

FCC Test Report

Report No.: AGC01040240602FR01

FCC ID	:	2ACN7HW851
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Heart Rate Armband
BRAND NAME	:	N/A
MODEL NAME	:	HW851, HW850, HW851E, HW851S, HW851V, HW8
APPLICANT	:	ShenZhen Fitcare Electronics Co., Ltd.
DATE OF ISSUE	:	Jun. 18, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 18, 2024	Valid	Initial Release

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	
2.2 Test Frequency List	
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Special Accessories	7
2.6 Equipment Modifications	7
2.7 Antenna Requirement	7
3. Test Environment	
3.1 Address of the Test Laboratory	
3.2 Test Facility	
3.3 Environmental Conditions	9
3.4 Measurement Uncertainty	9
3.5 List of Equipment Use	
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used In Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	
6. Duty Cycle Measurement	
7. RF Output Power Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	
8. 6dB Bandwidth Measurement	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8.4 Measurement Results	
9. Power Spectral Density Measurement	
9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Results	
10. Conducted Band Edge and Out-of-Band Emissions	

10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Results	
11. Radiated Spurious Emission	
11.1 Measurement Limit	
11.2 Measurement Procedure	
11.3 Measurement Setup (Block Diagram of Configuration)	
11.4 Measurement Result	
12. AC Power Line Conducted Emission Test	
12.1 Measurement Limit	
12.2 Measurement Setup (Block Diagram of Configuration)	
12.3 Preliminary Procedure of Line Conducted Emission Test	
12.4 Final Procedure of Line Conducted Emission Test	
12.5 Measurement Results	
Appendix I: Photographs of Test Setup	
Appendix II: Photographs of Test EUT	

1. General Information

ShenZhen Fitcare Electronics Co., Ltd.			
6th floor(south), Building A, Dingxin Science Park, Honglang North 2nd Road, Bao'an, Shenzhen 518100, China			
ShenZhen Fitcare Electronics Co., Ltd.			
6th floor(south), Building A, Dingxin Science Park, Honglang North 2nd Road, Bao'an, Shenzhen 518100, China			
ShenZhen Fitcare Electronics Co., Ltd.			
6th floor(south), Building A, Dingxin Science Park, Honglang North 2nd Road, Bao'an, Shenzhen 518100, China			
Heart Rate Armband			
N/A			
HW851			
HW850, HW851E, HW851S, HW851V, HW8			
All the same except for the model, item No., or color, or decorations			
Jun. 07, 2024			
Jun. 07, 2024 to Jun. 18, 2024			
No any deviation from the test method			
Normal			
Pass			
AGCER-FCC-BLE-V1			

Note: The test results of this report relate only to the tested sample identified in this report.

Thea Yuang Prepared By Thea Huang Jun. 18, 2024 (Project Engineer) **Reviewed By** Calvin Liu Jun. 18, 2024 (Reviewer) Ina Approved By

Max Zhang (Authorized Officer)

Jun. 18, 2024

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz		
Operation Frequency Range	2402MHz-2480MHz		
Bluetooth Version	V4.0		
Modulation Type	BLE GFSK 1Mbps GFSK 2Mbps		
Number of channels	40		
Carrier Frequency of Each Channel	40 Channels (37 Data channels + 3 advertising channels)		
Channel Separation	2 MHz		
Maximum Transmitter Power	-1.531dBm		
Hardware Version	V1.0		
Software Version	V1.0.4		
Antenna Designation	Ceramic Antenna		
Antenna Gain	1.6dBi		
Power Supply	DC 3.7V by battery or DC 5V by adapter		
Adapter Information	N/A		

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency		
	0	2402 MHz		
	1	2404 MHz		
	:	:		
2400~2483.5MHz	19	2440MHz		
	:	:		
	38	2478 MHz		
	39	2480 MHz		
Note: f = 2402 + 2*k MHz, k = 0,, 39 f is the operating frequency (MHz); k is the operating channel.				

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2ACN7HW851**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules

2.5 Special Accessories

Not available for this EUT intended for grant.

2.6 Equipment Modifications

Not available for this EUT intended for grant.

2.7 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 1.6dBi.

3. Test Environment

3.1 Address of the Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.7V

3.4 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	U _c = ±2 %
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %

3.5 List of Equipment Use

• R	RF Conducted Test System								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\square	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024-05-24	2025-05-23		
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2024-02-01	2025-01-31		
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2024-02-01	2025-01-31		
\boxtimes	AGC-EM-A001	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-09-21	2025-09-20		
	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2024-05-23	2025-05-22		
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A		
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A		

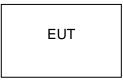
• F	Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31	
	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23	
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30	
\square	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23	
\square	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03	
\boxtimes	AGC-EM-A119	2.4GHz Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22	
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	

• A	AC Power Line Conducted Emission						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2024-05-28	2025-05-27
	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2025-06-08
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2024-05-28	2025-05-27

• Tes	st Software				
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A
	AGC-EM-S004	RE Test System	Tonscend	TS ⁺ Ver2.1(JS32-RE)	4.0.0.0
\boxtimes	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6
	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0

4.System Test Configuration

4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

4.4 Equipment Used In Tested System

The following peripheral devices and interface cables were connected during the measurement:

☑ Test Accessories Come From The Laboratory

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1	Control Box		USB-TTL		
	Test Accessories	Come From The	Manufacturer		
No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1	Heart Rate Armband	ShenZhen Fitcare Electronics Co., Ltd.	HW851		0.69m unshielded

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment Pass	
2	§15.247 (b)(3)	RF Output Power	Pass
3	§15.247 (a)(2)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.209	Radiated Emission& Band Edge	Pass
7	§15.207	AC Power Line Conducted Emission	Not applicable

Note: The BT function cannot transmit when charging.

5. Description of Test Modes

	Summary Table of Test Cases			
Data Rate / Modulation				
Test Item	Bluetooth – LE(1Mbps) / GFSK			
Radiated & Conducted Test Cases	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps(Battery powered) Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps(Battery powered) Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps(Battery powered)			
AC Conducted Emission	Not applicable			

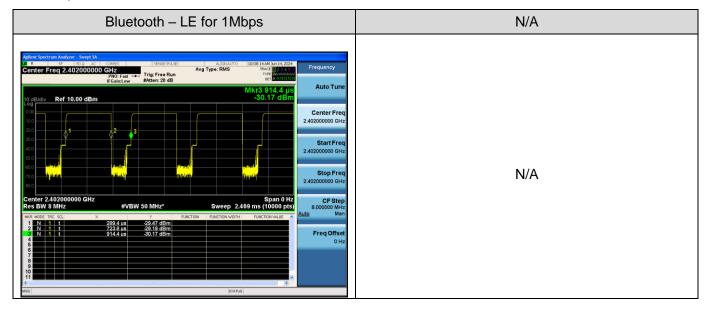
Note:

- Only the result of the worst case was recorded in the report, if no other cases. 1.
- The battery is full-charged during the test.
- 2. 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- For Conducted Test method, a temporary antenna connector is provided by the manufacture. 4.

Software Setting Diagram

Sector X P 2 A GHz Direct Test Hode UART interface P 2 A GHz St up on P R constrant carrier/D leakage St fur on ports P R constrant carrier/D leakage Red P R constrant carrier/D leakage C ap ort [DIIIA] Schrah lits of on ports P R constrant carrier/D leakage C ap ort [DIIIA] Schrah lits of C Receive Direct Test Mode C scale P Chanal P Poilead nodal P Poilead nodal P Poilead nodal P Poileat neeth D P bytyse	File View nRF8001 Setup Help	
2 A det		
B Status - X. contact carrier/L0 lackage - X. contact carrier/L0 lackage - Mathematic - Optical status - Optical	E 2.4 GHz	Direct lest Lode UAKI interface
<pre>rt Carrier were calquid</pre>		Set up on Program
<pre>vs contact carrier(0) loakage</pre>	- TX carrier wave output	
<pre>statutoting = statutoting = statutoting</pre>	- RX constant carrier/LO leakage	
s Buotoh GRIBOI Conjuration France Tranisfor Franklor	··· TX/RX channel sweep	Mode
Butoch Grather Grather Description Description Description Description Description Description Description Bootloaders Bo	RX sensitivity	6 Transit C Receive
rive Translor net Fields Direct Test Mode net Fields regload lead 1 100 1 Peloed length Peloet s resived XA Stop test Peloet service Maager NA Stop test Peloet service Maager Peloet s resived VA Stop test Peloet service Maager Peloet s resived VA Stop test	Bluetooth	
rice Tanalor hRF8002 Pelvat setal Pelvat setal Pelvat setal Pelvat setal Step tet Step	nRF8001 Configuration	Channel
Por tri tre Node RR 8002 Paylad sedd Paylad sedd Payl	Dispatcher	6 Single C Streep
rice Maager wrice Maager Motherboards Bootloaders Bootloaders or		
r voluei notal 12150 P voluei notal 1215 P voluei	nRF8002	Channel 0 -
erice Maager X Motherboards BR551 Pogeaming Bootloaders X Va Va Va Va Va Va Va Va Va Va	11110002	
erice Maager X Motherboards BR551 Pogeaming Bootloaders X Va Va Va Va Va Va Va Va Va Va		
er ise Maager x is in teat in the second sec		
wise Maager x Motherboards hRFST Programming Bootloaders		
vrice Maseer × Motherboards BROTIONADERS BROTIONADERS BROTIONADERS AND AND AND AND AND AND AND AND AND AND		Packets received K/A
vrice Maseer × Motherboards BROTIONADERS BROTIONADERS BROTIONADERS AND AND AND AND AND AND AND AND AND AND		Stop test
Methodads High Degramming Boolloaders		
Methodads High Degramming Boolloaders		
PEGsteaders	Device Manager ×	
Peotleaders	Motherboards	
or	nRF51 Programming	
	Bootloaders	
c) Nordic Semiconductor ASA 2008-2011		
	(c) Nordic Semiconductor ASA 2008-2011	

6. Duty Cycle Measurement


The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Operating mode	T(µs)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
BLE_1Mbps	434.4	69.50	1.58	2.30

Remark:

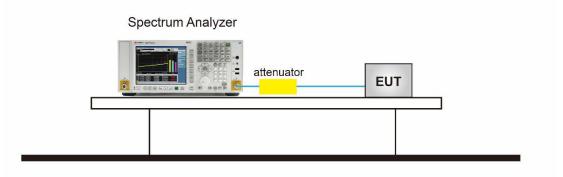
- 1. Duty Cycle factor = $10 \times \log(1/\text{Duty cycle})$
- 2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value

The test plots as follows:

7. RF Output Power Measurement

7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.


7.2 Measurement Procedure

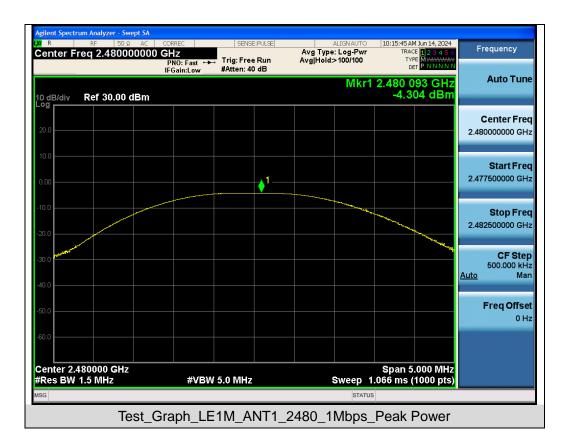
For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.1 Method Max peak power:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the RBW > DTS bandwidth
- 3. Set the VBW \geq [3 × RBW].
- 4. Span≥[3 x RBW].
- 5. Sweep= auto couple.
- 6. Detector Function= Peak.
- 7. Trace mode= Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.3 Measurement Setup (Block Diagram of Configuration)

 \boxtimes For peak power test setup

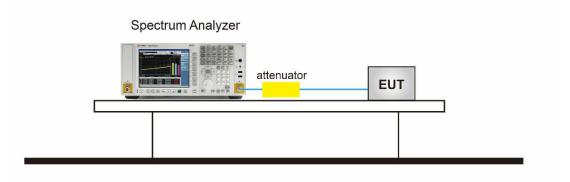
7.4 Measurement Result


	Test Data of Conducted Output Power				
Test Mode	Test Frequency (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail	
	2402	-1.531	≤30	Pass	
GFSK_1Mbps	2440	-2.855	≤30	Pass	
	2480	-4.304	≤30	Pass	

Test Graphs of Conducted Output Power

8. 6dB Bandwidth Measurement

8.1 Provisions Applicable


The minimum 6 dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

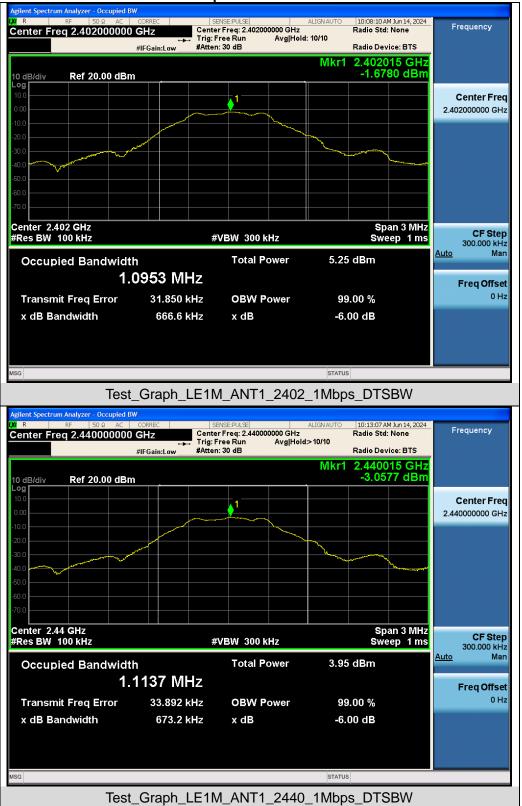
The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.

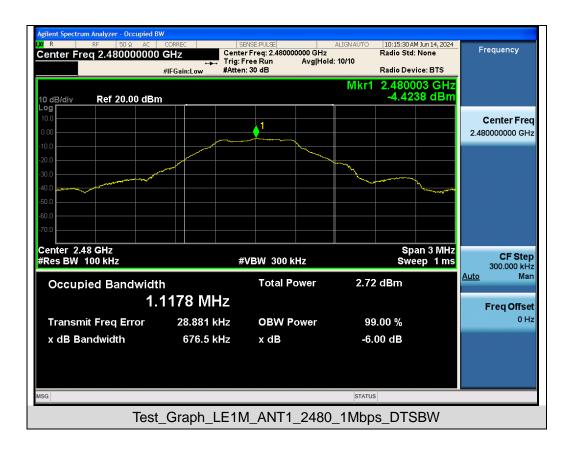
8.3 Measurement Setup (Block Diagram of Configuration)


8.4 Measurement Results

	Test Data of Occupied Bandwidth and DTS Bandwidth				
Test Mode	Test Frequency (MHz)	Occupied Bandwidth (MHz)	DTS BW (MHz)	DTS BW Limits	Pass or Fail
	2402	1.027	0.667	≥0.5	Pass
GFSK_1Mbps	2440	1.034	0.673	≥0.5	Pass
	2480	1.033	0.677	≥0.5	Pass


ectrum Analyzer - Occupied BW 10:07:57 AM Jun 14, 2024 Radio Std: None Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hol #Atten: 30 dB Frequency Center Freq 2.402000000 GHz Avg|Hold: 10/10 #IFGain:Low Radio Device: BTS Ref 20.00 dBm Dg **Center Freq** 2.402000000 GHz Center 2.402 GHz #Res BW 30 kHz Span 3 MHz Sweep 4.133 ms **CF** Step #VBW 100 kHz 300.000 kHz Man <u>Auto</u> **Total Power** 5.79 dBm **Occupied Bandwidth** 1.0268 MHz Freq Offset Transmit Freq Error 15.972 kHz **OBW Power** 99.00 % 0 Hz -26.00 dB x dB Bandwidth 1.258 MHz x dB STATUS Test_Graph_LE1M_ANT1_2402_1Mbps_OBW

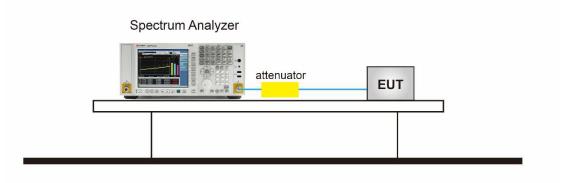
Test Graphs of Occupied Bandwidth



Test Graphs of DTS Bandwidth

9. Power Spectral Density Measurement

9.1 Provisions Applicable


The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz in order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

9.3 Measurement Setup (Block Diagram of Configuration)

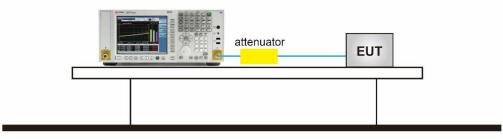
9.4 Measurement Results

Test Data of Conducted Output Power Spectral Density				
Test Mode	Test Frequency (MHz)	Power density (dBm/3kHz)	Limit (dBm/3kHz)	Pass or Fail
	2402	-14.902	≤8	Pass
GFSK_1Mbps	2440	-16.596	≤8	Pass
	2480	-17.301	≤8	Pass

Test Graphs of Conducted Output Power Spectral Density

10. Conducted Band Edge and Out-of-Band Emissions

10.1 Provisions Applicable

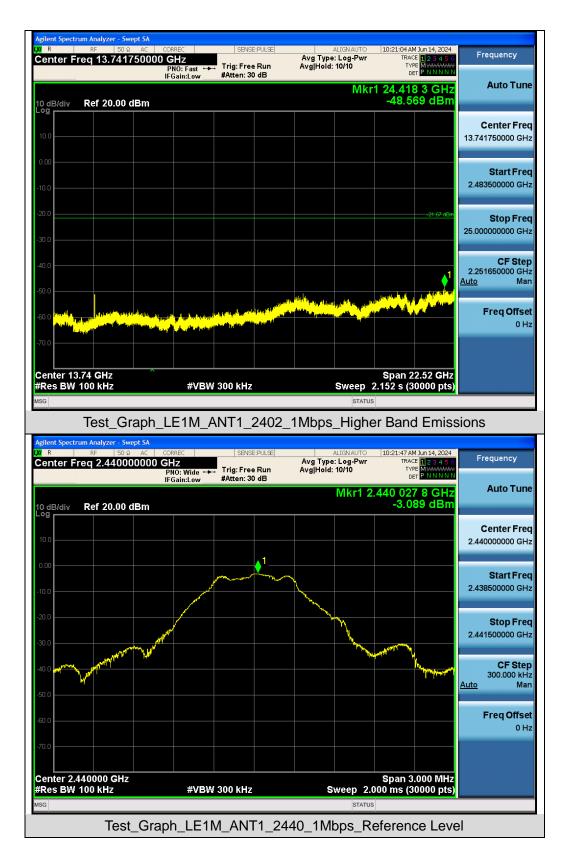

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

10.2 Measurement Procedure

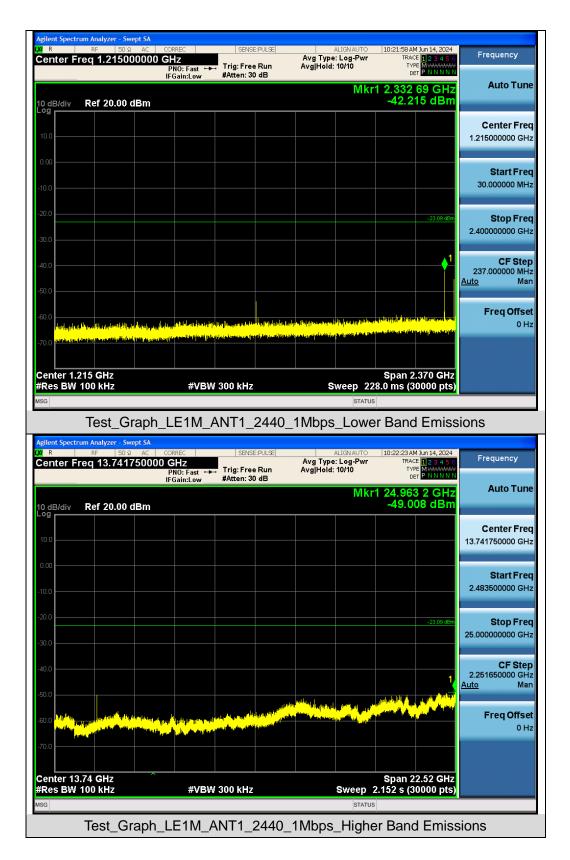
- Reference level measurement
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize
- Emission level measurement
- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

10.3 Measurement Setup (Block Diagram of Configuration)

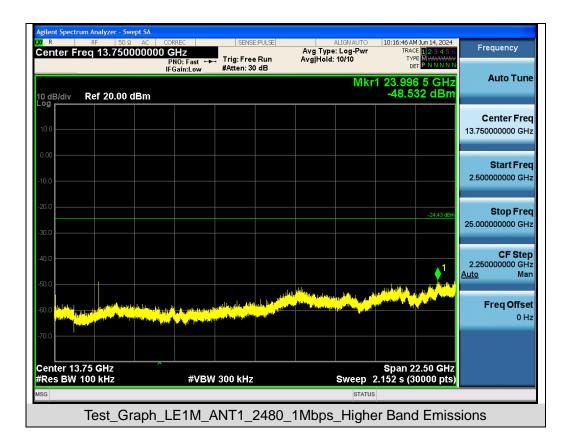
Spectrum Analyzer



10.4 Measurement Results



Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands





Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

11. Radiated Spurious Emission

11.1 Measurement Limit

FCC Part 15.209 Limit in the below table to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Any rep Ashang alternative b(provided pther, transmitter aloperates a for is longer than o 0.e4n seconds) e Orbin cases in where is the Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15 days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

1GHz~26.5GHz

1MHz/3MHz for Peak, 1MHz/3MHz for Average

pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 Spectrum Parameter
 Setting

 Start ~Stop Frequency
 9kHz~150kHz/RB 200Hz for QP

 Start ~Stop Frequency
 150kHz~30MHz/RB 9kHz for QP

 Start ~Stop Frequency
 30MHz~1000MHz/RB 120kHz for QP

The following table is the setting of spectrum analyzer and receiver.

Start ~Stop Frequency

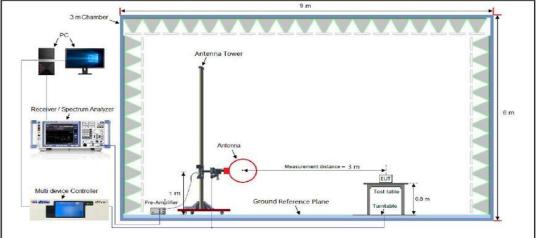
Receiver Parameter	Setting
Start ~Stop Frequency	9kHz~150kHz/RB 200Hz for QP
Start ~Stop Frequency	150kHz~30MHz/RB 9kHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120kHz for QP

• Quasi-Peak Measurements below 1GHz

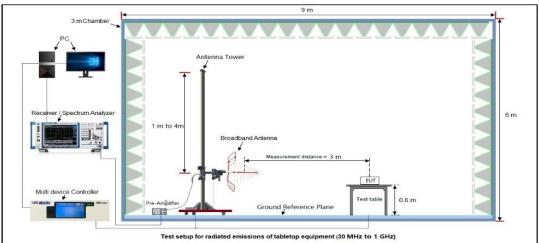
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

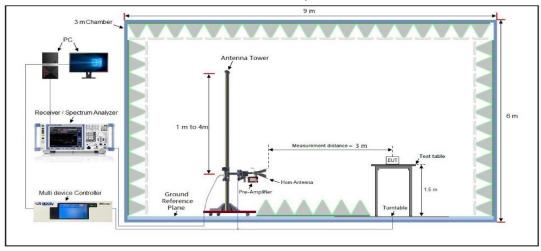
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


<u>Average Measurements above 1GHz</u>

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ [3 × RBW]
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.



11.3 Measurement Setup (Block Diagram of Configuration)



Radiated Emission Test Setup 30MHz-1000MHz

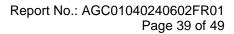
Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com



11.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

	Radiated Emission Test Results at 30MHz-1GHz								
EUT N	lame	Hea	rt Rate Armbar	nd		Model I	Name	HW851	
Tempe	erature	23.6)°C			Relative	e Humidity	59.1%	
Press	ure	re 960hPa				Test Vo	ltage	Normal Vo	oltage
Test N	lode	Мос	le 1			Antenn	a Polarity	Horizontal	
	72.0	dBu∀/m							
								Limit: — Margin: —	
								f	
	32					1	4 ⁵	Jun m	
	52				2	_	Martin Martin	Warnun	
		a shaped a fill	1	NAME AND	antoning Weenwoodshifty	wandwater when	(unMed ^{er}		
	pertr	we)10*****			a constate.				
	-8								
	30.00	00 4	0 50 60 70	80	(MHz)	300	400 500 60	0 700 1000.0	00
Final D	Data List								
NO.	Freq [MHz		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	43.050)5	20.12	13.69	40.00	19.88	100	60	Horizontal
2	120.27	66	22.38	16.38	43.50	21.12	100	110	Horizontal
3	262.89	55	21.18	14.81	46.00	24.82	100	80	Horizontal
4	440.19	63	30.82	25.09	46.00	15.18	100	150	Horizontal
5	545.18	26	32.49	23.98	46.00	13.51	100	100	Horizontal
6	896.99	65	38.33	31.42	46.00	7.67	100	140	Horizontal

		Radia	ted Emiss	ion Test Res	ults at 30MH	z-1GHz			
EUT Name	Hea	art Rate Armbar	nd		Model Na	ame	HW851		
Temperature	23.	6 °C	Relative		Relative	elative Humidity 5		59.1%	
Pressure	960hPa Test Voltage					Normal Vo	ltage		
Test Mode	Мо	de 1			Antenna	Polarity	Vertical		
72.0	dBuV∕i	m							
[Limit: — Margin: —		
-									
-							f		
-									
-							5 b		
32				2		and the second showing	Marine		
-	1 dester Alder to when the	Low March and March March	Admithed mediante	and the second of the second o	and the lost of the state of th				
-8									
	.000	40 50 60 70	80	(MHz)	300	400 500 60	D 700 1000.0	DO	
Final Data List	t								
NO. Fre		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1 56.79	917	23.55	17.07	40.00	16.45	100	100	Vertical	
2 139.8	508	24.42	18.20	43.50	19.08	100	150	Vertical	
3 451.1	350	31.66	25.60	46.00	14.34	100	70	Vertical	
4 545.1	826	32.90	24.67	46.00	13.1	100	150	Vertical	
5 711.6	734	34.92	28.51	46.00	11.08	100	80	Vertical	
6 952.0	937	36.71	30.52	46.00	9.29	100	40	Vertical	
		1					l	1	

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin= Limit-Level.

2. All test modes had been pre-tested. The mode 1 is the worst case and recorded in the report.

UT Name	Heart Rate	Armband	r	Model	l Name	HW851		
emperature	23.6 ℃		F	Relative Humidity		59.1%	59.1%	
ressure 960hPa			Test Voltage		/oltage	Normal	/oltage	
est Mode	Mode 1		ŀ	Anten	na Polarity	Horizont	al	
Frequency	Meter Reading	Factor	Emission L	Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m	n)	(dBµV/m)	(dB)	value Type	
4804.000	46.28	0.08	46.36		74	-27.64	peak	
4804.000	37.84	0.08	37.92		54	-16.08	AVG	
7206.000	41.71	2.21	43.92		74	-30.08	peak	
7206.000	32.69	2.21	34.9		54	-19.1	AVG	
Remark:								
Factor = Anter	nna Factor + Cab	le Loss – Pre-	amplifier.					
Factor = Anter	Heart Rate			Model	I Name	HW851		
			ſ		l Name ve Humidity	HW851 59.1%		
UT Name	Heart Rate		P F	Relati			/oltage	
UT Name emperature	Heart Rate		F 7	Relati Test V	ve Humidity	59.1%	/oltage	
UT Name emperature ressure est Mode	Heart Rate 23.6℃ 960hPa Mode 1	Armband	F 7	Relati Test V Anten	ve Humidity /oltage ina Polarity	59.1% Normal V Vertical		
UT Name emperature ressure est Mode	Heart Rate 23.6℃ 960hPa Mode 1 Meter Reading	Armband	F F Z Emission L	Relati Test V Anten	ve Humidity /oltage na Polarity	59.1% Normal V Vertical Margin	/oltage Value Type	
UT Name emperature ressure est Mode Frequency (MHz)	Heart Rate 23.6°C 960hPa Mode 1 Meter Reading (dBµV)	Armband Factor (dB)	Emission L (dBµV/m	Relati Test V Anten	Ve Humidity /oltage ma Polarity Limits (dBµV/m)	59.1% Normal V Vertical Margin (dB)	Value Type	
UT Name emperature ressure est Mode Frequency (MHz) 4804.000	Heart Rate 23.6℃ 960hPa Mode 1 Meter Reading (dBµV) 46.35	Armband Factor (dB) 0.08	Emission L (dBµV/m 46.43	Relati Test V Anten	ve Humidity /oltage ma Polarity Limits (dBµV/m) 74	59.1% Normal V Vertical Margin (dB) -27.57		
UT Name emperature ressure est Mode Frequency (MHz) 4804.000 4804.000	Heart Rate 23.6 °C 960hPa Mode 1 Meter Reading (dBµV) 46.35 37.84	Armband Factor (dB) 0.08 0.08	Emission L (dBµV/m 46.43 37.92	Relatin Test V Anten Level	ve Humidity /oltage ma Polarity Limits (dBµV/m) 74 54	59.1% Normal V Vertical Margin (dB) -27.57 -16.08	- Value Type peak	
UT Name emperature ressure est Mode Frequency (MHz) 4804.000 4804.000 7206.000	Heart Rate 23.6℃ 960hPa Mode 1 Meter Reading (dBµV) 46.35 37.84 41.27	Armband Factor (dB) 0.08 0.08 2.21	Emission L (dBµV/m 46.43 37.92 43.48	Relation Test V Anten Level (n)	ve Humidity /oltage ma Polarity Limits (dBµV/m) 74 54 74	59.1% Normal V Vertical Margin (dB) -27.57 -16.08 -30.52	- Value Type peak AVG	
UT Name emperature ressure est Mode Frequency (MHz) 4804.000 4804.000	Heart Rate 23.6 °C 960hPa Mode 1 Meter Reading (dBµV) 46.35 37.84	Armband Factor (dB) 0.08 0.08	Emission L (dBµV/m 46.43 37.92	Relation Test V Anten Level (n)	ve Humidity /oltage ma Polarity Limits (dBµV/m) 74 54	59.1% Normal V Vertical Margin (dB) -27.57 -16.08	- Value Type peak AVG peak	
UT Name emperature ressure est Mode Frequency (MHz) 4804.000 4804.000 7206.000	Heart Rate 23.6℃ 960hPa Mode 1 Meter Reading (dBµV) 46.35 37.84 41.27	Armband Factor (dB) 0.08 0.08 2.21	Emission L (dBµV/m 46.43 37.92 43.48	Relation Test V Anten Level (n)	ve Humidity /oltage ma Polarity Limits (dBµV/m) 74 54 74	59.1% Normal V Vertical Margin (dB) -27.57 -16.08 -30.52	- Value Type peak AVG peak	

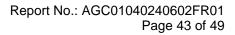
Radiated Emissions Test Results for Above 1GHz

RESULT: Pass

emperature ressure est Mode Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 Remark: Factor = Antenna UT Name emperature	23.6 °C 960hPa Mode 2 Meter Reading (dBµV) 46.32 37.58 42.49 33.78	Factor (dB) 0.14 0.14 2.36 2.36 2.36	Emission L (dBµV/m 46.46 37.72 44.85 36.14	Test V Anten Level n)	ve Humidit /oltage na Polarity Limits (dBµV/m) 74 54 74 54		59.1% Normal Margin (dB) -27.54 -16.28 -29.15 -17.86	•
Est Mode Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 Remark: Factor = Antenna UT Name	Mode 2 Meter Reading (dBµV) 46.32 37.58 42.49 33.78	(dB) 0.14 0.14 2.36 2.36	Emission L (dBµV/m 46.46 37.72 44.85 36.14	Anten	Limits (dBµV/m) 74 54 74		Horizont Margin (dB) -27.54 -16.28 -29.15	tal Value Type peak AVG peak
Frequency (MHz) 4880.000 4880.000 7320.000 7320.000 Remark: Factor = Antenna UT Name	Meter Reading (dBµV) 46.32 37.58 42.49 33.78	(dB) 0.14 0.14 2.36 2.36	Emission L (dBµV/m 46.46 37.72 44.85 36.14	Level	Limits (dBµV/m) 74 54 74		Margin (dB) -27.54 -16.28 -29.15	- Value Type peak AVG peak
(MHz) 4880.000 4880.000 7320.000 7320.000 Remark: Factor = Antenna UT Name	(dBµV) 46.32 37.58 42.49 33.78	(dB) 0.14 0.14 2.36 2.36	(dBµV/m 46.46 37.72 44.85 36.14	n)	(dBµV/m) 74 54 74		(dB) -27.54 -16.28 -29.15	peak AVG peak
(MHz) 4880.000 4880.000 7320.000 7320.000 Remark: Factor = Antenna UT Name	(dBµV) 46.32 37.58 42.49 33.78	(dB) 0.14 0.14 2.36 2.36	(dBµV/m 46.46 37.72 44.85 36.14	n)	(dBµV/m) 74 54 74		(dB) -27.54 -16.28 -29.15	peak AVG peak
4880.000 4880.000 7320.000 7320.000 Remark: Factor = Antenna UT Name	46.32 37.58 42.49 33.78	0.14 0.14 2.36 2.36	46.46 37.72 44.85 36.14		74 54 74		-27.54 -16.28 -29.15	peak AVG peak
4880.000 7320.000 7320.000 Remark: Factor = Antenna	37.58 42.49 33.78	0.14 2.36 2.36	37.72 44.85 36.14		54 74		-16.28 -29.15	AVG peak
7320.000 7320.000 Remark: Factor = Antenna	42.49 33.78	2.36 2.36	44.85 36.14		74		-29.15	peak
7320.000 Remark: Factor = Antenna	33.78	2.36	36.14					
Remark: Factor = Antenna UT Name					54		-17.86	AVG
Factor = Antenna	a Factor + Cabl	le Loss – Pre	amplifier					
Factor = Antenna	a Factor + Cabl	le Loss – Pre	amplifier					
Factor = Antenna	a Factor + Cabl	le Loss – Pre	amplifiar					
UT Name	a Factor + Cabl	le Loss – Pre	omplifior					
			e-ampiller.					
emperature	Heart Rate	Armband	r	Model	Name		HW851	
•	23.6 ℃		F	Relativ	ve Humidit	у	59.1%	
ressure	960hPa		٦	Test V	/oltage		Normal	Voltage
est Mode Mode 2			ŀ	Anten	na Polarity	,	Vertical	
Frequency Me	eter Reading	Factor	Emission Leve	nol l	Limits	M	argin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	-	(dBµV/m)		dB)	Value Type
4880.000	46.78	0.14	46.92		74	(7.08	peak
4880.000	37.49	0.14	37.63		54		6.37	AVG
7320.000	42.63	2.36	44.99		74		9.01	peak
7320.000	33.15	2.36	35.51		54		8.49	AVG
Remark: actor = Antenna F								

Radiated Emissions Test Results for Above 1GHz

RESULT: Pass


UT Name	T Name Heart Rate Armband			del Name	HW851	HW851	
emperature	23.6 ℃	23.6 °C		lative Humidity	59.1%	59.1%	
ressure	960hPa		Те	st Voltage	Normal V	/oltage	
est Mode	Mode 3		An	tenna Polarity	Horizonta	al	
Frequency	Meter Reading	Factor	Emission Le	vel Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4960.000	46.19	0.22	46.41	74	-27.59	peak	
4960.000	38.23	0.22	38.45	54	-15.55	AVG	
7440.000	41.09	2.64	43.73	74	-30.27	peak	
7440.000	32.78	2.64	35.42	54	-18.58	AVG	
Remark:							
	na Factor + Cabl	e Loss – Pre-	amplifier.				
	na Factor + Cabl Heart Rate			odel Name	HW851		
Factor = Anten			Mc	odel Name lative Humidity	HW851 59.1%		
Factor = Anten	Heart Rate		Mc Re			/oltage	
Factor = Anten UT Name emperature	Heart Rate		Mc Re Te	lative Humidity	59.1%	/oltage	
Factor = Anten	Heart Rate 23.6℃ 960hPa Mode 3	Armband	Mo Re Te An	lative Humidity st Voltage tenna Polarity	59.1% Normal V Vertical	/oltage	
Factor = Anten	Heart Rate A 23.6℃ 960hPa Mode 3 Meter Reading	Armband	Mc Re Te An Emission Le	Iative Humidity st Voltage tenna Polarity vel Limits	59.1% Normal V Vertical	/oltage Value Type	
Factor = Anten	Heart Rate A 23.6 ℃ 960hPa Mode 3 Meter Reading (dBµV)	Armband Factor (dB)	Mc Re Te An Emission Le (dBµV/m)	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m)	59.1% Normal V Vertical Margin (dB)	- Value Type	
Factor = Anten	Heart Rate A 23.6 ℃ 960hPa Mode 3 Meter Reading (dBµV) 46.85	Armband Factor (dB) 0.22	Мс Re Те Ап Еmission Le (dBµV/m) 47.07	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74	59.1% 59.1% Vertical Margin (dB) -26.93	- Value Type peak	
Factor = Anten	Heart Rate / 23.6 ℃ 960hPa Mode 3 Meter Reading (dBµV) 46.85 38.41	Armband Factor (dB) 0.22 0.22	Mc Re Te: An Emission Le (dBµV/m) 47.07 38.63	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54	59.1% Normal V Vertical Margin (dB) -26.93 -15.37	- Value Type peak AVG	
Factor = Anten	Heart Rate / 23.6 ℃ 960hPa Mode 3 Meter Reading (dBµV) 46.85 38.41 41.46	Armband Factor (dB) 0.22 0.22 2.64	Мс Re Te Emission Le (dBµV/m) 47.07 38.63 44.1	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54 74	59.1% Normal V Vertical Margin (dB) -26.93 -15.37 -29.9	Value Type peak AVG peak	
Factor = Anten	Heart Rate / 23.6 ℃ 960hPa Mode 3 Meter Reading (dBµV) 46.85 38.41	Armband Factor (dB) 0.22 0.22	Mc Re Te: An Emission Le (dBµV/m) 47.07 38.63	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54	59.1% Normal V Vertical Margin (dB) -26.93 -15.37	- Value Type peak AVG	
Factor = Anten	Heart Rate / 23.6 ℃ 960hPa Mode 3 Meter Reading (dBµV) 46.85 38.41 41.46	Armband Factor (dB) 0.22 0.22 2.64	Мс Re Te Emission Le (dBµV/m) 47.07 38.63 44.1	Iative Humidity st Voltage tenna Polarity vel Limits (dBµV/m) 74 54 74	59.1% Normal V Vertical Margin (dB) -26.93 -15.37 -29.9	Value Type peak AVG peak	

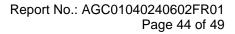
Radiated Emissions Test Results for Above 1GHz

RESULT: Pass

Note:

- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

EUT Name	Heart Rate Armband	Model Name	HW851
Temperature	23.6℃	Relative Humidity	59.1%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna Polarity	Horizontal


Test Graph for Peak Measurement

Test Graph for Average Measurement


RESULT: Pass

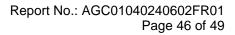
EUT Name	Heart Rate Armband	Model Name	HW851
Temperature	23.6 ℃	Relative Humidity	59.1%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

EUT Name	Heart Rate Armband	Model Name	HW851
Temperature	23.6 ℃	Relative Humidity	59.1%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna Polarity	Horizontal


Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

EUT Name	Heart Rate Armband	Model Name	HW851
Temperature	23.6 ℃	Relative Humidity	59.1%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna Polarity	Vertical

Test Graph for Peak Measurement

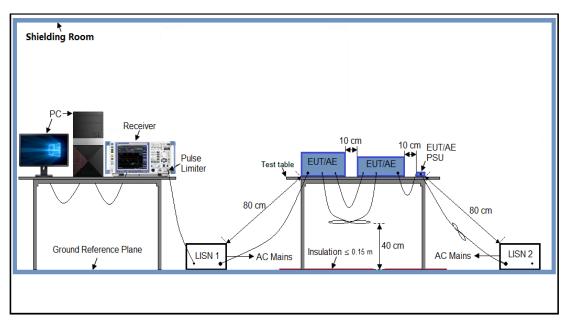
Test Graph for Average Measurement

RESULT: Pass

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

12. AC Power Line Conducted Emission Test

12.1 Measurement Limit


Framman	Maximum RF Line Voltage				
Frequency	Q.P. (dBµV)	Average (dBµV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2 Measurement Setup (Block Diagram of Configuration)

12.3 Preliminary Procedure of Line Conducted Emission Test

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

12.5 Measurement Results

N/A

Note: The BT function cannot transmit when charging

Report No.: AGC01040240602FR01 Page 49 of 49

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC01040240602AP01

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC01040240602AP01
-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.