

Report No.: GTSL202204000332F01

TEST REPORT

Applicant:	Shenzhen Golden Vision Technology Development Co., Ltd	
Address of Applicant: Manufacturer:	No.6 Bao Fu Road, Bao Lai industrial Park, Shang Mu Gu Villiage, Pinghu Street, Longgang District, Shenzhen City, Guangdong Province, 518000, China Shenzhen Golden Vision Technology Development Co., Ltd	
Address of Manufacturer:	No.6 Bao Fu Road, Bao Lai industrial Park, Shang Mu Gu Villiage, Pinghu Street, Longgang District, Shenzhen City, Guangdong Province, 518000, China	
Equipment Under Test (E	EUT)	
Product Name:	Smart Camera	
Model No.:	T1	
Add. Model No.:	T2, T3, T4, T5, T6, T7, T8, V3, V6, V8, V9, V10	
Trade Mark:	N/A	
FCC ID:	2APD7-T1	
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247	
Date of sample receipt:	2022-03-31	
Date of Test:	2022-04-01 to 2022-04-25	
Date of report issued:	2022-05-10	
Test Result :	PASS *	

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 65

Report No.: GTSL202204000332F01

2 Version

Version No.	Date	Description
00	2022-05-10	Original

Prepared By:

handly

Date:

2022-05-10

2022-05-10

Project Engineer

Check By:

objusor Lui Date:

Reviewer

3 Contents

		Pa	ige
1	CO	/ER PAGE	1
2	VER	SION	. 2
3	CON	ITENTS	. 3
4	TES	T SUMMARY	. 4
5	GEN	IERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	. 5
	5.2	Test mode	
	5.3	DESCRIPTION OF SUPPORT UNITS	. 7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	. 7
	5.6	TEST FACILITY	. 7
	5.7	TEST LOCATION	. 7
	5.8	Additional Instructions	. 7
6	TES	T INSTRUMENTS LIST	. 8
7	TES	T RESULTS AND MEASUREMENT DATA	10
			-
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6. 7.6.2		
	7.7	SPURIOUS EMISSION IMENIOU	
	7.7.		
	7.7.		
8	TES	Т SETUP PHOTO	65
9	EUT	CONSTRUCTIONAL DETAILS	65

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63. 10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	1 x 10 ⁻⁷
2	Duty Cycle	0.37%
3	Occupied Bandwidth	2.8dB
4	RF Conducted Power	0.75dB
5	RF Power Density	3dB
6	Conducted Spurious Emissions	2.58dB
7	AC Power Line Conducted Emission	3.44dB (0.15MHz ~ 30MHz)
		3.1dB (9kHz-30MHz)
	Radiated Spurious Emission Test	3.8039dB (30MHz-200MHz)
8		3.9679dB (200MHz-1GHz)
200		4.29dB (1GHz-18GHz)
		3.30dB (18GHz-40GHz)
Note	(1): The measurement uncertainty is for cove	rage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Smart Camera
Model No.:	T1
Add. Model No.:	T2, T3, T4, T5, T6, T7, T8, V3, V6, V8, V9, V10
Serial No.:	N/A
Hardware Version:	1.0
Software Version:	1.0
Test sample(s) ID:	GTSL202204000332-1
Sample(s) Status:	Engineer sample
Sample(s) Status	Engineer sample
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(H20): 11
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	FPC Antenna
Antenna gain:	3.0dBi
Power supply:	5Vdc 1A
	T5, T6, T7, T8, V3, V6, V8, V9, V10 the difference is only to distinguish stomers, the model name is different, and the products are exactly the

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test shannel	Frequency (MHz)		
Test channel	802.11b/802.11g/802.11n(HT20)		
Lowest channel	2412MHz		
Middle channel	2437MHz		
Highest channel	2462MHz		

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of d	ata rate in lowest channel	, and found the follow lis	st which it was worst case.
Mode	802.11b	802.11g	802.11n(HT20)
Data rate	1Mbps	6Mbps	6.5Mbps

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:
Global United Technology Services Co., Ltd.
Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang
Road, Baoan District, Shenzhen, Guangdong, China 518102
Tel: 0755-27798480
Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022		
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022		
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022		
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022		
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022		
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022		

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022			

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)	
---	--

15.203 requirement:

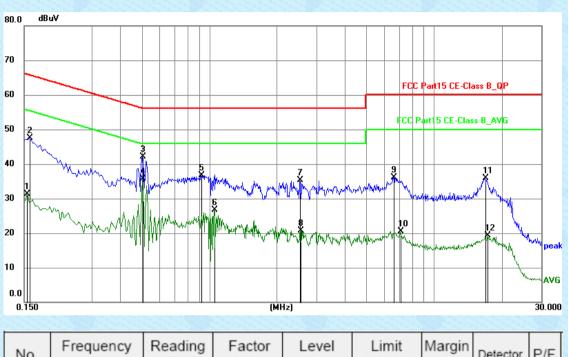
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

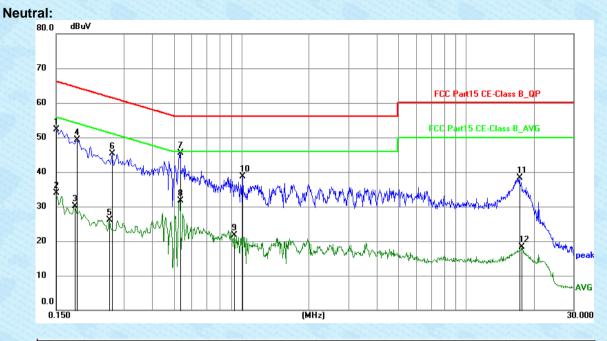
The antennas are FPC antenna, the best case gain of the antennas are 3.0dBi, reference to the appendix III for details


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:		Limit	(dBuV)		
	Frequency range (MHz)	Quasi-peak		rage	
	0.15-0.5	66 to 56*		0 46*	
	0.5-5	56		6	
	5-30 * Decreases with the logarithm	60	5	0	
Test setup:	Reference Plane	Tor the hequency.			
Tost procedure:	LISN 40cm 80cm AUX E.U.T E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	EMI Receiver	ower	through a	
Test procedure:	 The E.O.T and simulators a line impedance stabilization 500hm/50uH coupling impedance stabilization 500hm/50uH coupling impedance stabilization. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10: 	a network (L.I.S.N.). edance for the measure also connected to the n/50uH coupling imported to the block diagram the block diagram checked for maximum d the maximum emist all of the interface c	This provides uring equipm he main powe edance with of the test se m conducted sion, the rela- ables must b	s a ent. er through a 50ohm tup and ative e changed	
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

GTS

Measurement data


Line:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1545	21.51	9.80	31.31	55.75	-24.44	AVG	Ρ
2	0.1590	37.66	9.80	47.46	65.52	-18.06	QP	Ρ
3	0.5055	32.37	9.71	42.08	56.00	-13.92	QP	Ρ
4	0.5055	26.02	9.71	35.73	46.00	-10.27	AVG	Ρ
5	0.9195	27.02	9.66	36.68	56.00	-19.32	QP	Ρ
6	1.0500	17.00	9.64	26.64	46.00	-19.36	AVG	Ρ
7	2.5350	25.64	9.71	35.35	56.00	-20.65	QP	Ρ
8	2.5530	10.97	9.71	20.68	46.00	-25.32	AVG	Ρ
9	6.6210	26.44	9.74	36.18	60.00	-23.82	QP	Ρ
10	7.1205	10.73	9.75	20.48	50.00	-29.52	AVG	Ρ
11	16.8900	25.96	9.92	35.88	60.00	-24.12	QP	Ρ
12	17.3805	9.30	9.93	19.23	50.00	-30.77	AVG	Ρ

GTS

Report No.: GTSL202204000332

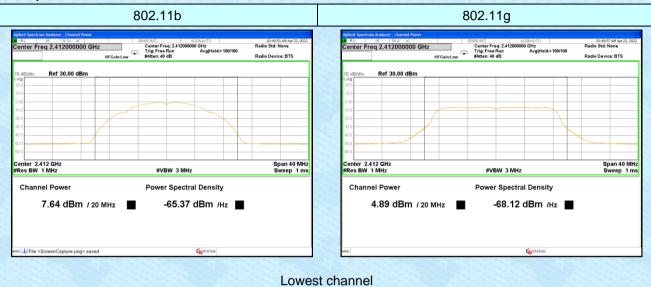
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1500	42.55	9.83	52.38	66.00	-13.62	QP	Ρ
2	0.1500	24.05	9.83	33.88	56.00	-22.12	AVG	Ρ
3	0.1815	20.37	9.79	30.16	54.42	-24.26	AVG	Р
4	0.1860	39.46	9.78	49.24	64.21	-14.97	QP	Р
5	0.2580	16.30	9.74	26.04	51.50	-25.46	AVG	Ρ
6	0.2670	35.59	9.74	45.33	61.21	-15.88	QP	Ρ
7	0.5325	35.77	9.71	45.48	56.00	-10.52	QP	Р
8	0.5325	22.07	9.71	31.78	46.00	-14.22	AVG	Р
9	0.9330	11.97	9.65	21.62	46.00	-24.38	AVG	Р
10	1.0140	29.10	9.64	38.74	56.00	-17.26	QP	Р
11	17.3490	28.34	9.94	38.28	60.00	-21.72	QP	Р
12	17.6685	8.44	9.95	18.39	50.00	-31.61	AVG	Ρ

Notes:

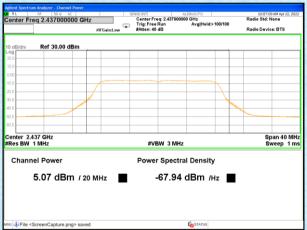
1. An initial pre-scan was performed on the line and neutral lines with peak detector.

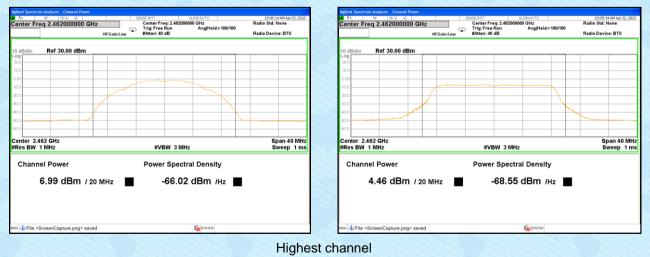
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power


Test Requirement :	FCC Part15 C Section 15.247 (b)(3)				
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data


Test CH	Pea	Limit(dBm)	Result		
restor	802.11b	802.11g	802.11n(HT20)		Result
Lowest	7.64	4.89	4.15		Pass
Middle	7.56	5.07	4.53	30.00	
Highest	6.99	4.46	3.52		


Test plot as follows:

Middle channel

802.11n(HT20)

10:38:58 AM Apr Radio Std: None

Radio Device: BTS

Middle channel

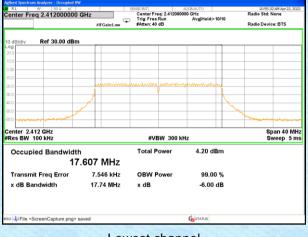
7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement :	FCC Part15 C Section 15.247 (a)(2)				
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

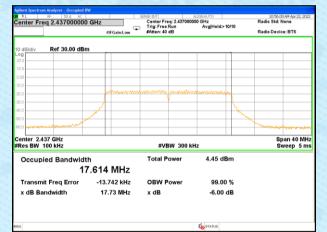
Measurement Data

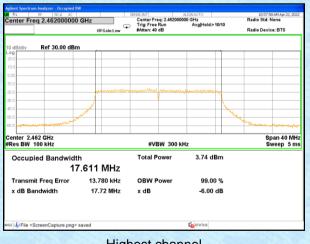
Test CH	CI	Limit(KHz)	Result		
restori	802.11b	802.11g	802.11g 802.11n(HT20)		Result
Lowest	7.968	16.52	17.74		Pass
Middle	7.927	16.53	17.73	>500	
Highest	8.203	16.55	17.72		

Test CH	99%	Result		
Test CH	802.11b	802.11g	802.11n(HT20)	Result
Lowest	13.288	16.430	17.607	
Middle	13.269	16.447	17.614	Pass
Highest	13.433	16.447	17.611	



Test plot as follows:



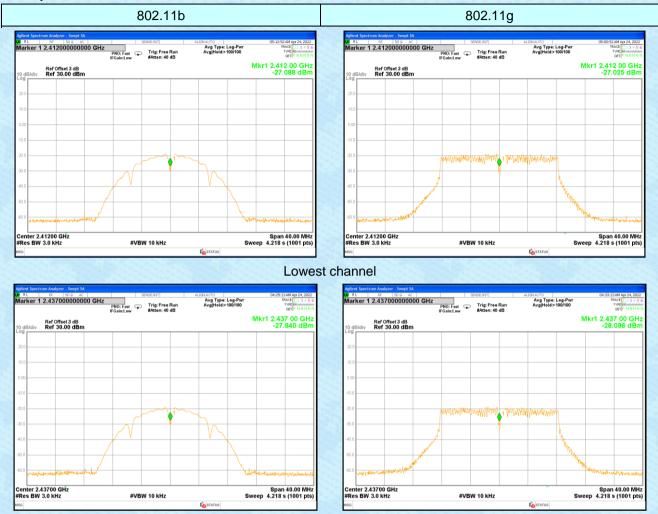

802.11n(HT20)

Lowest channel

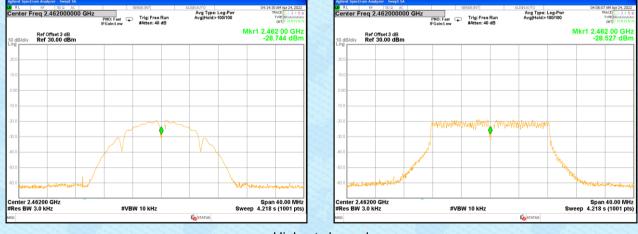
Middle channel

Highest channel

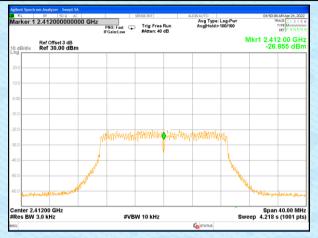
7.5 Power Spectral Density

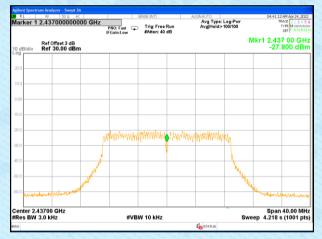

Test Requirement:	FCC Part15 C Section 15.247 (e)				
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02				
Limit:	8dBm/3kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

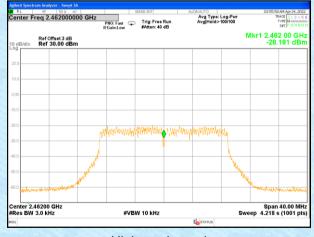
Measurement Data


Test CH	Powe	r Spectral Density (dBr	m/3kHz)	Limit	Result
reston	802.11b	802.11g	802.11n(HT20)	(dBm/3kHz)	Result
Lowest	-27.088	-27.025	-26.855		
Middle	-27.840	-28.096	-27.800	8.00	Pass
Highest	-28.744	-28.527	-28.181		

Test plot as follows:



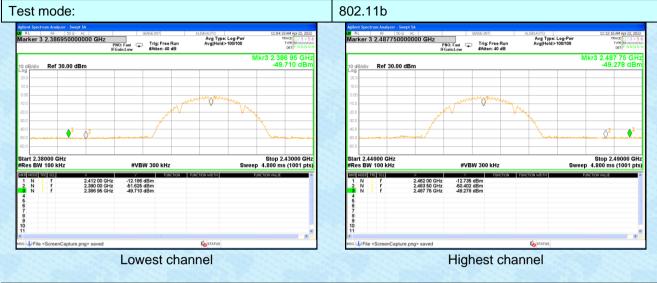

Highest channel

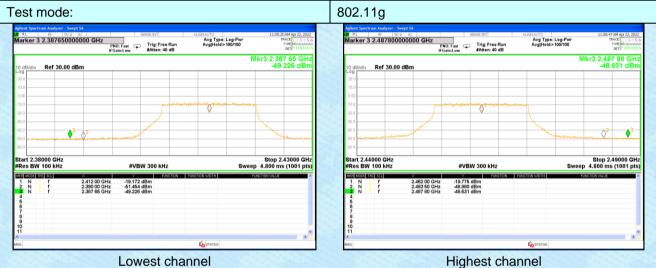

802.11n(HT20)

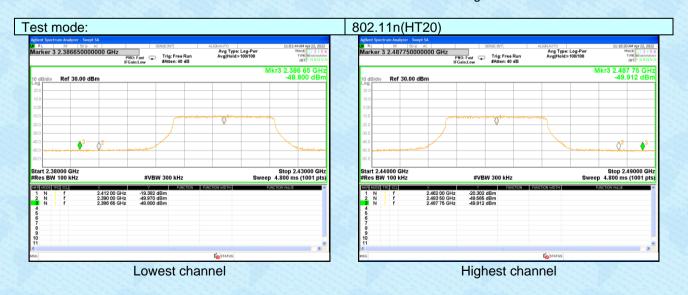
Lowest channel

Middle channel

Highest channel

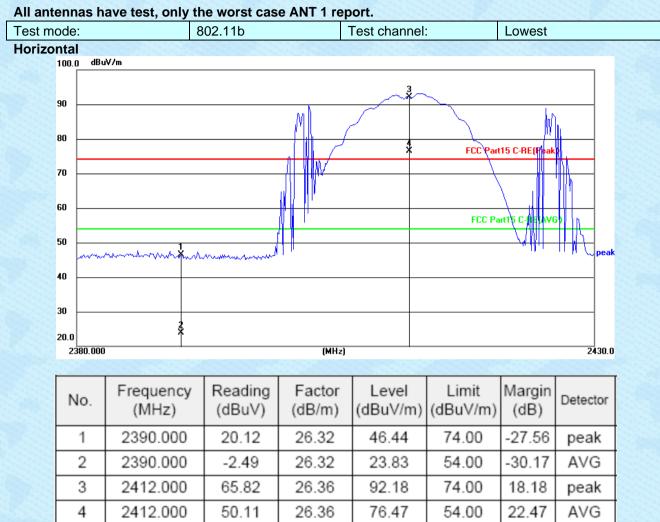

7.6 Band edges


7.6.1 Conducted Emission Method

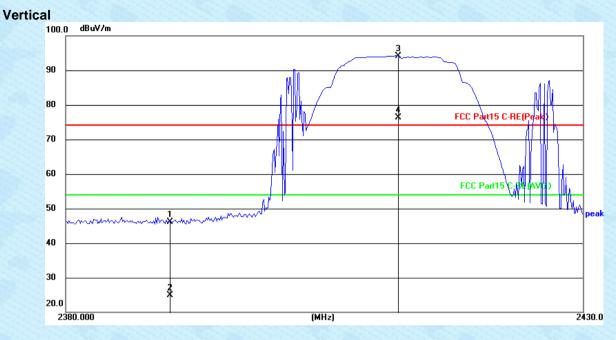

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Test plot as follows:

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



7.6.2 Radiated Emission Method


Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205							
Test Method:	ANSI C63.10: 2	013								
Test Frequency Range:	All of the restric 2500MHz) data		tested, only	the worst b	oand's (2310MHz to					
Test site:	Measurement D	Distance: 3m								
Receiver setup:	Frequency	Frequency Detector RBW VBW Value								
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above IGHZ	Average	1MHz	3MHz	Average					
Limit:	Freque	ency	Limit (dBuV/	/m @3m)	Value					
	Above 2		54.0	0	Average					
	ADOVE	IGHZ	74.0	0	Peak					
	Tum Tables <150cm>	< 3n	Test Antenna- < 1m 4m >-	amplifier/						
Test Procedure:	1 The FUT wa	s placed on the	e top of a rot:	ating table '	1.5 meters above					
	 determine th 2. The EUT was antenna, whit tower. 3. The antenna ground to de horizontal and measuremer 4. For each sus and then the and the rota the maximun 5. The test-recess Specified Ba 6. If the emission the limit spect of the EUT whave 10dB mpeak or aver sheet. 7. The radiation And found the found	e position of the s set 3 meters ich was mount height is varie termine the ma- id vertical pola it. spected emissi antenna was table was turn n reading. eiver system w ndwidth with N on level of the cified, then test yould be report hargin would b age method as	the highest race away from the ed on the top ad from one maximum value rizations of the on, the EUT tuned to heig ed from 0 dea tas set to Pea Maximum Hole EUT in peak ting could be red. Otherwis e re-tested on a specified ar ts are perform oning which i	diation. The interference of a variable meter to four e of the field me antenna was arrang hts from 1 m grees to 36 ak Detect Find Mode. mode was stopped ar e the emission me by one u and then report	In the second se					
Test Instruments:	Refer to section									
Test mode:	Refer to section	5.2 for details								
Test results:	Pass									

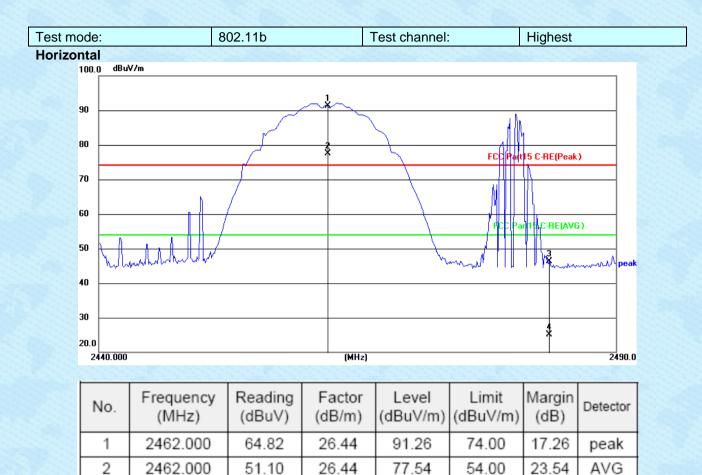
Measurement data:

GTS

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	19.83	26.32	46.15	74.00	-27.85	peak
2	2390.000	-1.46	26.32	24.86	54.00	-29.14	AVG
3	2412.000	67.82	26.36	94.18	74.00	20.18	peak
4	2412.000	49.99	26.36	76.35	54.00	22.35	AVG

3

4


2483.500

2483.500

19.83

-1.33

Report No.: GTSL202204000332

26.47

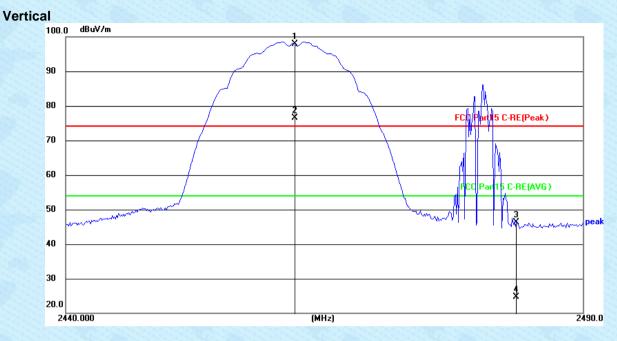
26.47

46.30

25.14

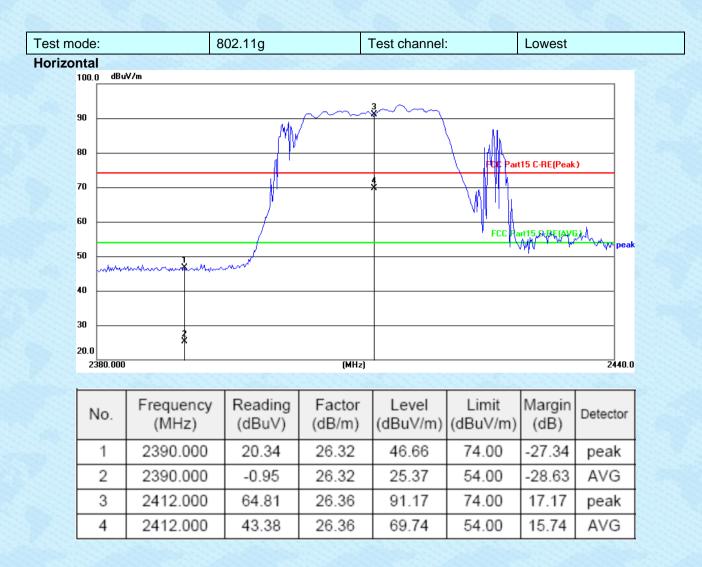
74.00

54.00

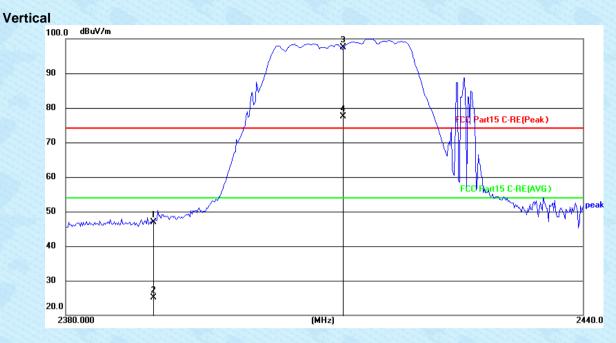

-27.70

-28.86

peak

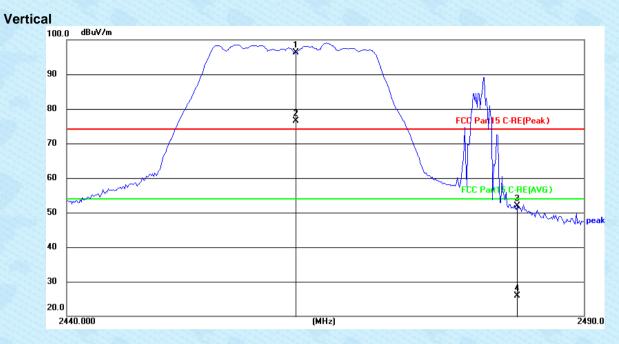

AVG

GTS

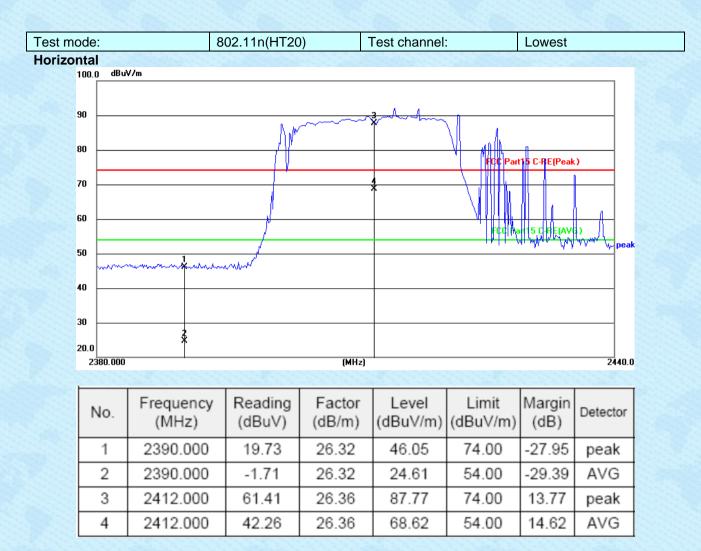


	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
Γ	1	2462.000	71.50	26.44	97.94	74.00	23.94	peak
Γ	2	2462.000	50.12	26.44	76.56	54.00	22.56	AVG
ſ	3	2483.500	19.88	26.47	46.35	74.00	-27.65	peak
	4	2483.500	-1.69	26.47	24.78	54.00	-29.22	AVG

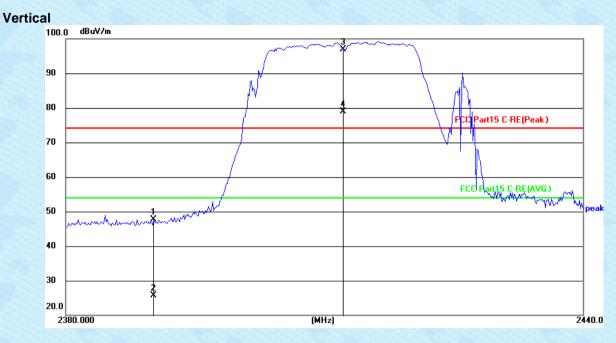
GTS



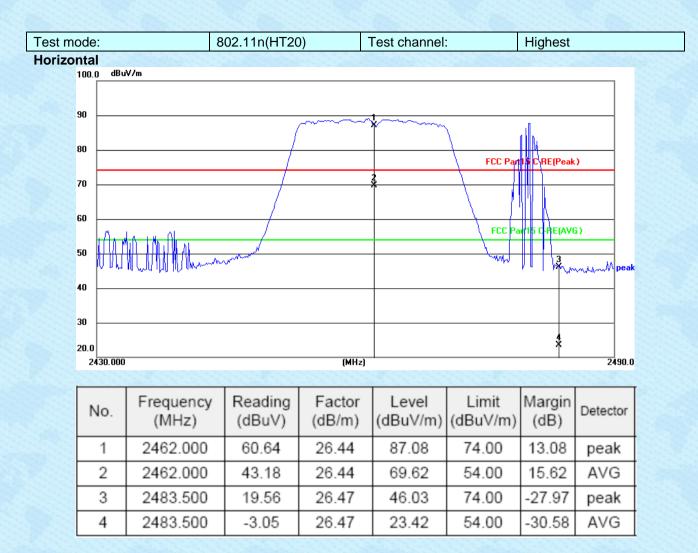
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	2390.000	20.55	26.32	46.87	74.00	-27.13	peak
	2	2390.000	-1.13	26.32	25.19	54.00	-28.81	AVG
ſ	3	2412.000	71.06	26.36	97.42	74.00	23.42	peak
	4	2412.000	51.17	26.36	77.53	54.00	23.53	AVG

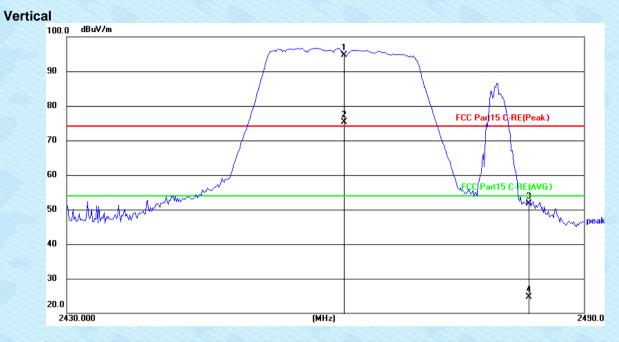

mode:	8	802.11g		Test channel		Highest		
zontal								
100.0 dBu	₩/m							
		~ ~ ~	_ <u></u>	Å				
90					٨٨			
80		/						
	/	/	*		FCC Pait	15 C-RE(Peak)	
70				/				
60				<u> </u>	/ _			
					FCC Pa	C-RE(AVE	i)	
50	Mar				- www	HILL	nnn peal	
40								
30								
20.0						*		
2440.000			(MHz)				2490.0	
	Frequency	Reading	Factor	Level	Limit	Margin		
No.	(MHz)	(dBuV)	(dB/m)		(dBuV/m)		Detector	
					=			
1	2462 000	62.57	26 44	89.01	74 00	15 01	peak	
1	2462.000	62.57	26.44	89.01	74.00	15.01	peak	
2	2462.000	45.29	26.44	71.73	54.00	17.73	AVG	
						L		

GTS



100 00 00 00 00 00 00 00 00 00 00 00 00	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	2462.000	69.84	26.44	96.28	74.00	22.28	peak
	2	2462.000	50.10	26.44	76.54	54.00	22.54	AVG
	3	2483.500	25.35	26.47	51.82	74.00	-22.18	peak
	4	2483.500	-0.62	26.47	25.85	54.00	-28.15	AVG




No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	21.34	26.32	47.66	74.00	-26.34	peak
2	2390.000	-0.64	26.32	25.68	54.00	-28.32	AVG
3	2412.000	70.60	26.36	96.96	74.00	22.96	peak
4	2412.000	52.50	26.36	78.86	54.00	24.86	AVG

GTS

Report No.: GTSL202204000332

12.0 0.000	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	2462.000	68.20	26.44	94.64	74.00	20.64	peak
	2	2462.000	48.87	26.44	75.31	54.00	21.31	AVG
	3	2483.500	25.23	26.47	51.70	74.00	-22.30	peak
	4	2483.500	-1.81	26.47	24.66	54.00	-29.34	AVG

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 3. Final Level =Receiver Read level + Antenna Factor
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.