

# **TEST REPORT**

| Report No.:              | BCTC2203731178E              |
|--------------------------|------------------------------|
| Applicant:               | SEEWORLD Technology Co., ltd |
| Product Name:            | GPS Tracker                  |
| Model/Type<br>reference: | R11                          |
| Tested Date:             | 2022-03-28 to 2022-04-02     |
| Issued Date:             | 2022-04-02                   |
| She                      | enzhen BCPCTesting Co., Ltd. |
| No.: BCTC/RF-EMC-005     | Page: 1 of 37                |



FCC ID:2AWTV-R11

| Product Name:         | GPS Tracker                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trademark:            | N/A                                                                                                                                                                                             |
| Model/Type reference: | R11<br>S102A,S22,S106,S06A,S5L,S15,S15L,S13,S116L,S116MINI,S709,<br>R12,R12L,R31,R31L,R56,R56L,W15,W15L                                                                                         |
| Prepared For:         | SEEWORLD Technology Co., Itd                                                                                                                                                                    |
| Address:              | 4th Floor, No.121, Kecheng Building, Science Road, Luogang District, Guangzhou,<br>Guangdong Province, China. 510700                                                                            |
| Manufacturer:         | SEEWORLD Technology Co., Itd                                                                                                                                                                    |
| Address:              | 4th Floor, No.121, Kecheng Building, Science Road, Luogang District, Guangzhou, Guangdong Province, China. 510700                                                                               |
| Prepared By:          | Shenzhen BCTC Testing Co., Ltd.                                                                                                                                                                 |
| Address:              | 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei,<br>Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China                                               |
| Sample Received Date: | 2022-03-28                                                                                                                                                                                      |
| Sample tested Date:   | 2022-03-28 to 2022-04-02                                                                                                                                                                        |
| Issue Date:           | 2022-04-02                                                                                                                                                                                      |
| Report No.:           | BCTC2203731178E                                                                                                                                                                                 |
| Test Standards:       | FCC CFR Title 47 Part 2<br>FCC CFR Title 47 Part22 Subpart H<br>FCC CFR Title 47 Part24 Subpart E<br>ANSI/ TIA/ EIA-603-D-2010<br>FCC KDB 971168 D01 Power Meas. License Digital Systems v02v02 |
| Test Results:         | PASS                                                                                                                                                                                            |
| Remark:               | This is GSM radio test report.                                                                                                                                                                  |

Tested by:

Vare

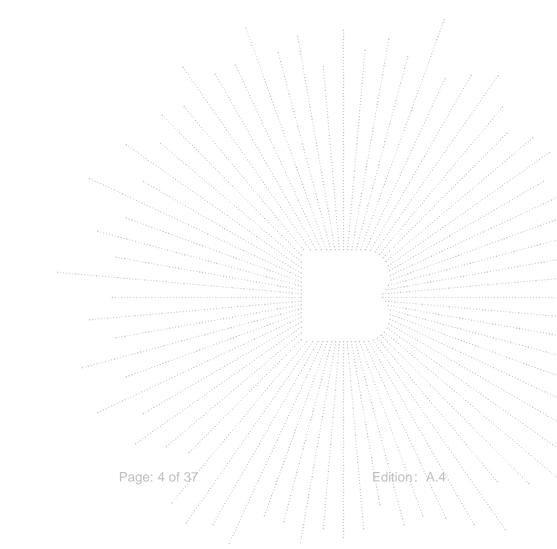
Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.




## Table Of Content

| Test  | Report Declaration                                                                           | Page |
|-------|----------------------------------------------------------------------------------------------|------|
| 1.    | Version                                                                                      | 4    |
| 2.    | Test Summary                                                                                 |      |
| 3.    | Measurement Uncertainty                                                                      |      |
| 4.    | Product Information And Test Setup                                                           |      |
| 4.1   | Product Information                                                                          |      |
| 4.2   | Test Setup Configuration                                                                     |      |
| 4.3   | Support Equipment                                                                            |      |
| 4.5   | Test Mode                                                                                    |      |
| 5.    | Test Facility And Test Instrument Used                                                       |      |
| 5.1   | Test Facility                                                                                |      |
| 5.2   | Test Instrument Used                                                                         |      |
| 6.    | RF Output Power                                                                              | 12   |
| 6.1   | Block Diagram Of Test Setup                                                                  |      |
| 6.2   | Limit                                                                                        |      |
| 6.3   | Test procedure                                                                               |      |
| 6.4   | Test Result                                                                                  |      |
| 7.    | Peak-to-average Ratio(PAR) of Transmitter                                                    | 17   |
| 7.1   | Block Diagram Of Test Setup                                                                  |      |
| 7.2   | Limit                                                                                        |      |
| 7.3   | Test procedure                                                                               |      |
| 7.4   | Test Result                                                                                  | 17   |
| 8.    | Emission Bandwidth                                                                           |      |
| 8.1   | Block Diagram Of Test Setup                                                                  |      |
| 8.2   | Limit                                                                                        |      |
| 8.3   | Test procedure                                                                               |      |
| 8.4   | Test Result                                                                                  |      |
| 9.    | Out of Band Emissions at Antenna Terminal                                                    | 25   |
| 9.1   | Block Diagram Of Test Setup                                                                  |      |
| 9.2   | Limit                                                                                        |      |
| 9.3   | Test procedure                                                                               | 25   |
| 9.4   | Test Result                                                                                  | 26   |
| 10.   | Spurious Radiated Emissions                                                                  | 31   |
| 10.1  | Block Diagram Of Test Setup                                                                  |      |
| 10.2  | Limit                                                                                        | 32   |
| 10.3  | Test procedure                                                                               | 32   |
| 10.4  | Limit<br>Test procedure<br>Test Result                                                       |      |
| 11.   | Frequency Stability                                                                          |      |
| 11.1  | Block Diagram Of Test Setup                                                                  |      |
| 11.2  | Limit                                                                                        |      |
| 11.3  | Test procedure                                                                               |      |
| 11.4  | Frequency Stability<br>Block Diagram Of Test Setup<br>Limit<br>Test procedure<br>Test Result |      |
| 12.   | EUT Photographs<br>EUT Test Setup Photographs                                                |      |
| 13.   | EUT Test Setup Photographs.                                                                  |      |
| (Note | : N/A Means Not Applicable)                                                                  |      |



## 1. Version

| Report No.      | Issue Date | Description | Approved |
|-----------------|------------|-------------|----------|
| BCTC2203731178E | 2022-04-02 | Original    | Valid    |
|                 |            |             |          |





## 2. Test Summary

The Product has been tested according to the following specifications:

| No. | Test Parameter                            | Clause No.                                       | Results |
|-----|-------------------------------------------|--------------------------------------------------|---------|
| 1   | RF Exposure                               | §1.1307,§2.1093                                  | PASS    |
| 2   | RF Output Power                           | §22.913 (a), §24.232 (c),<br>§27.50 (d),         | PASS    |
| 3   | Peak-to-average Ratio(PAR) of Transmitter | §24.232(d),§22.913,<br>§27.50(d),                | PASS    |
| 4   | Emission Bandwidth                        | §22.917 (b), §24.238(b),<br>§27.53(g)            | PASS    |
| 5   | Spurious Emissions at Antenna Terminal    | §22.917 (a), §24.238 (a),<br>§27.53(g),§27.53(h) | PASS    |
| 6   | Spurious Radiation Emissions              | §22.917 (a), §24.238 (a),<br>§27.53(g),§27.53(h) | PASS    |
| 7   | Out of Band Emissions                     | §22.917 (a), §24.238 (a),<br>§27.53(g),§27.53(h) | PASS    |
| 8   | Frequency Stability                       | §22.355, §24.235, §27.54                         | PASS    |



## 3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| No. | Item                                               | Uncertainty      |
|-----|----------------------------------------------------|------------------|
| 1   | 3m chamber Radiated spurious emission(30MHz-1GHz)  | U=4.3dB          |
| 2   | 3m chamber Radiated spurious emission(9KHz-30MHz)  | U=3.7dB          |
| 3   | 3m chamber Radiated spurious emission(1GHz-18GHz)  | U=4.5dB          |
| 4   | 3m chamber Radiated spurious emission(18GHz-40GHz) | U=3.34dB         |
| 5   | Conducted Emission (150kHz-30MHz)                  | U=3.20dB         |
| 6   | Conducted Adjacent channel<br>power                | U=1.38dB         |
| 7   | Conducted output power<br>uncertainty Above 1G     | U=1.576dB        |
| 8   | Conducted output power<br>uncertainty below 1G     | U=1.28dB         |
| 9   | humidity uncertainty                               | U=5.3%           |
| 10  | Temperature uncertainty                            | <b>U=0.59°</b> C |



## 4. Product Information And Test Setup

#### 4.1 Product Information

| Model/Type reference:  | R11                                                                   |
|------------------------|-----------------------------------------------------------------------|
|                        | S102A,S22,S106,S06A,S5L,S15,S15L,S13,S116L,S116MINI,S709,             |
|                        | R12,R12L,R31,R31L,R56,R56L,W15,W15L                                   |
| Model differences:     | All the model are the same circuit and RF module, except model names. |
| Hardware Version:      | N/A                                                                   |
| Software Version:      | N/A                                                                   |
| Operation Frequency:   | GPRS 850: TX: 824~849MHz; RX: 869~894MHz;                             |
|                        | GPRS 1900: TX:1850~1910MHz; RX:1930~1990MHz.                          |
| GPRS Class:            | Class 12                                                              |
| MaxRF Output Power:    | GPRS 850: 31.91dBm,                                                   |
|                        | GPRS 1900: 28.46dBm                                                   |
| Type of Modulation:    | GPRS with GMSK Modulation                                             |
| Type of Emission:      | GPRS 850: 248KGXW                                                     |
|                        | GPRS 1900: 251KGXW                                                    |
| Antenna installation:  | Internal antenna                                                      |
| Antenna Gain:          | GPRS 850: 1 dBi                                                       |
|                        | GPRS 1900: 1 dBi                                                      |
| Connecting I/O Port(s) | Please refer to the User's Manual                                     |
| Ratings:               | DC 12V                                                                |



## 4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Radiated Spurious Emission



## 4.3 Support Equipment

| No. | Device Type | Brand | Model | Series No.           | Note      |
|-----|-------------|-------|-------|----------------------|-----------|
| E-1 | R11         | N/A   | R11   | Ref. the Section 4.1 | EUT       |
| E-2 | N/A         | N/A   | N/A   | N/A                  | Auxiliary |

| ltem | Shielded Type | Ferrite Core | Length | Note                |
|------|---------------|--------------|--------|---------------------|
| C-1  | N/A           | N/A          | 1M     | DC cable unshielded |

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 8 of 37



## 4.5 Test Mode

| Testing Configure |                  |                   |                |
|-------------------|------------------|-------------------|----------------|
| Support Band      | Support Standard | Channel Frequency | Channel Number |
|                   |                  | 824.2 MHz         | 128            |
| GSM 850           | GPRS             | 836.6 MHz         | 190            |
|                   |                  | 848.8 MHz         | 251            |
|                   |                  | 1850.2 MHz        | 512            |
| PCS 1900          | GPRS             | 1880.0 MHz        | 661            |
|                   |                  | 1909.8 MHz        | 810            |

#### EUT Cable List and Details

| Cable Description | Length (M) | Shielded/Unshielded | With Core/Without Core |
|-------------------|------------|---------------------|------------------------|
| /                 | /          | /                   | /                      |
| /                 | /          | /                   | /                      |

#### Auxiliary Equipment List and Details

| Description | Manufacturer | Model | Serial Number |
|-------------|--------------|-------|---------------|
| /           | /            | /     | /             |

#### Special Cable List and Details

| ſ | Cable Description | Length (M) | Shielded/Unshielded | With Core/Without Core |
|---|-------------------|------------|---------------------|------------------------|
| ſ | /                 | /          | /                   | /                      |



## 5. Test Facility And Test Instrument Used

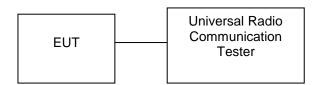
## 5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583

#### 5.2 Test Instrument Used

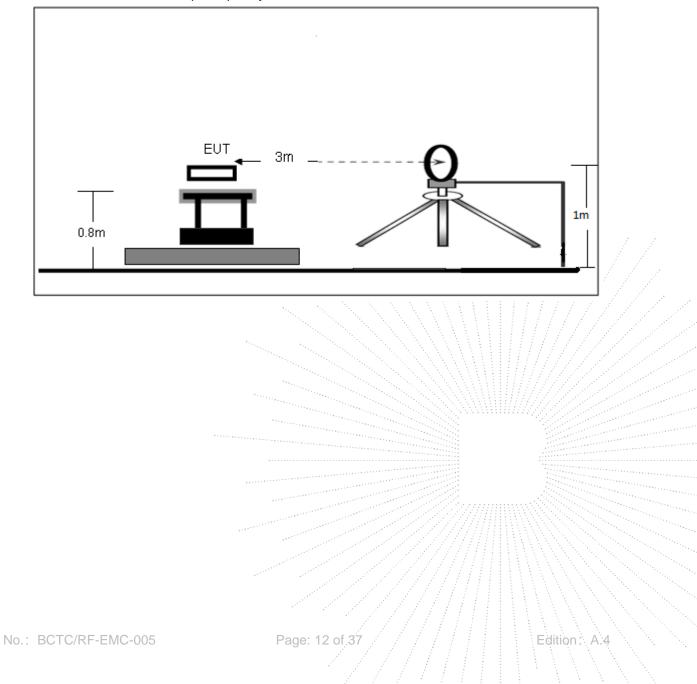
|                                         | RF Conducted Test |        |            |              |              |  |  |  |  |
|-----------------------------------------|-------------------|--------|------------|--------------|--------------|--|--|--|--|
| Equipment                               | Manufacturer      | Model# | Serial#    | Last Cal.    | Next Cal.    |  |  |  |  |
| Power Metter                            | Keysight          | E4419  | /          | May 28, 2021 | May 27, 2022 |  |  |  |  |
| Power Sensor<br>(AV)                    | Keysight          | E9300A | ١          | May 28, 2021 | May 27, 2022 |  |  |  |  |
| Signal<br>Analyzer<br>20kHz-26.5G<br>Hz | Keysight          | N9020A | MY49100060 | May 28, 2021 | May 27, 2022 |  |  |  |  |
| Spectrum<br>Analyzer<br>9kHz-40GHz      | R&S               | FSP 40 | ١          | May 28, 2021 | May 27, 2022 |  |  |  |  |




| Radiated Emissions Test (966 Chamber)   |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |               |  |  |
|-----------------------------------------|--------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--|--|
| Equipment                               | Manufacturer | Model#               | Serial#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Last Cal.     | Next Cal.     |  |  |
| 966 chamber                             | ChengYu      | 966 Room             | 966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun. 06. 2020 | Jun. 05, 2023 |  |  |
| Receiver                                | R&S          | ESR3                 | 102075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | May 28, 2021  | May 27, 2022  |  |  |
| Receiver                                | R&S          | ESRP                 | 101154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | May 28, 2021  | May 27, 2022  |  |  |
| Amplifier                               | SKET         | LAPA_01G18<br>G-45dB | ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | May 28, 2021  | May 27, 2022  |  |  |
| Amplifier                               | Schwarzbeck  | BBV9744              | 9744-0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May 28, 2021  | May 27, 2022  |  |  |
| TRILOG<br>Broadband<br>Antenna          | Schwarzbeck  | VULB9163             | 942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun. 01, 2021 | May 31, 2022  |  |  |
| Horn Antenna                            | Schwarzbeck  | BBHA9120D            | 1541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun. 02, 2021 | Jun. 01, 2022 |  |  |
| Horn Antenn<br>(18GHz-40GH<br>z)        | Schwarzbeck  | BBHA9170             | 00822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun. 15, 2021 | Jun. 14, 2022 |  |  |
| Amplifier<br>(18GHz-40GH<br>z)          | MITEQ        | TTA1840-35-<br>HG    | 2034381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May 28, 2021  | May 27, 2022  |  |  |
| Loop Antenna<br>(9KHz-30MHz<br>)        | Schwarzbeck  | FMZB1519B            | 00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun. 02, 2021 | Jun. 01, 2022 |  |  |
| RF cables1<br>(9kHz-30MHz)              | Huber+Suhnar | 9kHz-30MHz           | B1702988-000<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | May 28, 2021  | May 27, 2022  |  |  |
| RF cables2<br>(30MHz-1GHz<br>)          | Huber+Suhnar | 30MHz-1GHz           | 1486150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May 28, 2021  | May 27, 2022  |  |  |
| RF cables3<br>(1GHz-40GHz<br>)          | Huber+Suhnar | 1GHz-40GHz           | 1607106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May 28, 2021  | May 27, 2022  |  |  |
| Power Metter                            | Keysight     | E4419                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May 28, 2021  | May 27, 2022  |  |  |
| Power Sensor<br>(AV)                    | Keysight     | E9300Å               | a second se | May 28, 2021  | May 27, 2022  |  |  |
| Signal<br>Analyzer<br>20kHz-26.5G<br>Hz | Keysight     | N9020A               | MY49100060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | May 28, 2021  | May 27, 2022  |  |  |
| Spectrum<br>Analyzer<br>9kHz-40GHz      | R&S          | FSP 40               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May 28, 2021  | May 27, 2022  |  |  |
| Software                                | Frad         | EZ-EMC               | FA-03A2 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \<br>\        | /             |  |  |

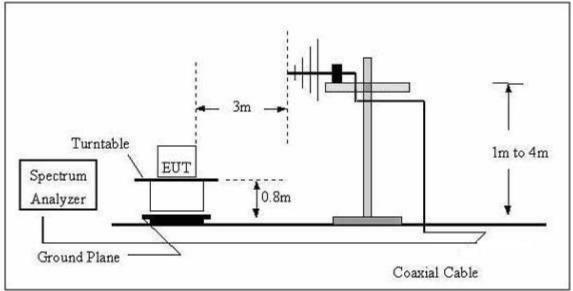


## 6. RF Output Power

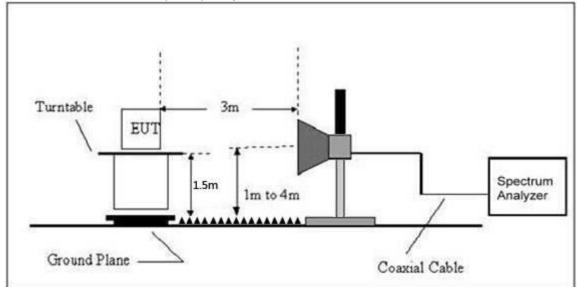

## 6.1 Block Diagram Of Test Setup

Conducted output power test method:




Radiated power test method:

(A) Radiated Emission Test-Up Frequency Below 30MHz






(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



#### (C) Radiated Emission Test-Up Frequency Above 1GHz



#### 6.2 Limit

According to §22.913(a)(2), The ERP of mobileand portable stations transmitters and auxiliary test transmitters must not exceed 7 Watts.

According to §24.232 (c), Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50(d)(4), Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.



#### 6.3 Test procedure

Radiated power test method:

1. The setup of EUT is according with per ANSI/TIA Standard 603D and ANSI C63.4-2014 measurement procedure.

- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

#### 6.4 Test Result

| Frequency<br>(MHz) | Polar<br>(H/V) | Height<br>(Meter) | Table<br>(Degree) | Reading<br>Level<br>(dBm) | Correct<br>Factor<br>(dB) | Measure-<br>ment<br>(dBm) | FCC<br>Part<br>22H<br>Limits<br>(dBm) | Result |
|--------------------|----------------|-------------------|-------------------|---------------------------|---------------------------|---------------------------|---------------------------------------|--------|
|                    |                |                   | L                 | ow Channel                |                           |                           |                                       |        |
| 824.2              | Н              | 1.5               | 0                 | 26.98                     | -1.38                     | 25.60                     | 38.45                                 | PASS   |
| 824.2              | V              | 1.5               | 0                 | 26.13                     | -1.38                     | 24.75                     | 38.45                                 | PASS   |
|                    |                |                   | Mi                | ddle Channel              |                           |                           |                                       |        |
| 836.6              | Н              | 1.5               | 0                 | 25.97                     | -1.10                     | 24.87                     | 38.45                                 | PASS   |
| 836.6              | V              | 1.5               | 0                 | 25.45                     | -1.10                     | 26.55                     | 38.45                                 | PASS   |
|                    |                |                   | Н                 | igh Channel               |                           |                           |                                       |        |
| 848.8              | Н              | 1.5               | 0                 | 25.19                     | -0.82                     | 24.37                     | 38.45                                 | PASS   |
| 848.8              | V              | 1.5               | 0                 | 25.78                     | -0.82                     | 24.96                     | 38.45                                 | PASS   |

FRP For GPRS Mode GSM850

| 040.0              | v              | 1.0               | 0                                                                                                              | 25.70                     | -0.02                     | 24.30                     | 30.43                                 | 1700   |
|--------------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------------------|--------|
| EIRP For GP        | RS Mode        | PCS1900           |                                                                                                                | 1                         |                           |                           |                                       |        |
| Frequency<br>(MHz) | Polar<br>(H/V) | Height<br>(Meter) | Table<br>(Degree)                                                                                              | Reading<br>Level<br>(dBm) | Correct<br>Factor<br>(dB) | Measure-<br>ment<br>(dBm) | FCC<br>Part<br>24E<br>Limits<br>(dBm) | Result |
|                    |                |                   | the second s | ow Channel                |                           |                           |                                       |        |
| 1850.2             | Н              | 1.5               | 0                                                                                                              | 47.69                     | -22.26                    | 25.43                     | 33.00                                 | PASS   |
| 1850.2             | V              | 1.5               | 0                                                                                                              | 47.98                     | -22.26                    | 25.72                     | 33.00                                 | PASS   |
|                    |                |                   | Mi                                                                                                             | ddle Channel              |                           |                           |                                       |        |
| 1880.0             | Н              | 1.5               | 0                                                                                                              | 48.75                     | -22.16                    | 26.59                     | 33.00                                 | PASS   |
| 1880.0             | V              | 1.5               | 0                                                                                                              | 47.83                     | -22.16                    | 25.67                     | 33.00                                 | PASS   |
|                    |                |                   | . H                                                                                                            | igh Channel               |                           |                           |                                       |        |
| 1909.8             | Н              | 1.5               | 0                                                                                                              | 47.39                     | -22.05                    | 25.34                     | 33.00                                 | PASS   |
| 1909.8             | V              | 1.5               | 0                                                                                                              | 47.43                     | -22.05                    | 25.38                     | 33.00                                 | PASS   |



#### Max. Conducted Output Power

## For Cellular Band (GPRS850)

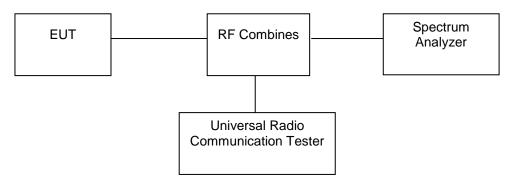
| Test Mode         | Channel        | Frequency<br>(MHz) | Average Power<br>(dBm) | FCC Part 22.913<br>Limit (dBm) |
|-------------------|----------------|--------------------|------------------------|--------------------------------|
|                   | Low Channel    | 824.2              | 31.91                  | 38.45                          |
| GPRS(1 Slot)      | Middle Channel | 836.6              | 31.72                  | 38.45                          |
|                   | High Channel   | 848.8              | 31.78                  | 38.45                          |
|                   | Low Channel    | 824.2              | 31.15                  | 38.45                          |
| GPRS(2 Slot)      | Middle Channel | 836.6              | 30.81                  | 38.45                          |
|                   | High Channel   | 848.8              | 30.94                  | 38.45                          |
|                   | Low Channel    | 824.2              | 29.34                  | 38.45                          |
| GPRS(3 Slot)      | Middle Channel | 836.6              | 28.90                  | 38.45                          |
|                   | High Channel   | 848.8              | 29.01                  | 38.45                          |
|                   | Low Channel    | 824.2              | 28.43                  | 38.45                          |
| GPRS(4 Slot)      | Middle Channel | 836.6              | 27.9                   | 38.45                          |
|                   | High Channel   | 848.8              | 28.03                  | 38.45                          |
| or PCS Band (GPRS | 1900)          |                    |                        | 11/77                          |
|                   | 1000,          | <b>F</b>           | A                      |                                |

#### For PCS Band (GPRS1900)

| Test Mode    | Channel        | Frequency<br>(MHz) | Average Power<br>(dBm) | FCC Part 24.232<br>Limit (dBm) |
|--------------|----------------|--------------------|------------------------|--------------------------------|
|              | Low Channel    | 1850.2             | 28.24                  | 33.0                           |
| GPRS(1 Slot) | Middle Channel | 1880.0             | 28.46                  | 33.0                           |
|              | High Channel   | 1909.8             | 28.23                  | 33.0                           |
|              | Low Channel    | 1850.2             | 27.37                  | 33.0                           |
| GPRS(2 Slot) | Middle Channel | 1880.0             | 27.84                  | 33.0                           |
|              | High Channel   | 1909.8             | 27.75                  | 33.0                           |
|              | Low Channel    | 1850.2             | 25.06                  | 33.0                           |
| GPRS(3 Slot) | Middle Channel | 1880.0             | 25.82                  | 33.0                           |
|              | High Channel   | 1909.8             | 25.98                  | 33.0                           |



| GPRS(4 Slot) | Low Channel    | 1850.2 | 23.72 | 33.0 |
|--------------|----------------|--------|-------|------|
|              | Middle Channel | 1880.0 | 24.59 | 33.0 |
|              | High Channel   | 1909.8 | 24.84 | 33.0 |


C-005 Page: 16 of .37 Edition : A.4

No.: BCTC/RF-EMC-005



## 7. Peak-to-average Ratio(PAR) of Transmitter

## 7.1 Block Diagram Of Test Setup



#### 7.2 Limit

According to §24.232(d), Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to §27.50(B), the peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

#### 7.3 Test procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 30kHz and the peak-to-average ratio (PAR) of the transmission was recorded. Record the maximum PAPR level associated with a probability of 0.1%.

#### 7.4 Test Result

|          |         |                    | and the second |                    |         |
|----------|---------|--------------------|------------------------------------------------------------------------------------------------------------------|--------------------|---------|
| Band     | Channel | Frequency<br>(MHz) | Result (dB)                                                                                                      | high Limit<br>(dB) | Verdict |
| GPRS1900 | 512     | 1850.2             | 2.72                                                                                                             | 13                 | PASS    |
| GPRS1900 | 661     | 1880               | 2.72                                                                                                             | 13                 | PASS    |
| GPRS1900 | 810     | 1909.8             | 2.71                                                                                                             | 13                 | PASS    |
| GPRS850  | 128     | 824.2              | 2.81                                                                                                             | 13                 | PASS    |
| GPRS850  | 190     | 836.6              | 2.75                                                                                                             | 13                 | PASS    |
| GPRS850  | 251     | 848.8              | 2.67                                                                                                             | 13                 | PASS    |



|                                               | GPRS1900 Channel=512                                                                                                                 |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Magilent Spectrum Analyzer - Power Stat CCDF  |                                                                                                                                      |
| RL RF 50 Ω AC     Center Freq 1.850200000 GHz | SENSE:INT         ALIGN AUTO         10:38:34 AM Apr 02, 2022           Center Freq:         1.850200000 GHz         Radio Std: None |
|                                               | Trig: RF Burst Counts:1.00 M/1.00 Mpt                                                                                                |
| #IFGa                                         | ain:Low #Atten: 40 dB                                                                                                                |
| Average Power                                 | Gaussian                                                                                                                             |
|                                               | 100 % Gaussian                                                                                                                       |
| 25.50 dBm                                     |                                                                                                                                      |
|                                               |                                                                                                                                      |
| 54.66 % at 0dB                                | 10 %                                                                                                                                 |
|                                               |                                                                                                                                      |
|                                               | 1%                                                                                                                                   |
|                                               |                                                                                                                                      |
|                                               |                                                                                                                                      |
| 10.0 % 2.69 dB                                | 0.1 %                                                                                                                                |
| 1.0 % 2.71 dB                                 |                                                                                                                                      |
| 0.1 % 2.72 dB                                 |                                                                                                                                      |
| 0.01 % 2.72 dB                                | 0.01 %                                                                                                                               |
|                                               |                                                                                                                                      |
| 0.001 % 2.72 dB                               |                                                                                                                                      |
| 0.0001 % 2.72 dB                              | 0.001 %                                                                                                                              |
| Peak 2.74 dB                                  |                                                                                                                                      |
| 28.24 dBm                                     |                                                                                                                                      |
|                                               | 0.0001 % 0 dB 20 dB                                                                                                                  |
|                                               | Info BW 510.00 kHz                                                                                                                   |
| MSG                                           | STATUS                                                                                                                               |
|                                               | GPRS1900 Channel=661                                                                                                                 |
|                                               |                                                                                                                                      |

GPRS1900 Channel=512



No.: BCTC/RF-EMC-005

Page: 18 of 37

Edition: A.4

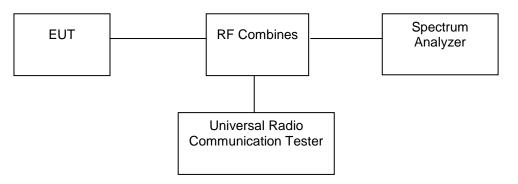



GPRS1900 Channel=810



Page: 19 of 37










## 8. Emission Bandwidth

#### 8.1 Block Diagram Of Test Setup



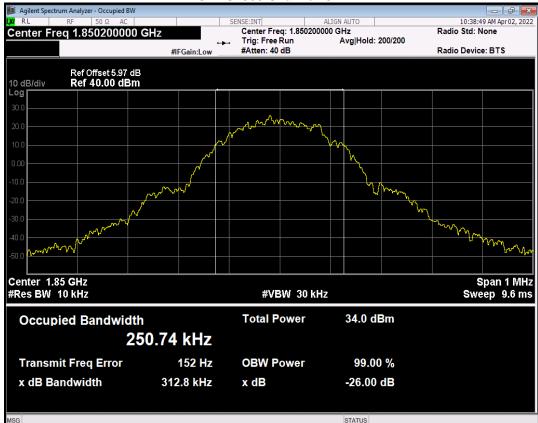
#### 8.2 Limit

According to §22.917(b), The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

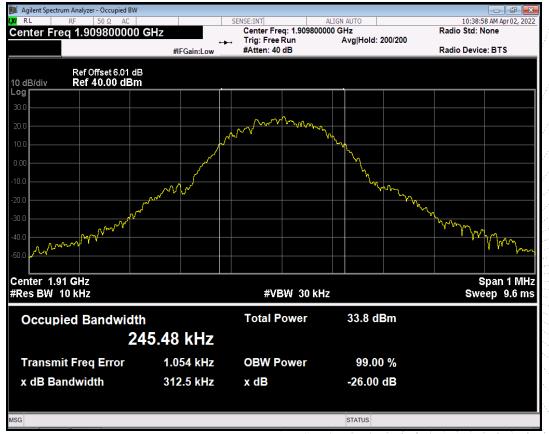
According to §24.238(b), The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §27.53, The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

#### 8.3 Test procedure

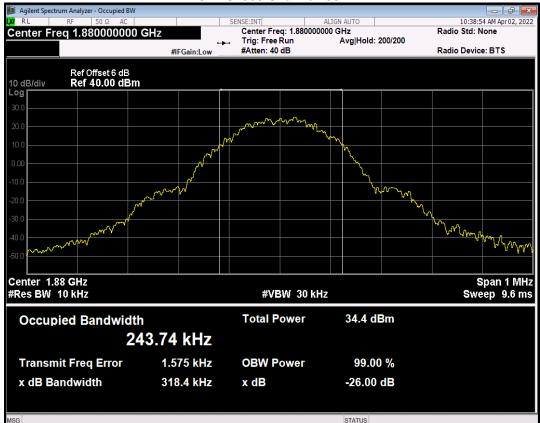

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 10kHz for GSM mode and 100kHz for WCDMA mode, VBW shall be at least 3 times the RBW, and the 26dB bandwidth was recorded.

#### 8.4 Test Result

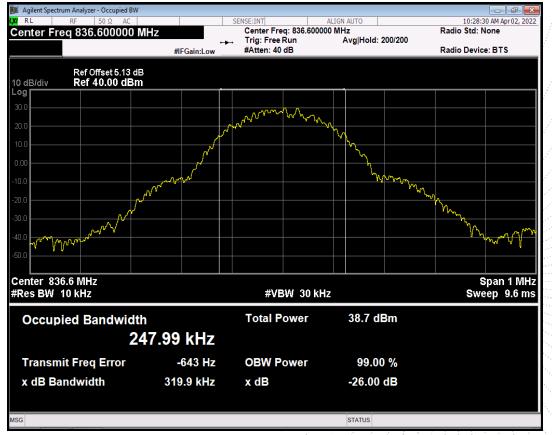

| Band     | Channel | Frequency (MHz) | 99% OBW (kHz) | -26dB EBW (kHz) | Verdict |
|----------|---------|-----------------|---------------|-----------------|---------|
| GPRS1900 | 512     | 1850.2          | 250.738       | 312.762         | PASS    |
| GPRS1900 | 661     | 1880            | 243.742       | 318.376         | PASS    |
| GPRS1900 | 810     | 1909.8          | 245.475       | 312.533         | PASS    |
| GPRS850  | 128     | 824.2           | 246.700       | 316.851         | PASS    |
| GPRS850  | 190     | 836.6           | 247.985       | 319.888         | PASS    |
| GPRS850  | 251     | 848.8           | 243.736       | 317.831         | PASS    |



GPRS1900 Channel=512

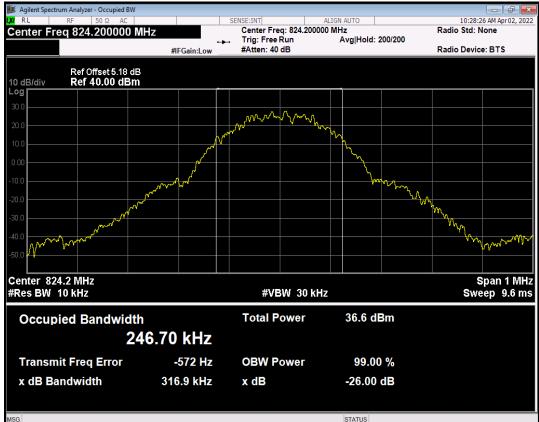



GPRS1900 Channel=810

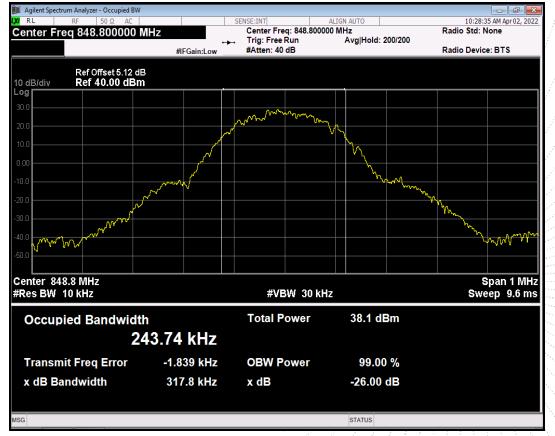





GPRS1900 Channel=661



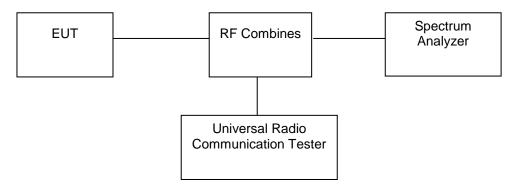

GPRS850 Channel=190






GPRS850 Channel=128




GPRS850 Channel=251





## 9. Out of Band Emissions at Antenna Terminal

#### 9.1 Block Diagram Of Test Setup



#### 9.2 Limit

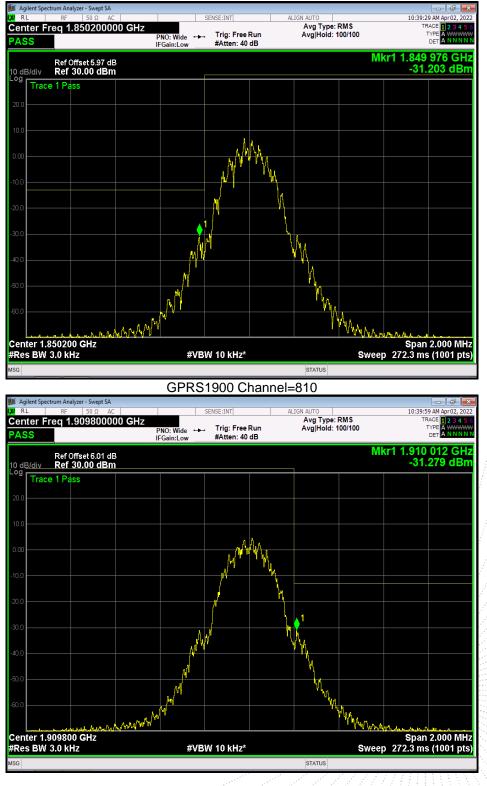
According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to \$27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

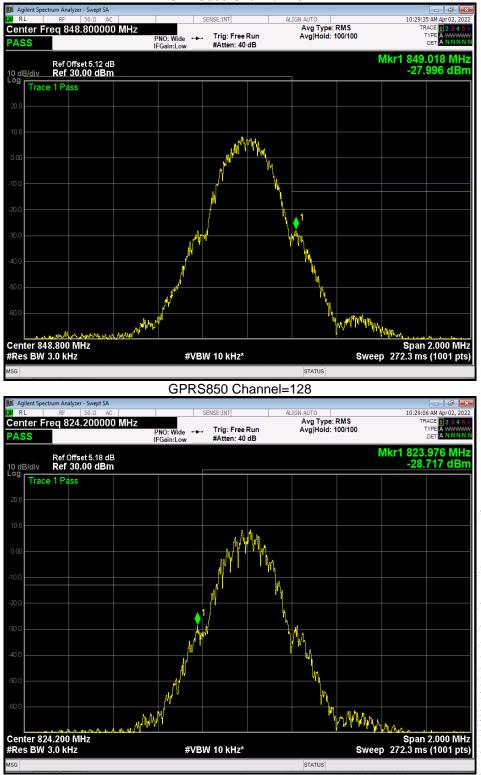
#### 9.3 Test procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10<sup>th</sup> harmonic.


No.: BCTC/RF-EMC-005

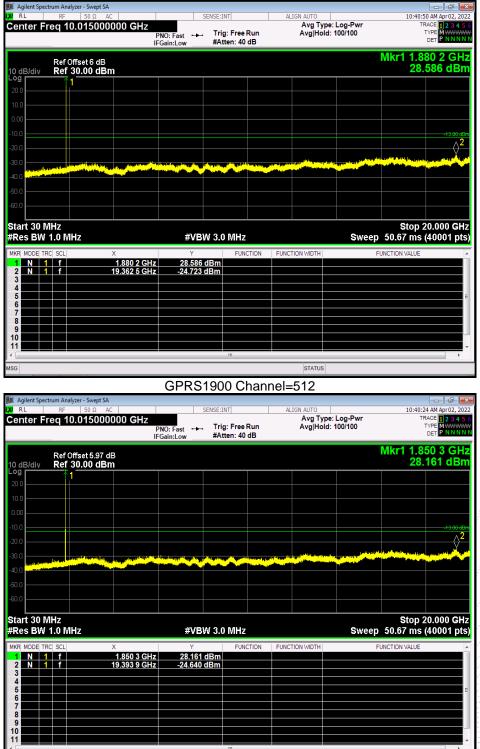
Page: 25 of 3




## 9.4 Test Result

GPRS1900 Channel=512



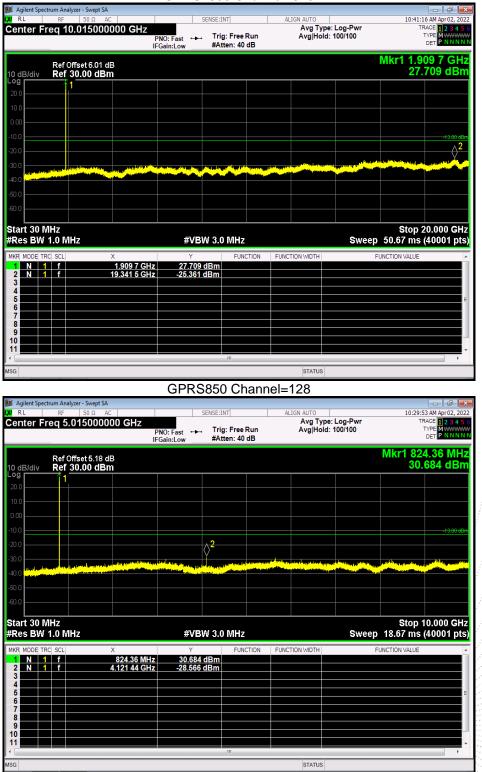



GPRS850 Channel=251





GPRS1900 Channel=661




STATUS

ISG



GPRS1900 Channel=810

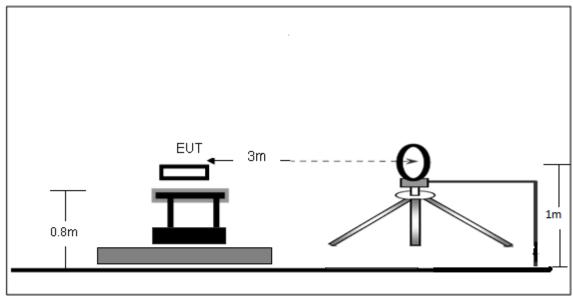




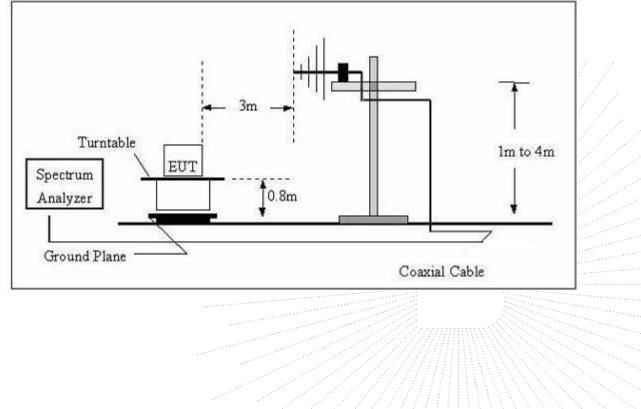
GPRS850 Channel=190

| RL         PE         Stop AC         StopExtIT         ALIONATIO         103398 Attents           Inter Freq 5.01500000 GHz         PRO: Fast         +-         Trig: Free Run<br>Ref Orfset 5.13 dB         Augination         Trig: Free Run<br>Ref Orfset 5.13 dB         Mkr1 933.82 MI           attain         30.00 dBm         32.895 dB         32.895 dB         32.895 dB         32.895 dB           attain         30.00 dBm         32.895 dB         30.00 dBm         32.895 dB         30.00 dBm           attain         30 MHz         Stop 10.000 C         Stop 10.000 C         Stop 10.000 C         Stop 10.000 C           attain         30 MHz         #VBW 3.0 MHz         Stop 10.000 C         Stop 10.000 C         Stop 10.000 C           attain         30 MHz         #VBW 3.0 MHz         Function         Function worth         Function worth         Function worth           N         1         1         2.509 54 GHz         -229 23 dBm         Function worth         Function worth <t< th=""><th></th><th></th><th>GPRS850 Chan</th><th>nei=190</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                            | GPRS850 Chan                                                                                                   | nei=190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Inter Freq 5.015000000 GHz       PRO: Fast<br>Prediction       Trig: Free Run<br>Extent: 40 dB       Avg Type: Log-Pur<br>Avg                                                                                                          |                                          |                            | SENSE-INT                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10:30:09 AM Apr 02, 2                            |
| Induction         Number           Bildly         Ref 03.00 dBm         32.895 dB           2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | 00000 GHz                  | Trim Free Prov                                                                                                 | Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRACE 1 2 3 4                                    |
| Bigliou       Ref '00 00 dBm       32.895 dB         Image: Stop 10,000 dBm       Stop 10,000 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | PNO<br>IFGai               |                                                                                                                | Avg Hold: 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DET                                              |
| direction         Status         Stop 10.000 GBm         32.895 0BS           a         a         a         a         a           a         a         a         a         a         a           a         a         a         a         a         a         a           a         a         a         a         a         a         a         a           a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ref Offset 5                             | 13 dB                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr1 836.82 MH                                   |
| art 30 MHz       Stop 10.000 C         set 30 MHz       #VBW 3.0 MHz         set 20 MHz       #VBW 3.0 MHz         set 30 MHz       #VBW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB/div Ref 30.00                         | dBm                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.895 dB                                        |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0                                       |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Image: Section Analyses - Swept SA         State of the section                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Image: Stop 10,000 GF         Stop 10,000 GF           Image: Stop 10,000 GF         Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o                                        |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10.00 a                                         |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                | o                                        | ^ <b>2</b>                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Image: Stop 10.000 G         Stop 10.000 G           N         1         1         2.509 54 GHz         2.838 gi gi m           N         1         1         2.509 54 GHz         2.2323 gi gi m           N         1         1         2.509 54 GHz         -23243 gi gi m           Image: Stop 10.000 GHz         FUNCTION MODTH         FUNCTION VALUE           N         1         1         2.509 54 GHz         -23243 gi gi m           Image: Stop 10.000 GHz         FUNCTION MARKET Sweet SA         FUNCTION MARKET Sweet SA           R         87         30 0 0 AC         Stop 2.017           Aug Type: Log-Pwr         Aug Type: Log-Pwr         Trace Function Market Sweet SA           R         87         30 0 0 AC         Stop 2.015           R         70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o                                        |                            | atom at the second of a filled d                                                                               | ى مى مەركىيى بىرىمىيىدىنىدى يەركىيىكى بىرىمىيىدىدىنى يەركىيىكى بىرىمىيىكى بىرىمىيىكى بىرىكى بىرىكى بىرىكى بىرى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 alateleta anata a a di <sup>bi</sup> lata a sa |
| Image: State in the second                                                                                                                                                                                                                                                                                                                                                                                                                 | o <mark>de letter dia de la tribu</mark> |                            |                                                                                                                | and the first of the first of the first one should be the first one of the first one of the first of the firs |                                                  |
| art 30 MHz       Stop 10.000 G         art 30 MHz       ¥VBW 3.0 MHz       Sweep 18.67 ms (40001 p         N       1       1       335 82 MHz       32.895 dBm         N       1       1       335 82 MHz       32.895 dBm         VIDDE TRC Sci       X       Y       Function       Function width         N       1       1       335 82 MHz       32.895 dBm         Sector       Stop 10.000 GHz       Function width       Function width         R       0       A       1       1       2.809 81 GHz       22.924 dBm         Sector       GPRS850 Channel=251       Sector       Auge Type: Log-Pwr       Trig: Free Run<br>ArgiHod: 100100       Aug Type: Log-Pwr       Trig: Free Run<br>Ref Offset 5.12 dB       Auge Type: Log-Pwr       Auge Type: Log-Pwr       Auge Type: Log-Pwr       Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                        |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| es BW 1.0 MHz  #VBW 3.0 MHz  Sweep 18.67 ms (40001 p PUNCTION WIDTH  PUNCTION  P                                                                                                                                                                                                                                                                                                                                                                                 | 0                                        |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| es BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | art 30 MHz                               |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 10.000 GH                                   |
| N         1         f         232.895 dBm           N         1         f         2.509 54 GHz         -29.243 dBm           2         209 54 GHz         -29.243 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                            | #VBW 3.0 MHz                                                                                                   | Swee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| N       1       f       2.599.54 GHz       -29.243 dBm         N       1       f       2.599.54 GHz       -29.243 dBm         Image: Status       GPRS850 Channel=251         Status         GPRS850 Channel=251         Augent Spectrum Analyzer - Swept SA         Augent Spectrum Analyzer - Swept SA         Ref Offset 5 12 dB         Mkr1 848.79 Mitz         Stop 10.000 GIz         FRO: Fast - Frig: Free Run         Augint Spectrum Analyzer - Swept SA         Augent Spectrum Analyzer - Swept SA         Colspan="2">Augent Spectrum Analyzer - Swept SA         Colspan="2">Augent Spectrum Analyzer - Swept SA         Colspanalyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                            |                                                                                                                | FUNCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FUNCTION VALUE                                   |
| Image: Second Secon                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | 836.82 MHz<br>2.509 54 GHz |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Image: Spectrum Analyzer - Swept SA       Image: Spectrum Analyzer - Swept SA       Image: Spectrum Analyzer - Swept SA         Ref Offset6.12.2 dB       SENSE-INT       ALIGN AUTO       10:30:23 AH APTOL         Ref Offset6.12.2 dB       SENSE-INT       ALIGN AUTO       10:30:23 AH APTOL         Ref Offset6.12.2 dB       SENSE-INT       ALIGN AUTO       10:30:23 AH APTOL         Ref Offset6.12.2 dB       SENSE-INT       ALIGN AUTO       10:30:24 AH APTOL         Ref Offset6.12.2 dB       SENSE-INT       ALIGN AUTO       10:30:24 AH APTOL         Ref Offset6.12 dB       Mkr11 848.79 MH       32.047 dB       32.047 dB         Ref Offset6.12 dB       SENSE-INT       SENSE-INT       Align Auto       10:30:20 AH APTOL         Ref Offset6.12 dB       SENSE-INT       SENSE-INT       Auto       10:30:20 AH APTOL       10:30:20 AH APTOL         Ref Offset6.12 dB       SENSE-INT       SENSE-INT       Auto       10:30:20 AH APTOL       10:30:20 AH APTOL       10:30:20 AH APTOL         Ref Offset6.12 dB       SENSE-INT       SENSE-INT       SENSE-INT       10:30:20 AH APTOL       10:30:20 APTOHAPTOL       10:30:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Image: Status       Image: Status       Image: Status       Image: Status         Status         Status         Status         Status         Auton Auton Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"         Status       Auton Auton Colspan="2"         Avg Type: Log-Pwr<br>Avg Hold: 100/100       Trig: Free Run<br>Avg Hold: 100/100         Ref Offset 5.12 db<br>Cel/div       Mikr1 848.79 Mil<br>32.047 dB         Cel volspan="2"         Cel volspan="2"         Cel volspan="2"         Cel volspan="2"         Avg Type: Log-Pwr<br>Avg Hold: 100/100         Trig: Free Run<br>Breg 30.00 dBm         32.047 dB         Stop 10.000 Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Signer Spectrum Analyzer - Swept SA<br>Sagient Spectrum Analyzer - Swept SA<br>RL RF 30 G AC SIGNED SENSEJNT ALLON AUTO 10:302:3 SH APD72,<br>There Freq 5.015000000 GHz PNO Fast → Trig: Free Run Avg Hold: 100/100 Trace 23 AV APD72,<br>PNO: Fast → Trig: Free Run Avg Hold: 100/100 Trace 23 AV APD72,<br>CERCIV Ref 30.00 dBm 32.047 dB<br>CERCIV Ref 30.00 dBm 32.047 dBm 4000 b<br>CERCIV Ref 30.00 dBm 40                                                                                                                                                                                                                                                      |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Image: Status         GPRS850 Channel=251         Alien Auro analyzer - Swept SA         Ref Offset 5.12 dB         Mix1 848.79 Mi         Alien Auro analyzer - Swept SA         Ref Offset 5.12 dB         Mix1 848.79 Mi         Alien Auro analyzer - Swept SA         Ref Offset 5.12 dB         Mix1 848.79 Mi         Colspan="2">Stop 10.000 dBm         Offset 5.12 dB         Mix1 848.79 Mi         Alien Auro analyzer - Swept SA         Ref Offset 5.12 dB         Mix1 848.79 Mi         Stop 10.000 dBm         Stop 10.000 dBm         Stop 10.000 dBm         Stop 10.000 dB         Stop 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| GPRS850 Channel=251         Autor Analyzer - Swept SA         Autor Analyzer - Swept SA         Autor Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| GPRS850 Channel=251         Autor Analyzer - Swept SA         Autor Analyzer - Swept SA         Autor Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ï                                        |                            | III                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                |
| Agilent Spectrum Analyzer - Swept SA<br>RL RF 50 G AC SENSE:INT ALIGN AUTO 10:03:25 MA (PIC2),<br>Inter Freq 5.015000000 GHz<br>PNO: Fast + Trig: Free Run<br>If Gain:Low Hatten: 40 dB MART Avg Hold: 100/100 TRACE 23<br>Ref Offiset 5.12 dB MART 848.79 MI<br>32,047 dB<br>32,047 dB<br>4300 dBm<br>4300 dB |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Rt       S0 2 AC       SENSE:INT       ALGN AUTO       10:30:25 AM Apr02; 2         Inter Freq 5.015000000 GHz       PN0: Fast       →       Trig: Free Run       Avg Type: Log-Pwr       Trig: 0.00 Avg Type: Log-Pwr       Trig:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                            | GPRS850 Chani                                                                                                  | nel=251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| PNO: Fast         Image: Free Run         Avg Hold: 100/100         Image: Ref         Mikr1 848.79 Million           dB/div         Ref Offset 5.12 dB         Mikr1 848.79 Million         32.047 dB         32.047 dB           dB/div         Ref Offset 5.12 dB         Image: Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                            | SENSE:INT                                                                                                      | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10:30:25 AM Apr 02, 2                            |
| IFGainLow     #Atten: 40 dB     Det PNN       Ref Offset 5.12 dB     Mkr1 848.79 MI     32.047 dB       dB/div     Ref 30.00 dBm     32.047 dB       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a       a     a     a     a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nter Freq 5.0150                         | 00000 GHz                  | - East +++ Trig: Free Run                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| a       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | IFGai                      | n:Low #Atten: 40 dB                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| a       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr1 848.79 MH                                   |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dB/div Ref 30.00                         | dBm                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.047 UB                                        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0                                       |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0                                       |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| N         1         f         848.79 MHz         32.047 dBm         FUNCTION WIDTH         FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| N         1         f         848.79 MHz         32.047 dBm           N         1         f         848.79 MHz         -30.285 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -13.00 d                                         |
| Image: State of the second s                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>∂</b> 2                                       |
| N         1         f         848.79 MHz<br>8.256 49 GHz         Y         FUNCTION<br>FUNCTION WIDTH         FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | الالتعاسات والطبعين والمسيب              |                            | a la contra de la c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الماسية الطميل ومقادات والمألجين                 |
| And Control         And Control         And Control         Stop 10.000 Git           art 30 MHz         #VBW 3.0 MHz         Sweep 18.67 ms (40001 p           es BW 1.0 MHz         #VBW 3.0 MHz         Sweep 18.67 ms (40001 p           N 00E TRC SCL         X         Y         FUNCTION         FUNCTION WIDTH           N 1         f         848.79 MHz         32.047 dBm         FUNCTION         FUNCTION VALUE           N 1         f         8258 49 GHz         -30.285 dBm         FUNCTION VALUE         FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Arr     30 MHz     Stop 10.000 Gi       es BW 1.0 MHz     #VBW 3.0 MHz     Sweep 18.67 ms (40001 p       N 00F TRC Scl     X     Y     FUNCTION       N 1     f     848.79 MHz     32.047 dBm       N 1     f     848.79 MHz     -30.285 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| N         1         f         848.79 MHz         32.047 dBm         Function         Function width         Function value           N         1         f         848.79 MHz         32.047 dBm         Function width         Function value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| MODE         TRC         SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           N         1         f         848.79 MHz         32.047 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                            | #)(B)M 2.0 MU                                                                                                  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stop 10.000 GF                                   |
| N         1         f         848.79 MHz         32.047 dBm           N         1         f         8.258 49 GHz         -30.285 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | Y .                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| N         1         f         8.258 49 GHz         -30.285 dBm           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 1 f                                    | 848.79 MHz                 | 32.047 dBm                                                                                                     | FUNCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FUNCTION VALUE                                   |
| Image: Sector                                                                                                                                                                                                                                                                                                                                                                                                  | N 1 f                                    | 8.258 49 GHz               | -30.285 dBm                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |

No.: BCTC/RF-EMC-005

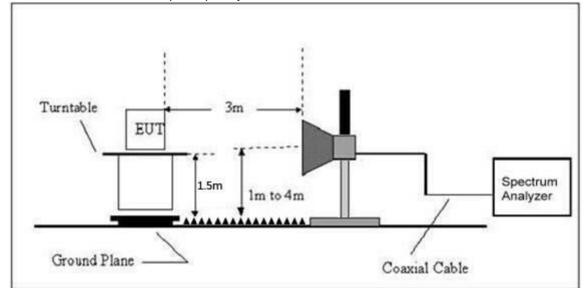

Page: 30 of 37




## **10. Spurious Radiated Emissions**

## 10.1 Block Diagram Of Test Setup

#### (A) Radiated Emission Test-Up Frequency Below 30MHz




(B) Radiated Emission Test-Up Frequency 30MHz~1GHz





(C) Radiated Emission Test-Up Frequency Above 1GHz



#### 10.2 Limit

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to 27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least  $43 + 10 \log 10$  (P) dB.

#### 10.3 Test procedure

- 1. The setup of EUT is according with per ANSI/TIA Standard 603D and ANSI C63.4-2014 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

```
Spurious attenuation limit in dB =43+10 Log<sub>10</sub> (power out in Watts)
```

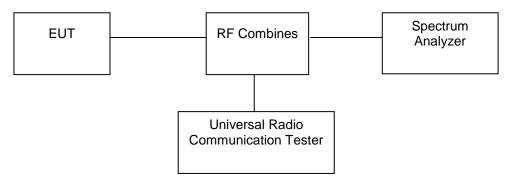


#### 10.4 Test Result

#### For Cellular Band GPRS 850 Mode

| Frequency                 | Reading | Correct | Result | Limit  | Margin | Polar |  |  |
|---------------------------|---------|---------|--------|--------|--------|-------|--|--|
| (MHz)                     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   | H/V   |  |  |
| Low Channel (824.2MHz)    |         |         |        |        |        |       |  |  |
| 71.62                     | -43.73  | -15.73  | -59.46 | -13.00 | -46.46 | Н     |  |  |
| 1648.40                   | -18.08  | -22.93  | -41.01 | -13.00 | -28.01 | Н     |  |  |
| 2472.60                   | -25.68  | -22.45  | -48.13 | -13.00 | -35.13 | Н     |  |  |
| 71.62                     | -41.09  | -15.73  | -56.82 | -13.00 | -43.82 | V     |  |  |
| 1648.40                   | -21.88  | -22.93  | -44.81 | -13.00 | -31.81 | V     |  |  |
| 2472.60                   | -25.58  | -22.45  | -48.03 | -13.00 | -35.03 | V     |  |  |
| Middle Channel (836.6MHz) |         |         |        |        |        |       |  |  |
| 71.62                     | -43.96  | -15.73  | -59.69 | -13.00 | -46.69 | Н     |  |  |
| 1673.20                   | -18.58  | -22.87  | -41.45 | -13.00 | -28.45 | Н     |  |  |
| 2509.80                   | -23.63  | -22.50  | -46.13 | -13.00 | -33.13 | Н     |  |  |
| 71.62                     | -43.69  | -15.73  | -59.42 | -13.00 | -46.42 | V     |  |  |
| 1673.20                   | -21.63  | -22.87  | -44.50 | -13.00 | -31.50 | V     |  |  |
| 2509.80                   | -24.20  | -22.50  | -46.70 | -13.00 | -33.70 | V     |  |  |
| High Channel (848.8MHz)   |         |         |        |        |        |       |  |  |
| 71.62                     | -43.93  | -15.73  | -59.66 | -13.00 | -46.66 | Н     |  |  |
| 1697.60                   | -21.74  | -22.79  | -44.53 | -13.00 | -31.53 | Н     |  |  |
| 2546.40                   | -25.90  | -22.56  | -48.46 | -13.00 | -35.46 | Н     |  |  |
| 71.62                     | -42.67  | -15.73  | -58.40 | -13.00 | -45.40 | V     |  |  |
| 1697.60                   | -18.87  | -22.79  | -41.66 | -13.00 | -28.66 | V     |  |  |
| 2546.40                   | -25.36  | -22.56  | -47.92 | -13.00 | -34.92 | V     |  |  |

#### For PCS Band\_GPRS 1900 Mode


| Frequency | Reading | Correct | Result           | Limit  | Margin | Polar<br>H/V |  |
|-----------|---------|---------|------------------|--------|--------|--------------|--|
| (MHz)     | (dBm)   | dB      | (dBm)            | (dBm)  | (dB)   |              |  |
|           |         | Low C   | hannel (1850.2N  | MHz)   |        |              |  |
| 71.62     | -44.50  | -15.73  | -60.23           | -13.00 | -47.23 | / H /        |  |
| 3700.40   | -24.39  | -17.47  | -41.86           | -13.00 | -28.86 | / /H /       |  |
| 5550.60   | -30.71  | -11.76  | -42.47           | -13.00 | -29.47 | //H///       |  |
| 71.62     | -41.65  | -15.73  | -57.39           | -13.00 | -44.39 | V            |  |
| 3700.40   | -26.11  | -17.47  | -43.58           | -13.00 | -30.58 | V            |  |
| 5550.60   | -28.65  | -11.76  | -40.41           | -13.00 | -27.41 | V            |  |
|           |         | Middle  | Channel (1880    | MHz)   |        |              |  |
| 71.62     | -44.19  | -15.73  | -59.93           | -13.00 | -46.93 | , H          |  |
| 3760.00   | -27.05  | -16.98  | -44.03           | -13.00 | -31.03 | H.           |  |
| 5640.00   | -32.41  | -11.33  | -43.74           | -13.00 | -30.74 | H            |  |
| 71.62     | -43.51  | -15.73  | -59.24           | -13.00 | -46.24 | V            |  |
| 3760.00   | -26.10  | -16.98  | -43.08           | -13.00 | -30.08 | V            |  |
| 5640.00   | -29.40  | -11.33  | -40.73           | -13.00 | -27.73 | V            |  |
|           |         | High (  | Channel (1909.81 | MHz)   |        |              |  |
| 71.62     | -43.70  | -15.73  | -59.43           | -13.00 | -46.43 | H            |  |
| 3819.60   | -24.33  | -16.49  | -40.82           | -13.00 | -27.82 | Н            |  |
| 5729.40   | -29.93  | -10.90  | -40.83           | -13.00 | -27.83 | Н            |  |
| 71.62     | -43.37  | -15.73  | -59.10           | -13.00 | -46.10 | V            |  |
| 3819.60   | -27.53  | -16.49  | -44.02           | -13.00 | -31.02 | V            |  |
| 5729.40   | -28.44  | -10.90  | -39.34           | -13.00 | -26.34 | V            |  |

Note: Result=Reading+ Correct, Margin= Result- Limit Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



## 11. Frequency Stability

#### 11.1 Block Diagram Of Test Setup



## 11.2 Limit

According to §22.917(b), The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §24.238(b), The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §27.53, The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

#### 11.3 Test procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 10kHz for GSM mode and 100kHz for WCDMA mode, VBW shall be at least 3 times the RBW, and the 26dB bandwidth was recorded.

#### 11.4 Test Result

| Band     | Channel | Frequency<br>(MHz) | Result(Hz) | Result<br>(ppm) | Low Limit<br>(ppm) | high Limit<br>(ppm) | Verdict |
|----------|---------|--------------------|------------|-----------------|--------------------|---------------------|---------|
| GPRS1900 | 512     | 1850.2             | -32.54414  | -0.02           | -2.500             | 2.5                 | PASS    |
| GPRS1900 | 661     | 1880               | -33.96471  | -0.02           | -2.500             | 2.5                 | PASS    |
| GPRS1900 | 810     | 1909.8             | -32.93157  | -0.02           | -2.500             | 2.5                 | PASS    |
| GPRS850  | 128     | 824.2              | -18.62894  | -0.02           | -2.500             | 2.5                 | PASS    |
| GPRS850  | 190     | 836.6              | -15.04521  | -0.02           | -2.500             | 2.5                 | PASS    |
| GPRS850  | 251     | 848.8              | -12.94663  | -0.02           | -2.500             | 2.5                 | PASS    |



## 12. EUT Photographs

#### EUT Photo



Appendix-Photographs Of EUT Constructional Details


No.: BCTC/RF-EMC-005

Page: 35 of 37



## 13. EUT Test Setup Photographs

Radiated Measurement Photos







# **STATEMENT**

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6. The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

\*\*\*\*\* END \*\*\*\*\*

No.: BCTC/RF-EMC-005

Page: 37 of 37