

FCC Test Report

Report No. : 1812C40197912501

Applicant : Shenzhen Pinwei Technology Co.,Ltd

3rd Floor, Building 2, Longfeng Industrial Park,

Address No.3 Tianxi Road, Fucheng Street, Longhua

District, Shenzhen City, Guangdong Province,

China

Product Name : HDMI Wireless extender

Report Date : Feb. 21, 2025

Contents

1. General Information	6
1.1. Client Information	6
1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list	
1.5. Description of Test Modes.	
1.6. Measurement Uncertainty	8
1.7. Test Summary	
1.8. Description of Test Facility	
1.10. Test Equipment List	
2. Conducted Emission at AC power line	
2.1. EUT Operation	12
2.2. Test Setup	
3. Duty Cycle	
3.1. EUT Operation	
3.2. Test Setup	
4. Emission bandwidth and occupied bandwidth	
4.1. EUT Operation	
4.3. Test Data	
5. Maximum conducted output power	
5.1. EUT Operation	
5.2. Test Setup	
6. Power spectral density	
6.1. EUT Operation	
6.2. Test Setup	
7. Band edge emissions (Conducted)	
7.1. EUT Operation	
7.2. Test Setup	
7.3. Test Data	
8. Band edge emissions (Radiated)	
8.1. EUT Operation	
8.2. Test Setup	
9. Undesirable emission limits (below 1GHz)	
9.1. EUT Operation	
9.2. Test Setup	

10. Undesirable emission limits (above 1GHz)	30
10.1. EUT Operation	32
10.2. Test Setup	32
10.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	34
APPENDIX II EXTERNAL PHOTOGRAPH	34
APPENDIX III INTERNAL PHOTOGRAPH	34

TEST REPORT

Applicant : Shenzhen Pinwei Technology Co.,Ltd

Manufacturer : Shenzhen Hongshi Industrial Co.,Ltd

Product Name : HDMI Wireless extender

W3201, W3202, W3203, W3204, W3205, W3201-B, W3202-B, W3203-B,

Model No. : W3204-B, W3205-B, W3201-C, W3202-C, W3203-C, W3204-C,

W3205-C, W32A01-AH, W32A01-BH

Trade Mark : N/A

Rating(s) : Input: 5V=1A

47 CFR Part 15E

Test Standard(s) : ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Dec. 26, 2024
Date of Test:	Dec. 30, 2024 to Jan. 13, 2025
Prepared By:	Haidi Huang
Tropared by.	(Haidi Huang)
Approved & Authorized Signer:	Augo Chen
	(Hugo Chen)

Revision History

Report Version	Description	Issued Date		
R00	Original Issue.	Feb. 21, 2025		

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Pinwei Technology Co.,Ltd
Address	:	3rd Floor, Building 2, Longfeng Industrial Park, No.3 Tianxi Road, Fucheng Street, Longhua District, Shenzhen City, Guangdong Province, China
Manufacturer	:	Shenzhen Hongshi Industrial Co.,Ltd
Address	:	3rd Floor, Building 2, Longfeng Industrial Park, No.3 Tianxi Road, Fucheng Street, Longhua District, Shenzhen City, Guangdong Province, China
Factory	:	Shenzhen Hongshi Industrial Co.,Ltd
Address	:	3rd Floor, Building 2, Longfeng Industrial Park, No.3 Tianxi Road, Fucheng Street, Longhua District, Shenzhen City, Guangdong Province, China

1.2. Description of Device (EUT)

_			
Product Name	:	HDMI Wireless extender	
Model No.	:	W3201, W3202, W3203, W3204, W3205, W3201-B, W3202-B, W3203-B, W3204-B, W3205-B, W3201-C, W3202-C, W3203-C, W3204-C, W3205-C, W32A01-AH, W32A01-BH (Note: All samples are the same except the model name and appearance colour, so we prepare "W3201" for test only.)	
Trade Mark	:	N/A	
Test Power Supply	:	DC 5V via PC from Adapter input AC 120V/60Hz; DC 5V via PC	
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)	
Adapter		N/A	
RF Specification	RF Specification		
Operation Frequency	:	802.11a/n(HT20): 5180MHz to 5240MHz;	
Number of Channel	:	802.11a/n(HT20): 4;	
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);	
Device Type	:	Client Devices	
DFS Type		Slave without radar detection	
Antenna Type		Shrapnel Antenna	
TPC Function		Without TPC	
Antenna Gain(Peak)	:	1.27dBi	

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Apple Computer Adapter(New, dual Type-C)	Apple	A1947	1
Apple Computer(New, dual Type-C)	Apple	A1708	2016AJ5746
Acer Computer	acer	N19W3	2020AJ3862
HUB	Gopod Group Holding Limited	D73737	

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	
Channel	Frequency (MHz)	
36	5180	
40	5200	
44	5220	
48	5240	

1.5. Description of Test Modes

Pretest Modes	Descriptions	
TM1	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.	
TM2	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.	

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Dwell Time	2%
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Duty Cycle	2%
Power Spectral Density	0.76dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2	Р
Duty Cycle	Mode1,2	Р
Emission bandwidth and occupied bandwidth	Mode1,2	Р
Maximum conducted output power	Mode1,2	Р
Power spectral density	Mode1,2	Р
Band edge emissions (Conducted)	Mode1,2	Р
Band edge emissions (Radiated)	Mode1,2	Р
Undesirable emission limits (below 1GHz)	Mode1,2	Р
Undesirable emission limits (above 1GHz)	Mode1,2	Р
Mata	•	

Note: P: Pass

N: N/A, not applicable

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Conducted Emission at AC power line						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/
4	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Power spectral density

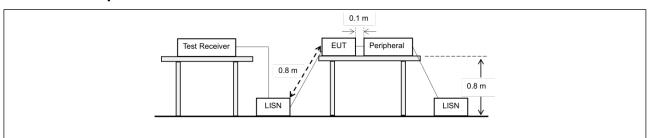
Duty Cycle

	Emission bandwidth and occupied bandwidth Maximum conducted output power					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Band edge emissions (Conducted)
Band edge emissions (Radiated)
Undesirable emission limits (above 1GHz)

Office	Offices if able effils slott littlits (above 10112)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	1	1
5	Horn Antenna	A-INFO	LB-180400- KF	J2110606 28	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

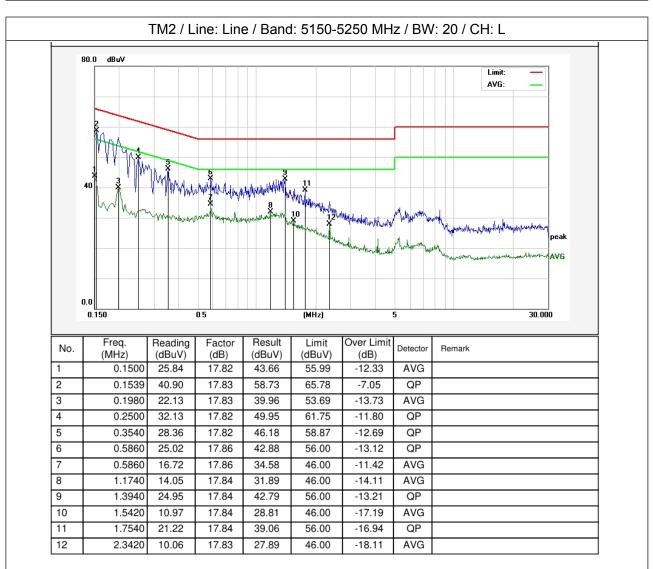
Unde	Undesirable emission limits (below 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/

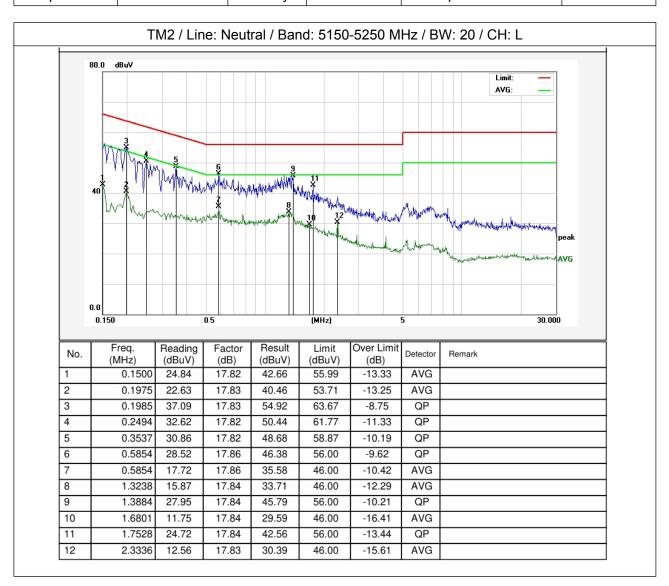

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)				
	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
T. (11'')	0.15-0.5	66 to 56*	56 to 46*		
Test Limit:	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	hod: ANSI C63.10-2020 section 6.2				

2.1. EUT Operation

Operating Envi	Operating Environment:				
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.				

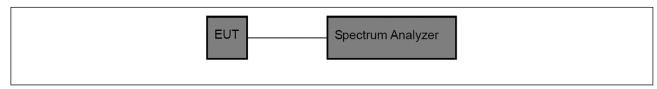

2.2. Test Setup


2.3. Test Data

Temperature: 20 °C Humidity: 47 % Atmospheric Pressure: 101 kPa

Temperature: 20 °C Humidity: 47 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.


3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envi	Operating Environment:				
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.				

3.2. Test Setup

3.3. Test Data

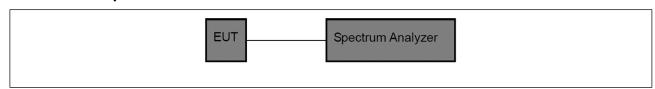
Temperature:	23.4 °C	Humidity:	55 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
	ANSI C63.10-2020, section 6.9 & 12.5 Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.1. EUT Operation


Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

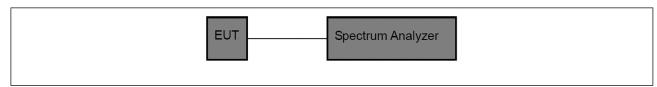
Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature:	23.4 °C	Humidity:	55 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------


5. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

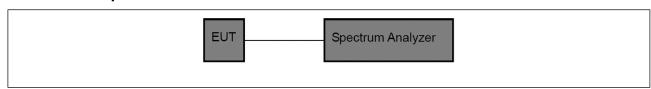
5.1. EUT Operation

Operating Envi	Operating Environment:					
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.					

5.2. Test Setup

5.3. Test Data

Temperature: 23.4 °C	Humidity: 55 %	Atmospheric Pressure: 101 kPa
----------------------	----------------	-------------------------------


6. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

Operating Envi	ronment:
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

6.2. Test Setup

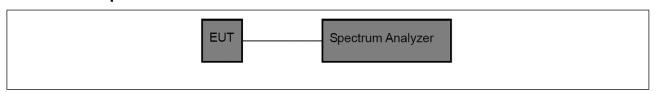
6.3. Test Data

Temperature: 23.4 °C	Humidity:	55 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

7. Band edge emissions (Conducted)

_	-						
Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b						
	For transmitters opera of the 5.15-5.35 GHz to						
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	1 0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
Test Limit:	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	(2)			
	13.36-13.41						
	¹ Until February 1, 199 ² Above 38.6	9, this restricted ban	d shall be 0.490	-0.510 MHz.			
Test Method:	ANSI C63.10-2020, se	ection 12.7.4, 12.7.6					
Procedure:	Using the following sp 1. Set the RBW = 1MH 2. Set the VBW = 3MH 3. Sweep time = auto 4. Detector function = 5. Trace mode = max	ectrum analyzer setti Iz. Iz. couple. peak. hold.	ng:				
	6. Allow trace to fully stabilize.						

7.1. EUT Operation


Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

7.2. Test Setup

7.3. Test Data

7	Temperature:	23.4 °C	Humidity:	55 %	Atmospheric Pressure:	0 kPa	
---	--------------	---------	-----------	------	-----------------------	-------	--

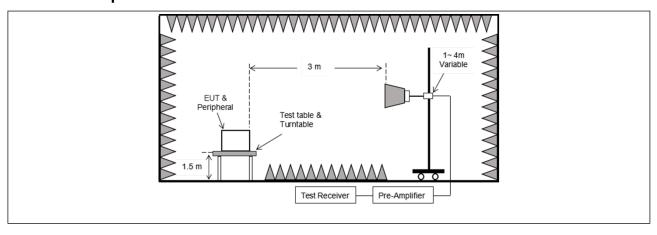
Please Refer to Appendix for Details.

8. Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b			
	For transmitters opera of the 5.15-5.35 GHz to			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	1 0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
Test Limit:	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41			
	¹ Until February 1, 199 ² Above 38.6	9, this restricted band	d shall be 0.490	-0.510 MHz.
Test Method:	ANSI C63.10-2020, se	ection 12.7.4, 12.7.6		
Procedure:	Using the following spends of the RBW = 1MH 2. Set the VBW = 3MH 3. Sweep time = auto 4. Detector function = 5. Trace mode = max 6. Allow trace to fully spends of the RBW = 1.	dz. dz. couple. peak. hold.	ng:	

8.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only

the data of worst case is recorded in the report.

8.2. Test Setup

8.3. Test Data

Temperature: 23.4 °	C Humidity:	55 %	Atmospheric Pressure:	101 kPa
---------------------	-------------	------	-----------------------	---------

		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.95	15.99	52.94	68.20	-15.26	Н	Peak
5150.00	39.02	15.99	55.01	68.20	-13.19	V	Peak
5150.00	26.90	15.99	42.89	54.00	-11.11	Н	AVG
5150.00	28.94	15.99	44.93	54.00	-9.07	V	AVG
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.41	16.43	53.84	68.20	-14.36	Н	Peak
5250.00	40.33	16.43	56.76	68.20	-11.44	V	Peak
5250.00	28.72	16.43	45.15	54.00	-8.85	Н	AVG
5250.00	29.63	16.43	46.06	54.00	-7.94	V	AVG

Remark: 1. Result=Reading + Factor

		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.91	15.99	51.90	68.20	-16.30	Н	Peak
5150.00	37.29	15.99	53.28	68.20	-14.92	V	Peak
5150.00	26.63	15.99	42.62	54.00	-11.38	Н	AVG
5150.00	27.62	15.99	43.61	54.00	-10.39	V	AVG
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.72	16.43	54.15	68.20	-14.05	Н	Peak
5250.00	38.77	16.43	55.20	68.20	-13.00	V	Peak
5250.00	27.75	16.43	44.18	54.00	-9.82	Н	AVG
5250.00	29.20	16.43	45.63	54.00	-8.37	V	AVG

Remark: 1. Result=Reading + Factor

9. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9	9)	
	Unwanted emissions be strength limits set forth in	low 1 GHz must comply with the § 15.209.	he general field
		where in this subpart, the emis not exceed the field strength I	
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
Test Limit:	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	sections of this part, e.g In the emission table abording The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar	in these frequency bands is per ., §§ 15.231 and 15.241. ove, the tighter limit applies at wn in the above table are base si-peak detector except for the and above 1000 MHz. Radiated ased on measurements emplo	the band edges. ed on measurements e frequency bands 9– l emission limits in
Test Method:	ANSI C63.10-2020, sect	tion 12.7.4, 12.7.5	
Procedure:	meters above the ground was rotated 360 degrees b. The EUT was set 3 or antenna, which was more. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna was test frequency of below and the rotatable table was maximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level of limit specified, then testi would be reported. Other would be re-tested one if then reported in a data set.	the EUT in peak mode was 19 and the provided be stopped and the provided the emissions that did not one using quasi-peak methological peak methological transfer in the end of t	chamber. The table the highest radiation. Inference-receiving height antenna tower. In meters above the rength. Both horizontal ke the measurement. It was to its worst case ter to 4 meters (for the d to heights 1 meter) and the linction and Specified odB lower than the beak values of the EUT ot have 10dB margin od as specified and

channel.

- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

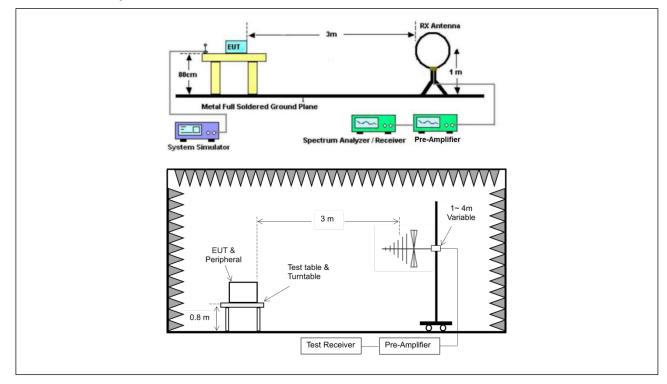
Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak

measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

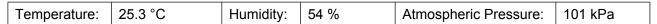
9.1. EUT Operation


Operating Environment:

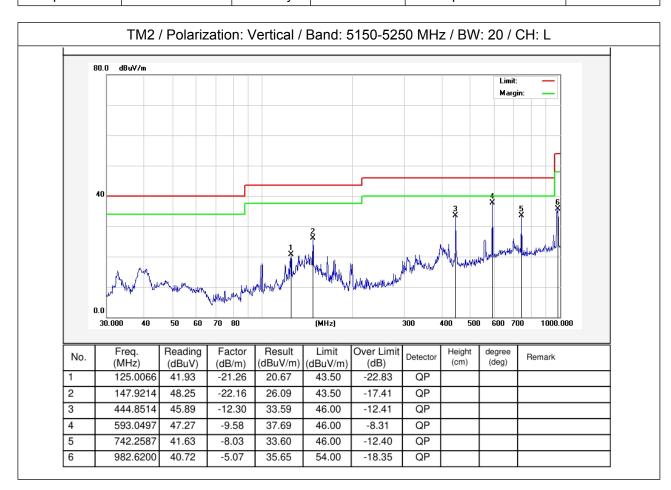
Test mode:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


9.2. Test Setup

9.3. Test Data


The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 25.3 °C Humidity: 54 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

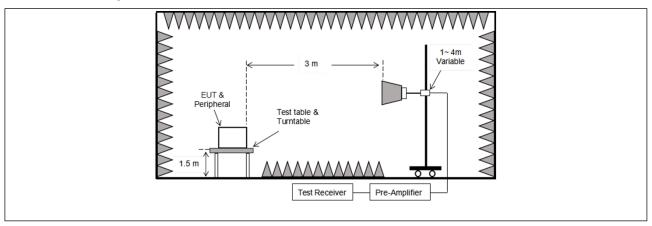
10. Undesirable emission limits (above 1GHz)

For transmitters operating in the 5.15-5.25 GHz band: All emissions outsid of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. MHz MHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475- 16.80425- 16.80425- 2.1735-2.1905 16.80425- 16.80425- 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1646.5 6.215-6.218 74.8-75.2 1680-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8- 8.291-8.294 149.9-150.05 8.362-8.366 156.52475- 2483.5-2500 17.7-21.4 156.52525 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 260-3267 12.29-12.293 167.72-173.2 3332-3339 312.318 12.51975-12.52025 240-285 3345.8-3358 344-3-6.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands shot exceed the limits shown in § 15.209. At frequencies equal to or less the 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength fi	Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b			
MHz					
0.090-0.110					
10.495-0.505					
2.1735-2.1905			16.69475-		
4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8 13.25-13.4 1722.2 6.31175-6.31225 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475 2483.5-2500 17.7-21.4 156.52525 2483.5-2500 17.7-21.4 156.52525 2483.5-2500 17.7-21.4 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1		2.1735-2.1905	16.80425-	960-1240	7.25-7.75
4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2		4.125-4.128		1300-1427	8.025-8.5
4.20725-4.20775					
6.215-6.218		-		1645.5-	
6.26775-6.26825		6.215-6.218	74.8-75.2		10.6-12.7
6.31175-6.31225				1718.8-	
8.291-8.294		6 31175-6 31225	123-138		14 47-14 5
8.362-8.366 156.52475- 156.52525 2483.5-2500 17.7-21.4 156.52525 3.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands st not exceed the limits shown in § 15.209. At frequencies equal to or less th 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measure emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Field strength Measuremen distance (meters) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 300					
8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1			156.52475-		
8.41425-8.41475		8 37625-8 38675		2690-2900	22 01-23 12
12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41					
Test Limit: 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1		-			
Test Limit: 12.57675-12.57725 322-335.4 3600-4400 (²) 13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands strot exceed the limits shown in § 15.209. At frequencies equal to or less the 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measure emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz)					+
13.36-13.41 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 The field strength of emissions appearing within these frequency bands struct exceed the limits shown in § 15.209. At frequencies equal to or less the 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measure emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) 0.009-0.490 0.490-1.705 24000/F(kHz) 300					
¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shot exceed the limits shown in § 15.209. At frequencies equal to or less the 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measure emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) 0.009-0.490 0.490-1.705 24000/F(kHz) 300	Γest Limit:		022 000.1	0000 1100	/ /
intentional radiator shall not exceed the field strength levels specified in th following table: Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30			9, this restricted ban	d shall be 0.490	-0.5 IU MHZ.
1.705-30.0 30 30		not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon	hown in § 15.209. As with the limits in § strumentation emplo MHz, compliance with strated based on the	t frequencies equals. 15.209shall be double ying a CISPR quals. It the emission lies average value of	ual to or less themonstrated lasi-peak mits in §
		not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon emissions. The provisi Except as provided els intentional radiator sha following table: Frequency (MHz) 0.009-0.490 0.490-1.705	hown in § 15.209. As with the limits in § strumentation employments and the limits in § strumentation employments and strated based on the limits in § 15.35apply sewhere in this subparall not exceed the field strength (microvolts/metall 2400/F(kHz) 24000/F(kHz)	t frequencies equals. 15.209 shall be do ying a CISPR quant the emission lies average value of the these measurers, the emission lid strength levels	ual to or less the monstrated lasi-peak mits in § of the measured ements. Is from an a specified in the Measurement distance (meters) 300 30
30-88 100 ** 3 88-216 150 ** 3		not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon emissions. The provisi Except as provided els intentional radiator sha following table: Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0	hown in § 15.209. As with the limits in § strumentation employments and the limits in § strumentation employments and strated based on the limits in § 15.35apply sewhere in this subpart all not exceed the field strength (microvolts/metalloop) 2400/F(kHz) 24000/F(kHz) 30	t frequencies equals. 15.209 shall be do ying a CISPR quant the emission lies average value of the these measurers, the emission lid strength levels	ual to or less the monstrated lasi-peak mits in § of the measurements. Is from an a specified in the Measurement distance (meters) 300 30 30

	216-960	200 **	3			
	Above 960	500	3			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7				
Procedure:	meters above the ground a was rotated 360 degrees to b. The EUT was set 3 meters which was mounted on the c. The antenna height is vary ground to determine the mand vertical polarizations of d. For each suspected emission and then the antenna was to test frequency of below 30 mand the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum Food If the emission level of the limit specified, then testing would be reported. Otherwing would be reported in a data good Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and for case. i. Repeat above procedures Remark: 1. Level= Read Level+ Cabo 2. Scan from 18GHz to 400. The points marked on above when testing, so only above spurious emissions from the below the limit need not be 3. As shown in this section, limits are based on average emission shall not exceed to above by more than 20 dB.	e EUT in peak mode was 10dB I could be stopped and the peak ise the emissions that did not had one using peak or average mether sheet. Est channel, the middle channel, wents are performed in X, Y, Z axund the X axis positioning which is until all frequencies measured only be a lot of the country of the co	per. The table ghest radiation. Eceiving antenna, a tower. Ers above the ch. Both horizontal e measurement. Its worst case 4 meters (for the neights 1 meter) egrees to find the en and Specified tower than the values of the EUT ve 10dB margin od as specified the Highest is positioning for it is the worst was complete. Its positioning for it is the worst was complete. In Factor Hz was very low. Its could be found e amplitude of more than 20dB are field strength of any limits specified on. For the			

measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed

10.1. EUT Operation


Operating Environment:

Test mode:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

10.2. Test Setup

10.3. Test Data

TM1 / Band: 5150-5250 MHz / BW: 20 / CH: L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10360.00	31.37	23.81	55.18	68.20	-13.02	V	Peak			
15540.00	32.62	28.68	61.30	68.20	-6.90	V	Peak			
10360.00	31.63	23.81	55.44	68.20	-12.76	Н	Peak			
15540.00	32.75	28.68	61.43	68.20	-6.77	Н	Peak			
10360.00	20.669	23.81	44.48	54.00	-9.52	V	AVG			
15540.00	21.668	28.68	50.35	54.00	-3.65	V	AVG			
10360.00	20.824	23.81	44.63	54.00	-9.37	Н	AVG			
15540.00	21.471	28.68	50.15	54.00	-3.85	Н	AVG			
TM1 / Band: 5150-5250 MHz / BW: 20 / CH: M										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10400.00	30.73	23.81	54.54	68.20	-13.66	V	Peak			
15600.00	32.15	29.13	61.28	68.20	-6.92	V	Peak			
10400.00	31.12	23.81	54.93	68.20	-13.27	Н	Peak			
15600.00	32.27	29.13	61.40	68.20	-6.80	Н	Peak			
10400.00	20.939	23.81	44.75	54.00	-9.25	V	AVG			
15600.00	21.788	29.13	50.92	54.00	-3.08	V	AVG			
10400.00	20.814	23.81	44.62	54.00	-9.38	Н	AVG			
15600.00	21.551	29.13	50.68	54.00	-3.32	Н	AVG			
		TM1 / Ban	d: 5150-5250	MHz / BW:	20 / CH: H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10480.00	30.30	23.80	54.10	68.20	-14.10	V	Peak			
15720.00	31.63	30.03	61.66	68.20	-6.54	V	Peak			
10480.00	30.76	23.80	54.56	68.20	-13.64	Н	Peak			
15720.00	31.18	30.03	61.21	68.20	-6.99	Н	Peak			
10480.00	19.61	23.80	43.41	54.00	-10.59	V	AVG			
15720.00	20.55	30.03	50.58	54.00	-3.42	V	AVG			
10480.00	20.02	23.80	43.82	54.00	-10.18	Н	AVG			
15720.00	20.34	30.03	50.37	54.00	-3.63	Н	AVG			

Remark:

- 1.Result =Reading + Factor
- 2.Only the worst case (802.11n(HT20)) is recorded in the report.
- 3.Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

