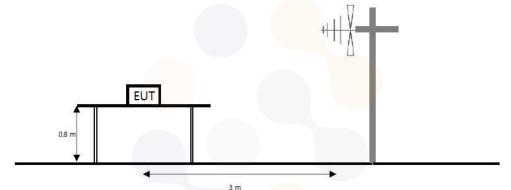

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (16) of (32)

KCTL

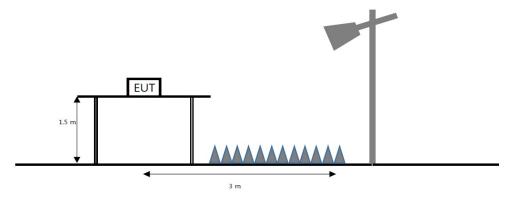
Test results

Frequency(Mb)	Data rate (Bits/s)	Packet length (Bytes)	6 dB bandwidth(Mz)
2 402			0.710
2 440	1M	37	0.720
2 480			0.710


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (17) of (32)


7.4. Spurious Emission, Band Edge and Restricted bands

<u>Test setup</u>


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mb to 1 Gb emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}_{\mathbb{Z}}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}_{\mathbb{Z}}$ emissions, whichever is lower.

<u>Limit</u>

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (μ V/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section 15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MEz	MHz	MHz	GHz
0.009 - 0.110	16. <mark>42 - 16</mark> .423	399. <mark>9 - 410</mark>	4.5 - 5.15
0.495 - 0.505	16.69 <mark>4 75 - 16</mark> .695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – <mark>1 24</mark> 0	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	✓ 1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	<mark>2 2</mark> 00 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	<mark>2</mark> 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 – 4 400	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

KCTL

Test procedure

ANSI C63.10-2013

Test settings

Peak field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in table
- 3. VBW \geq (3×RBW)
- 4. Detector = peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow sweeps to continue until the trace stabilizes

Table: NEW as a function of frequency					
Frequency	RBW				
9 kHz to 150 kHz	200 Hz to 300 Hz				
0.15 Mt to 30 Mt	9 kHz to 10 kHz				
30 MHz to 1 000 MHz	100 kHz to 120 kHz				
> 1 000 MHz	1 MHz				

Table. RBW as a function of frequency

Average field strength measurements

Trace averaging with continuous EUT transmission at full power

If the EUT can be configured or modified to transmit continuously ($D \ge 98\%$), then the average emission levels shall be measured using the following method (with EUT transmitting continuously):

- 1. RBW = 1 $M_{\mathbb{Z}}$ (unless otherwise specified).
- 2. VBW \geq (3×RBW).
- 3. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 4. Averaging type = power (i.e., rms):
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.

Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT ($D \ge 98\%$) cannot be achieved and the duty cycle is constant (duty cycle variations are less than ±2%), then the following procedure shall be used:

- 1. The EUT shall be configured to operate at the maximum achievable duty cycle.
- 2. Measure the duty cycle D of the transmitter output signal as described in 11.6.
- 3. RBW = 1 MHz (unless otherwise specified).
- 4. VBW \geq [3 \times RBW].
- 5. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 6. Averaging type = power (i.e., rms):

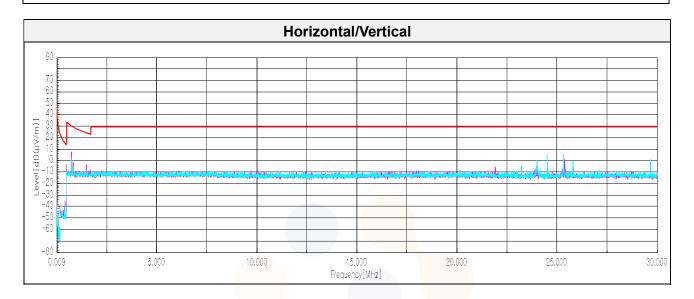
Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

- 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
- 2) Some instruments require linear display mode to use linear voltage averaging. Log or $\,\mathrm{dB}\,$ averaging shall not be used.
- 7. Sweep time = auto.
- 8. Perform a trace average of at least 100 traces.
- 9. A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
 - 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
 - If a specific emission is demonstrated to be continuous (D ≥ 98%) rather than turning ON and OFF with with the transmit cycle, then no duty cycle correction is required for that emission.

Notes:

1. f < 30 Mz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/D_s)$

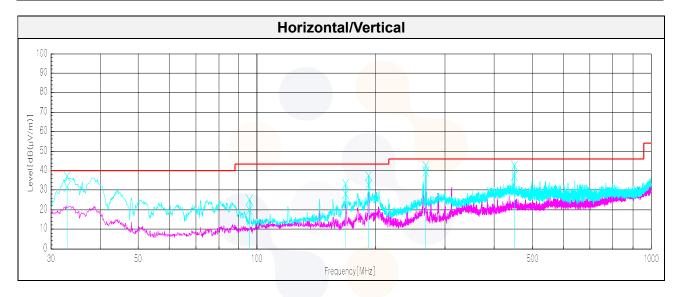
- f ≥30 M±, extrapolation factor of 20 dB/decade of distance. F_d = 20log(D_m/D_s) Where:
 - F_d = Distance factor in dB
 - D_m= Measurement distance in meters
 - D_s= Specification distance in meters
- 2. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or $F_d(dB)$
- 3. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5.¹⁾ means restricted band.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (21) of (32)

KCTL

Test results (Below 30 Mb) - Worst case: 1 MBits/s(37 Bytes) 2 480 Mb

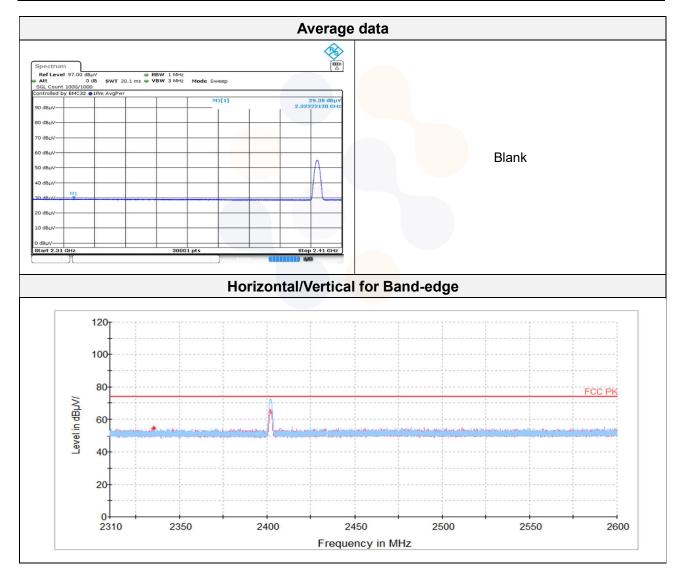
Frequency	Pol.	Reading	Cable Loss	Amp Gain	Antenna Factor	DCF	Result	Limit	Margin		
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(<i>µ</i> V/m)]	[dB]		
	No spurious emissions were detected within 20 dB of the limit.										


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (22) of (32)

KCTL

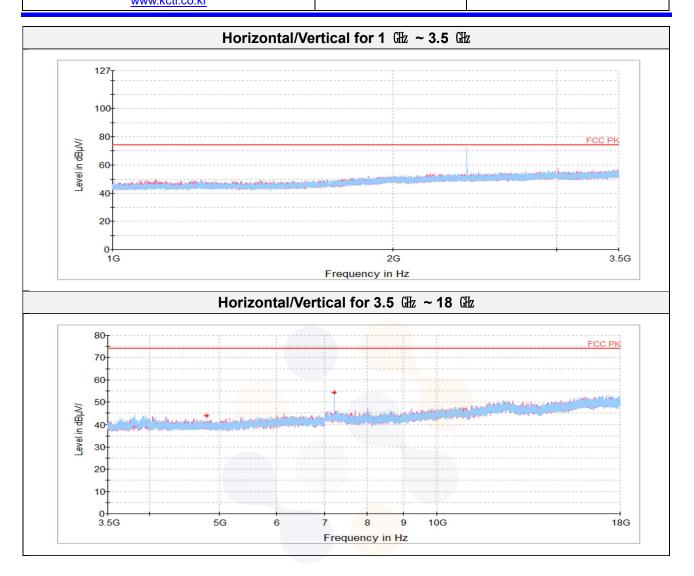
Test results (Below 1 000 Mb) – Worst case: 1 MBits/s(37 Bytes) 2 480 Mb

Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
(MHz) ¹⁾	(V/H)	(dB(µV))	(dB)	(dB)	(dB)	(dB(µV/m))	(dB(<i>µ</i> N/ m))	(dB)
Quasi peak data								
33.03	V	39.60	23.18	-30.93	-	31.85	40.00	8.15
95.84	V	33.70	15.78	-29.52	-	19.96	43.50	23.54
167.98 ¹⁾	V	41.20	15.38	-28.44	-	28.14	43.50	15.36
191.99	V	45.80	15.02	-28.18	-	32.64	43.50	10.86
268.26 ¹⁾	V	47.70	18.52	-27.07	-	39.15	46.00	6.85
450.01	V	40.10	22.20	-24.77	-	37.53	46.00	8.47


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (23) of (32)

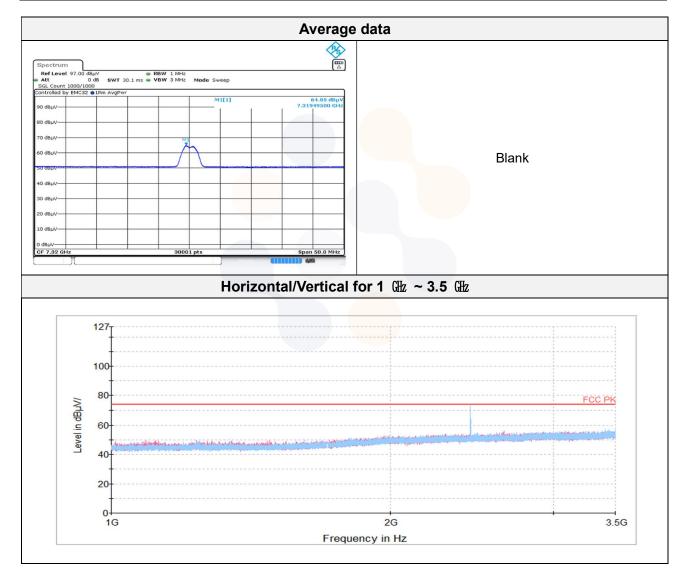
KCTL

Test results (Above 1 000 账)_1 MBits/s(37 Bytes) 2 402 账


Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin	
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]	
				Peak data	1				
2 323.231)	Н	40.97	31.95	-18.03	-	54.89	74.00	19.11	
4 804.091)	н	65.65	33.40	-55.21	-	43.84	74.00	30.16	
7 207.02	Н	70.76	35.20	-51.68	-	54.28	74.00	19.72	
Average Data									
2 323.231)	Н	29.38	31.95	-18.03	1.99	45.29	54.00	8.71	

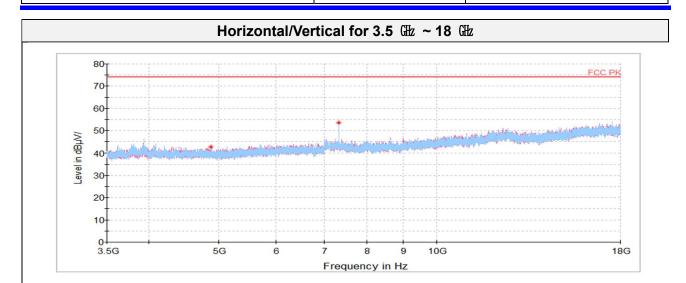
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (24) of (32)

KCTL


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (25) of (32)

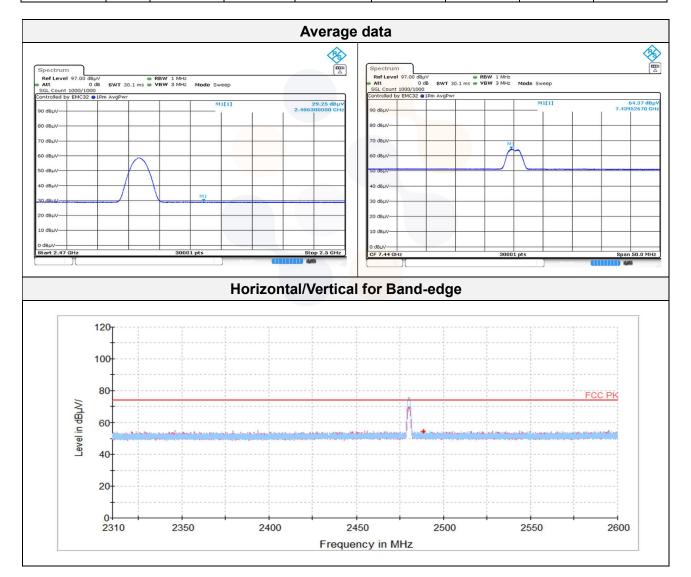
KCTL

2 440 M地


Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Peak data								
4 882.03 ¹⁾	V	64.55	33.40	-55.37	-	42.58	74.00	31.42
7 319.50 ¹⁾	Н	70.17	35.20	-51.80	-	53.57	74.00	20.43
Average Data								
7 319.50 ¹⁾	Н	64.85	35.20	-51.80	1.99	50.24	54.00	3.76

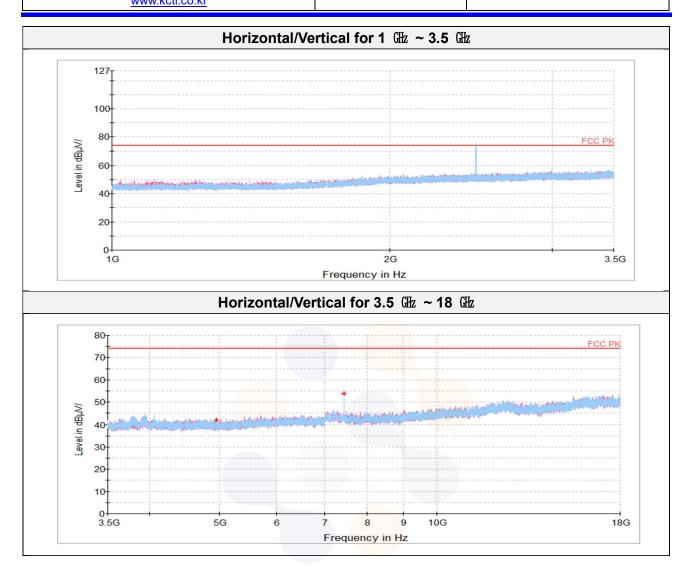
Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0273 Page (26) of (32)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (27) of (32)

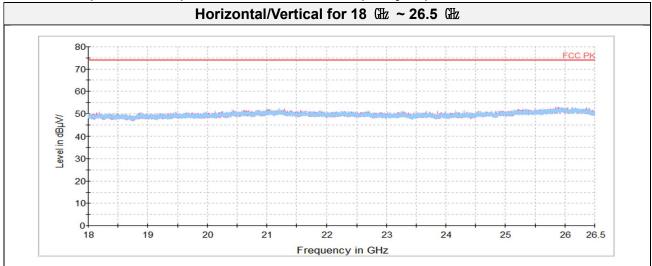
KCTL

2 480 Mb


Frequency	Pol.	Reading	Antenna Factor	Amp. + Cable	DCF	Result	Limit	Margin
[MHz]	[V/H]	[dB(µV)]	[dB]	[dB]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Peak data								
2 486.301)	Н	40.26	32.27	-17.87	-	54.66	74.00	19.34
4 960.42 ¹⁾	V	63.85	33.40	-55.35	-	41.90	74.00	32.10
7 439.53 ¹⁾	н	70.35	35.20	-51.92	-	53.63	74.00	20.37
Average Data								
2 486.301)	н	29.25	32.27	-17.87	1.99	45.64	54.00	8.36
7 439.53 ¹⁾	Н	64.37	35.20	-51.92	1.99	49.64	54.00	4.36

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (28) of (32)

KCTL

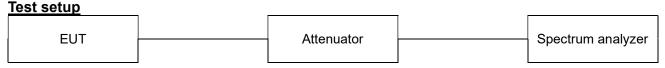


Report No.: KR23-SRF0273 Page (29) of (32)

KCTL

Test results (Above 18 () – Worst Case : 1 MBits/s(37 Bytes) 2 480 Mz

<u>Note:</u> The Worst case was based on the lowest margin condition considering Harmonic and Spurious Emission.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR23-SRF0273 Page (30) of (32)

KCTL

7.5. Conducted Spurious Emission

<u>Limit</u>

According to \$15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operation, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation specified in \$15.209(a) is not required. In addition, radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Limit : 20 dBc

Test procedure

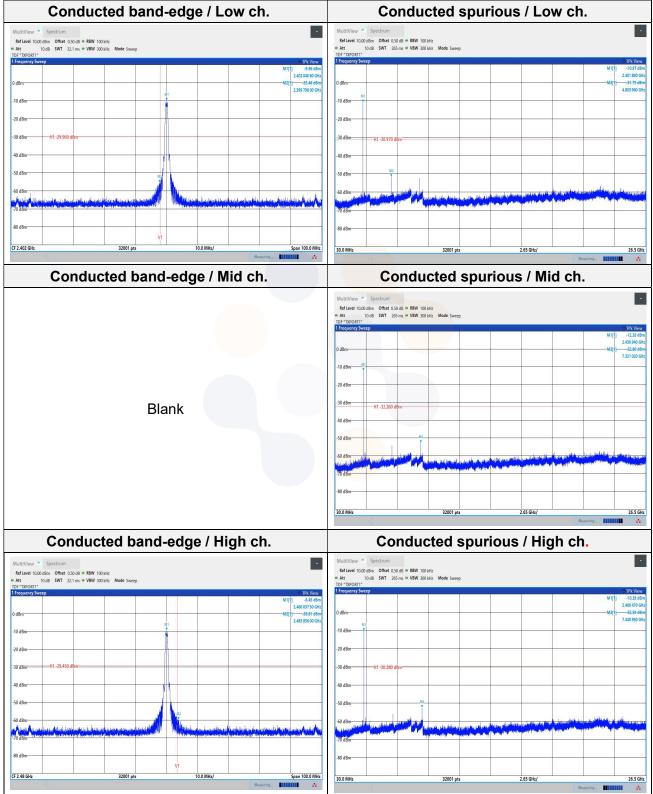
ANSI C63.10-2013 - Section 11.11.3 KDB 558074 D01 v05 - Section 8.5

Test settings

Establish an emission level by using the following procedure:

- 1) Set the center frequency and span to encompass frequency range to be measured.
- 2) Set the RBW = 100 kHz
- 3) Set the VBW \geq [3 x RBW]
- 4) Detector = peak
- 5) Sweep time = auto couple
- 6) Trace mode = max hold
- 7) Allow trace to fully stabilize.
- 8) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (31) of (32)

KCTL

Test results

BLE_1 MBit/s(37 Bytes)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR23-SRF0273 Page (32) of (32)

KCTL

8. Measureme	ent equipment				
Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date	
Signal & Spectrum Analyzer	R&S	FSV3030	1330.5000K30- 101710-Wt	24.07.03	
DC Power Supply	AGILENT	E3632A	MY40007371	24.04.27	
Attenuator	Weinschel ENGINEERING	56-10	53206	24.01.25	
Attenuator	R&S	DNF Dämpfungsglied 10 dB in N-50 Ohm	0007	24.01.19	
Power Sensor	R&S	NRP-Z81	1137.9009.02- 106225-JM	24.04.25	
Signal Generator	R&S	SMB100A	176206	24.01.19	
Antenna Mast	Innco Systems	MA4640-XP-ET	-	-	
Controller	Innco Systems	CO3000	1175/45850319/ P	-	
Spectrum Analyzer	R&S	F <mark>SV40</mark>	100989	24.10.12	
Horn antenna	ETS.lindgren	3117	251528	24.02.02	
Horn antenna	ETS.lindgren	3116	86632	24.01.25	
AMPLIFIER	B&Z Technologies	BZRT-00504000- 481055-382525	26299-27735	24.07.04	
AMPLIFIER	B&Z Technologies	BZR-0050400- 551028-252525	27736	24.07.04	
Attenuator	API Inmet	40AH2W-10	12	24.05.03	
High pass Filter	WT	WT-A1698-HS	WT160411001	24.04.25	
High pass Filter	Qotana	DBHF058004000A	20070100016	24.07.04	
Vector Signal Generator	R&S	S <mark>MBV100</mark> A	1407.6004K02	24.07.04	
Spectrum Analyzer	R&S	FSV40	100988	24.07.03	
Turn Device	innco systems GmbH	DS1200-S-1t	N/A	-	
Bilog Antenna	Teseq GmbH	CBL 6112D	61521	24.11.17	
Loop Antenna	R&S	HFH2-Z2	100355	24.08.10	
Amplifier	Amplifier SONOMA INSTRUMENT		421910	24.10.12	
DC Power Supply	TOYOTECH	TL305TP	21040092	24.07.03	
Attenuator HUBER+SUHNER		6610_SK-50- 1/199_NE	ATT03	24.10.16	
TWO-LINE V - NETWORK	R&S	ENV216	101358	24.09.27	
EMI TEST RECEIVER	R&S	ESCI3	100001	24.08.18	

End of test report