

FCC PART 15.249

TEST REPORT

For

Shenzhen Jiayz photo industrial.,Ltd

A16 Builing,Intelligent Terminal Industrial Park of Sililcon Valley Power, Guanlan, Longhua District, Shenzhen, China

FCC ID: 2ARN3-SR-WM2100RX

Report Type:		Product Type:	
Original Report		2.4GHz Wireless Microphone	
Report Number:	RSZ200526810-00	0B	
Report Date:	2020-07-03		
	Jacob Kong	Jacob Gong	
Reviewed By:	RF Engineer		
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn		

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Report No.: RSZ200526810-00B

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
Measurement Uncertainty	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
-	
FCC§15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	9
FCC§15.205, §15.209 & §15.249(D) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
Test Equipment Setup	
EUT SETUP	11
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC§15.215(C) - 20DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	19

GENERAL INFORMATION

Product	2.4 GHz Wireless Microphone
Tested Model	SR-WM2100 RX
Multiple Model	RX-USB2100
Model different	Refer to the DOS
Frequency Range	2406-2474MHz
Maximum Field Strength	98.78 dBuV/m @ 3m (Peak)
Antenna Specification	2 dBi
Voltage Range	DC 2*1.5V batteries
Date of Test	2020-06-08 to 2020-06-16
Sample serial number	RSZ200526810-RF-S2 (Assigned by BACL, Shenzhen)
Received date	2020-05-26
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This type approval report is prepared on behalf of *Shenzhen Jiayz photo industrial.,Ltd* in accordance with Part 2-Subpart J, and Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.249 rules.

Related Submittal(s)/Grant(s)

FCC Part15.249 DXX submittal(s) with FCC ID: 2ARN3-SR-WM2100TX.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		±5%
RF Output Power with Power meter		±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1°C
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing by manufacturer.

Frequency List

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2406	10	2442
2	2410	11	2446
8	2434	17	2470
9	2438	18	2474

Channel 1, 9, 18 were tested.

EUT Exercise Software

No software was used to the EUT tested.

Equipment Modifications

No modifications were made to the unit tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

	$= \left \right $
EUT	1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane	
✓ 1.5 Meters ↓	\longrightarrow

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conduction Emissions	Not Applicable
15.205, §15.209, §15.249(d)	Radiated Emissions& Outside of Band Emission Compliance	
§15.215 (c)	20 dB Bandwidth	Compliance

Not Applicable: The EUT was powered by battery.

Report No.: RSZ200526810-00B

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESR3	102455	2019/7/9	2020/7/8
Sonoma instrument	Pre-amplifier	310 N	186238	2020/4/20	2021/4/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017/12/22	2020/12/21
Unknown	Cable 2	RF Cable 2	F-03-EM197	2019/11/29	2020/11/28
Unknown	Cable	Chamber Cable 1	F-03-EM236	2019/11/29	2020/11/28
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2019/7/22	2020/7/21
COM-POWER	Pre-amplifier	PA-122	181919	2019/11/29	2020/11/28
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2019/11/29	2020/11/28
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017/12/22	2020/12/21
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2019/11/29	2020/11/28
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2019/11/29	2020/11/28
SNSD	Band Reject filter	BSF2402- 2480MN- 0898-001	2.4G filter	2020/4/20	2021/4/20
Ducommun Technolagies	Horn antenna	ARH-4223- 02	1007726-02 1304	2017/12/6	2020/12/5

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one external antenna arrangement with unique antenna connector and the antenna gain is 2 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC§15.205, §15.209 & §15.249(d) - RADIATED EMISSIONS

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

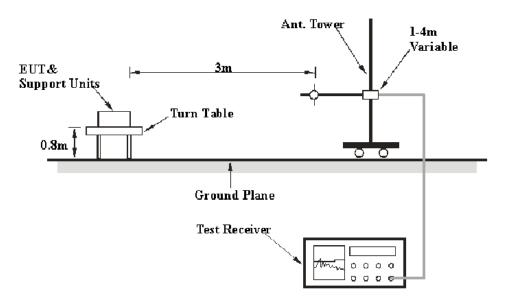
As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

As per FCC§15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

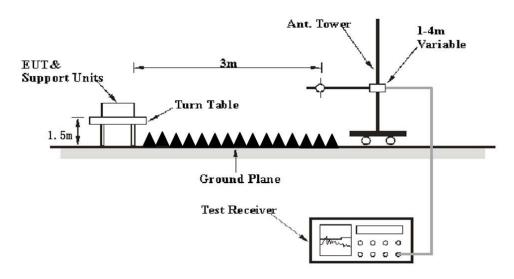
Test Equipment Setup

The spectrum analyzer or receiver is set as:

Below 1000MHz:


RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000MHz:


Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 mete, and the EUT is placed on a turntable, which is 0.8 meter above ground plane for below 1GHz or 1.5 meter for above 1GHz, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

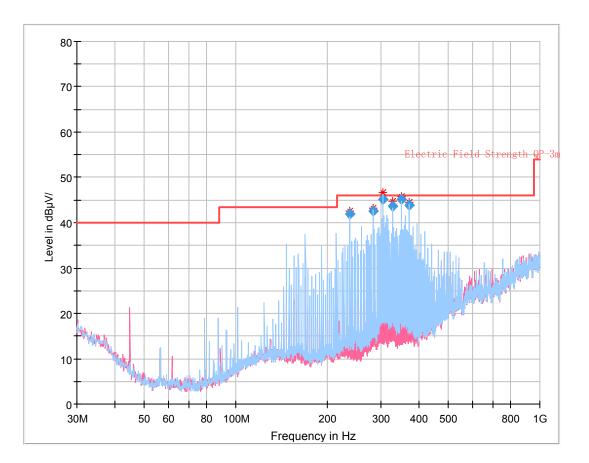
Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude


Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	60 %
ATM Pressure:	101.0kPa

The testing was performed by Hams He on 2020-06-08 for below 1GHz and Leven Gan on 2020-06-16 for above 1GHz

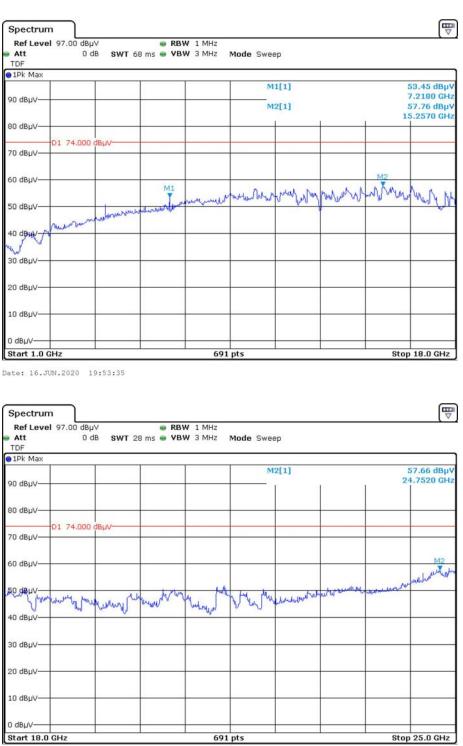
Test Mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was record)

30MHz – 1 GHz: Worst case at Middle Channel

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
237.072875	41.85	129.0	Н	274.0	-14.1	46.00	4.15
282.241875	42.54	108.0	Н	80.0	-11.8	46.00	3.46
304.803500	45.22	110.0	Н	259.0	-10.6	46.00	0.78
327.394500	43.68	102.0	Н	252.0	-10.7	46.00	2.32
349.972125	45.16	101.0	Н	257.0	-10.8	46.00	0.84
372.547000	43.90	110.0	Н	254.0	-10.6	46.00	2.10

Report No.: RSZ200526810-00B

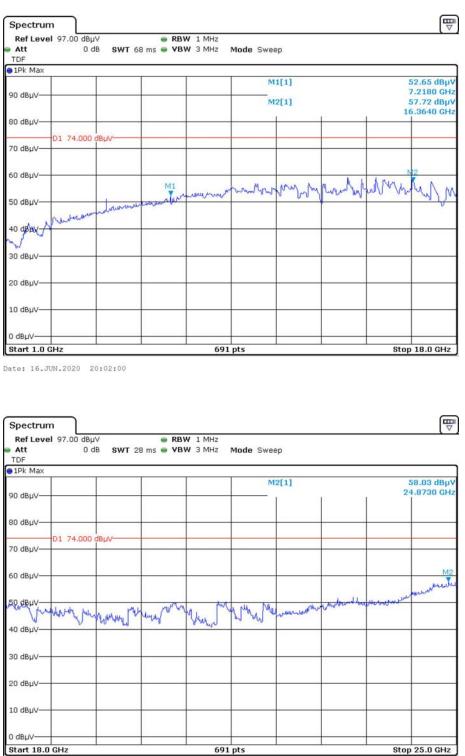
1 GHz - 25 GHz :


Frequency	Receiver		Turntable	Rx Antenna			Corrected	FCC Part 15.249&15.209	
(MHz)	Reading (dBµV)	PK/QP/Ave.		Height (m)	Polar (H/V)	Factor (dB/m)	Amplitudo (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (2406 MHz)								
2406.00	66.91	РК	5	1.7	Н	31.87	98.78	114	15.22
2406.00	61.32	Ave.	5	1.7	Н	31.87	93.19	94	0.81
2406.00	57.25	РК	162	2.5	V	31.87	89.12	114	24.88
2406.00	51.10	Ave.	162	2.5	V	31.87	82.97	94	11.03
2398.42	30.59	РК	120	1.4	Н	31.87	62.46	74	11.54
2398.42	23.14	Ave.	120	1.4	Н	28.87	52.01	54	1.99
2484.33	28.24	РК	229	2.1	Н	32.13	60.37	74	13.63
2484.33	13.67	Ave.	229	2.1	Н	32.13	45.80	54	8.20
4812.00	47.31	РК	197	2.2	Н	6.28	53.59	74	20.41
4812.00	40.98	Ave.	197	2.2	Н	6.28	47.26	54	6.74
7218.00	43.38	PK	59	1.4	Н	11.93	55.31	74	18.69
7218.00	35.46	Ave.	59	1.4	Н	11.93	47.39	54	6.61
	Middle Channel (2438MHz)								
2438.00	66.22	PK	277	2.1	Н	31.97	98.19	114	15.81
2438.00	60.76	Ave.	277	2.1	Н	31.97	92.73	94	1.27
2438.00	55.72	РК	42	1.5	V	31.97	87.69	114	26.31
2438.00	50.21	Ave.	42	1.5	V	31.97	82.18	94	11.82
4876.00	44.86	РК	313	1.3	Н	6.76	51.62	74	22.38
4876.00	38.11	Ave.	313	1.3	Н	6.76	44.87	54	9.13
7314.00	43.12	РК	208	2.0	Н	11.56	54.68	74	19.32
7314.00	33.90	Ave.	208	2.0	Н	11.56	45.46	54	8.54
High Channel (2474 MHz)									
2474.00	66.58	РК	133	1.4	Н	32.13	98.71	114	15.29
2474.00	60.97	Ave.	133	1.4	Н	32.13	93.10	94	0.9
2474.00	52.02	РК	87	1.8	V	32.13	84.15	114	29.85
2474.00	47.11	Ave.	87	1.8	V	32.13	79.24	94	14.76
2399.35	28.22	РК	129	2.0	Н	31.87	60.09	74	13.91
2399.35	13.64	Ave.	129	2.0	Н	31.87	45.51	54	8.49
2484.65	28.39	РК	304	1.6	Н	32.13	60.52	74	13.48
2484.65	13.69	Ave.	304	1.6	Н	32.13	45.82	54	8.18
4948.00	43.57	РК	216	1.3	Н	6.76	50.33	74	23.67
4948.00	33.90	Ave.	216	1.3	Н	6.76	40.66	54	13.34
7422.00	42.76	РК	151	2.2	Н	12.39	55.15	74	18.85
7422.00	32.57	Ave.	151	2.2	Н	12.39	44.96	54	9.04

Note:

Corrected Amplitude = Corrected Factor + Reading Corrected Factor=Antenna factor (RX) +cable loss – amplifier factor

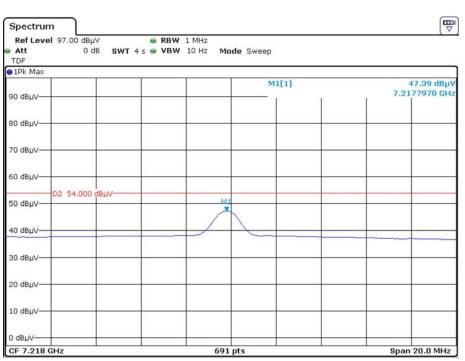
Margin = Limit- Corr. Amplitude


The emission more than20dB below the limit was not required to be recorded.

Pre-scan with Low channel Peak Horizontal

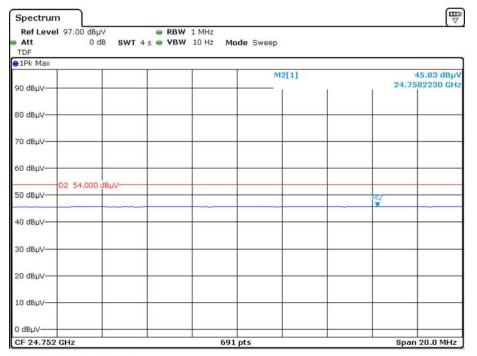
Date: 16.JUN.2020 20:36:00

Report No.: RSZ200526810-00B

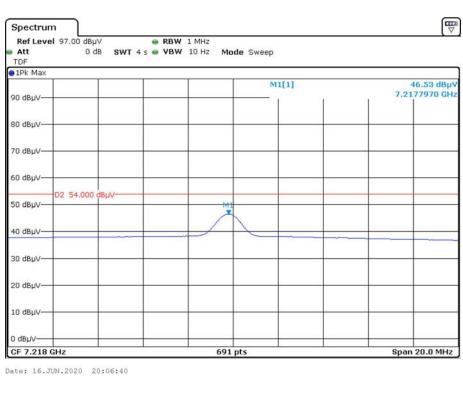


Vertical

Date: 16.JUN.2020 20:42:50


FCC Part 15.249

Page 16 of 21



Average value for the peak point at pre-scan Horizontal

Date: 16.JUN.2020 19:56:49

Date: 16.JUN.2020 20:39:21

₽ Spectrum Ref Level 97.00 dBµV 👄 RBW 1 MHz 0 dB SWT 4 s 👄 VBW 10 Hz Att TDF Mode Sweep 1Pk Max 45.06 dBµV 24.8813940 GHz M2[1] 90 dBµV· 80 dBµV-70 dBµV-60 dBµV-D2 54.000 dBuV-50 dBµV-M2 40 dBµV-30 dBµV-20 dBµV-10 dBµV· 0 dBµV-CF 24.873 GHz 691 pts Span 20.0 MHz

Date: 16.JUN.2020 20:46:14

FCC§15.215(c) - 20dB EMISSION BANDWIDTH

Applicable Standard

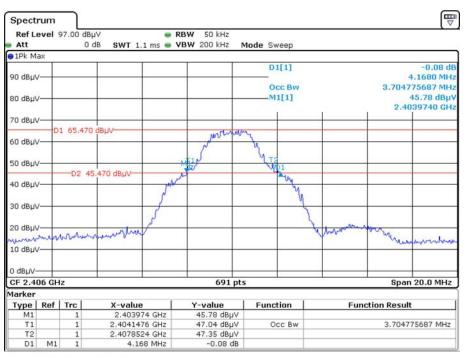
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test Procedure

Per ANSI C63.10-2013 §6.4 & §6.9.

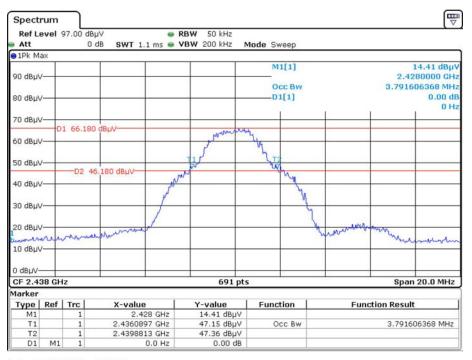
Test Data

Environmental Conditions

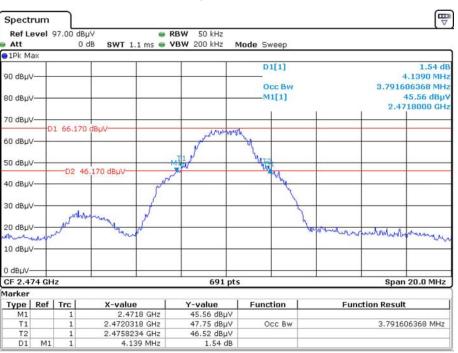

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Leven Gan on 2020-06-16.

Test Mode: Transmitting


Please refer to the following table and plots.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)		
Low	2406	3.70		
Middle	2438	3.79		
High	2474	3.79		


Low Channel

Date: 16.JUN.2020 19:45:13

Middle Channel

Date: 16.JUN.2020 19:20:25

High Channel

Date: 16.JUN.2020 19:33:25

***** END OF REPORT *****