

RADIO TEST REPORT FCC ID:2AAUI-EXSNDXTR

Product: SoundExtreme SE26 Trade Mark: ECOXGEAR Model No.: GDI-EXSNDXTR01 Family Model: N/A Report No.: S23060201606001 Issue Date: Jul 21. 2023

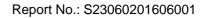
Prepared for

Grace Digital Inc.

10531 4S Commons Drive #166 Suite #430,San Diego, CA 92127

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn



I

TABLE OF CONTENTS

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	NERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	ГUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 10 11
7 TE	ST REQUIREMENTS	12
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL. HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	14 23 24 25 27 28 29 30 31 32
8 TE	ST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER -20DB BANDWIDTH OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL. BAND EDGE BAND EDGE BAND EDGE (HOPPING) CONDUCTED RF SPURIOUS EMISSION	43 49 55 61 67 70 77

1 TEST RESULT CERTIFICATION

	Ore en Diritel Inc
Applicant's name:	Grace Digital Inc.
Address:	10531 4S Commons Drive #166 Suite #430,San Diego, CA 92127
Manufacturer's Name:	Xingtel Xiamen Group Co., Ltd.
Address:	Xingtel Building,Chuangxin Road, Torch Hi-Tech Industrial District,Xiamen 361006, PR China
Product description	
Product name:	SoundExtreme SE26
Model and/or type reference:	GDI-EXSNDXTR01
Family Model:	N/A
Sample number	S230602016006

Certificate #4298 01

Measurement Procedure Used:

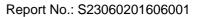
APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.


Date of Test	:	Jun 05. 2023 ~ Jul 21. 2023
Testing Engineer	:	Aven lin
		(Allen Liu)
Authorized Signatory	:	Aless
		(Alex Li)

SUMMARY OF TEST RESULTS			
FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	N/A	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

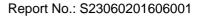
The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	SoundExtreme SE26	
Trade Mark	ECOXGEAR	
FCC ID	2AAUI-EXSNDXTR	
Model No.	GDI-EXSNDXTR01	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	0 dBi	
Power supply	DC 12V from battery	
Adapter	N/A	
HW Version	BT-333C-M-V1.3	
SW Version	BTM321_xinglian_BT333_V1218	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.


Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

	Re	evision History			
Report No.	Report No. Version Description Issued Date				
S23060201606001	Rev.01	Initial issue of report	Jul 21. 2023		
	<u> </u>				

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode	Description			
Mode 2 CH00(2402MHz)				
Mode 3 CH39(2441MHz)				
Mode 4	Mode 4 CH78(2480MHz)			
Mode 5	Hopping mode			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

NTEK 北测 [®]	ACCREDITED Certificate #4298.01	Report No.: S23060201606001
6 SETUP OF EQUIPMENT UN	DER TEST	
6.1 BLOCK DIAGRAM CONFIGURATI	ION OF TEST SYSTEM	
For Radiated Test Cases		
EUT E-1		
For Conducted Test Cases		
Measurement Instrument — EUT		
Note: 1. The temporary antenna connect and this temporary antenna connector is 2. EUT built-in battery-powered, th	s listed in the equipment list.	in order to perform conducted tests

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	SoundExtreme SE26	GDI-EXSNDXTR01	N/A	EUT

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

addate		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

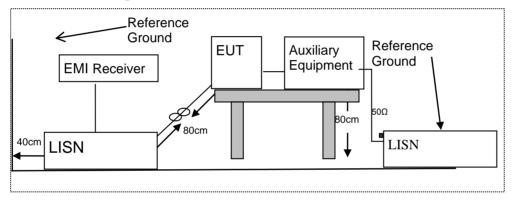
We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

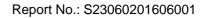
- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.


7.1.5 Test Results

EUT:	SoundExtreme SE26	Model Name :	GDI-EXSNDXTR01
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

ACCREDITED Certificate #4298.01

ilac-M

Note: EUT is battery powered, not Applicable.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

	Recording to 1 OO 1 art 19:209, Restricted bands				
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(2)		
13.36-13.41					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

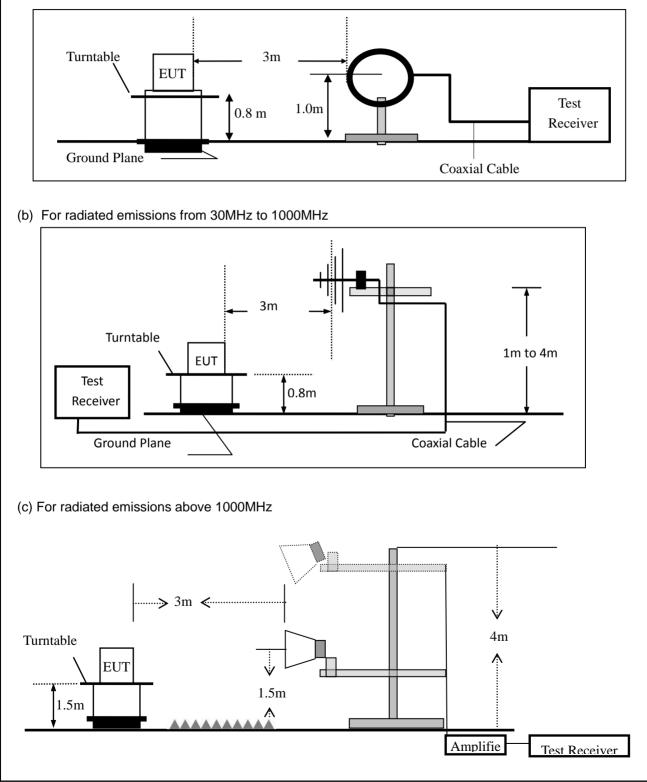
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:					
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Ab 200	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	SoundExtreme SE26	Model No.:	GDI-EXSNDXTR01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

QP

QP

QP

-4.33

-7.60

-9.72

43.50

43.50

46.00

Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:								
EUT:	SoundExtreme SE26	Model Name :	GDI-EXSNDXTR01					
Temperature:	25 ℃	Relative Humidity:	55%					
Pressure:	1010hPa	Test Mode:	Mode 1					

ACCREDITED Certificate #4298.01

39.17

35.90

36.28

Test Volt	age : DC 12	2V					
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remark
V	44.2752	17.33	18.58	35.91	40.00	-4.09	QP
V	65.5727	18.67	12.63	31.30	40.00	-8.70	QP
V	89.5899	21.31	16.69	38.00	43.50	-5.50	QP

18.52

16.41

23.80

V **Remark:**

V

V

113.3163

193.0945

428.0193

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

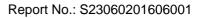
20.65

19.49

12.48

NTEK 北测[®]

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	89.5899	22.22	16.69	38.91	43.50	-4.59	QP
Н	103.0800	21.71	17.94	39.65	43.50	-3.85	QP
Н	136.4598	18.78	18.76	37.54	43.50	-5.96	QP
Н	191.7450	23.00	16.43	39.43	43.50	-4.07	QP
Н	356.6758	20.52	22.03	42.55	46.00	-3.45	QP
Н	401.8385	18.24	23.24	41.48	46.00	-4.52	QP
Remark Emission 72.0	n Level= Meter F	Reading+ Fact	tor, Margin=	Emission Le	vel - Limit		
62 -							_
52							f
42			3 My support adapted	4 7 // 1000	5 6		
32 🔨	anterna marker liter by white the	Mary Mary Market Market	W Will and Suday and the second	ANT AND	and an further we	a manus and a manus	
22	. many war i ya wa ya ya	<i>μ</i> ν					_
12							_
2							
-8 30.0	100	.00	(MI		0.00		000.000


NTEK	北测®	"Tord man live
------	-----	----------------

UT:	rious Emission Above 1GHz (1GHz to SoundExtreme SE26				Model No.:		GDI-EXSNDXTR01				
	turo.		XIIeme	SE20			4 . <i>1</i> .				
Tempera		20 ℃			Relative Humidity:		48%				
Test Mod		Mode2/			Test				en Liu		
All the m	odulation	modes h	ave be	en tested	, and the	worst res	ult was	rep	oort as b	elow:	
	Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limit	S	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	/m)	(dB)		
				Low Char	nnel (2402	MHz)(GFSK)	Above	1G			
	4804.214	63.82	5.21	35.59	44.30	60.32	74.0	0	-13.68	Pk	Vertical
	4804.214	40.22	5.21	35.59	44.30	36.72	54.0	0	-17.28	AV	Vertical
	7206.265	60.36	6.48	36.27	44.60	58.51	74.0	0	-15.49	Pk	Vertical
	7206.265	44.72	6.48	36.27	44.60	42.87	54.0	0	-11.13	AV	Vertical
	4804.109	61.50	5.21	35.55	44.30	57.96	74.0	0	-16.04	Pk	Horizontal
	4804.109	43.92	5.21	35.55	44.30	40.38	54.0	0	-13.62	AV	Horizontal
	7206.224	63.39	6.48	36.27	44.52	61.62	74.0	0	-12.38	Pk	Horizontal
	7206.224	48.64	6.48	36.27	44.52	46.87	54.0	0	-7.13	AV	Horizontal
				Mid Char	nel (2441	MHz)(GFSK)	Above	1G			
	4882.396	62.64	5.21	35.66	44.20	59.31	74.0	0	-14.69	Pk	Vertical
	4882.396	43.84	5.21	35.66	44.20	40.51	54.0	0	-13.49	AV	Vertical
_	7323.241	59.88	7.10	36.50	44.43	59.05	74.0	0	-14.95	Pk	Vertical
_	7323.241	47.69	7.10	36.50	44.43	46.86	54.0	0	-7.14	AV	Vertical
	4882.108	60.95	5.21	35.66	44.20	57.62	74.0	0	-16.38	Pk	Horizontal
_	4882.108	48.26	5.21	35.66	44.20	44.93	54.0	0	-9.07	AV	Horizontal
_	7323.132	60.19	7.10	36.50	44.43	59.36	74.0	0	-14.64	Pk	Horizontal
_	7323.132	41.22	7.10	36.50	44.43	40.39	54.0		-13.61	AV	Horizontal
_		1		High Char	nnel (2480	MHz)(GFSK)	Above	e 1G	1		1
	4960.397	66.69	5.21	35.52	44.21	63.21	74.0	0	-10.79	Pk	Vertical
	4960.397	43.90	5.21	35.52	44.21	40.42	54.0	0	-13.58	AV	Vertical
	7440.201	60.60	7.10	36.53	44.60	59.63	74.0	0	-14.37	Pk	Vertical
	7440.201	45.24	7.10	36.53	44.60	44.27	54.0	0	-9.73	AV	Vertical
	4960.225	67.99	5.21	35.52	44.21	64.51	74.0	0	-9.49	Pk	Horizontal
	4960.225	48.38	5.21	35.52	44.21	44.90	54.0	0	-9.10	AV	Horizontal
	7440.298	61.60	7.10	36.53	44.60	60.63	74.0	0	-13.37	Pk	Horizontal
	7440.298	45.23	7.10	36.53	44.60	44.26	54.0	0	-9.74	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

					Cert	ificate #4298.01					
	Spurious I	Emission in I	Restricte	d Band 2	310-2390	MHz and 2	2483.	5-250	0MHz		
EUT	:	SoundExtre	me SE2	6	Model	No.:		GDI-E	EXSND>	(TR01	
Tem	perature:	20 ℃			Relativ	e Humidit	y:	48%			
Test	t Mode:	Mode2/ Mod	de4		Test B	y:		Allen	Liu		
All	the modul	ation modes	have be	en tested	, and the	worst rest	ult was	s repo	ort as be	low:	
	Frequency	/ Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	
				11	/lbps(GFSK)-Non-hoppir	ng				
	2310.00	58.09	2.97	27.80	43.80	45.06	74	1	-28.94	Pk	Horizontal
	2310.00	44.12	2.97	27.80	43.80	31.09	54	1	-22.91	AV	Horizontal
	2310.00	58.90	2.97	27.80	43.80	45.87	74	1	-28.13	Pk	Vertical
	2310.00	42.82	2.97	27.80	43.80	29.79	54	1	-24.21	AV	Vertical
	2390.00	58.05	3.14	27.21	43.80	44.60	74	1	-29.40	Pk	Vertical
	2390.00	43.65	3.14	27.21	43.80	30.20	54	1	-23.80	AV	Vertical
	2390.00	57.00	3.14	27.21	43.80	43.55	74	1	-30.45	Pk	Horizontal
	2390.00	43.59	3.14	27.21	43.80	30.14	54	1	-23.86	AV	Horizontal
	2483.50	59.42	3.58	27.70	44.00	46.70	74	1	-27.30	Pk	Vertical
	2483.50	42.22	3.58	27.70	44.00	29.50	54	1	-24.50	AV	Vertical
	2483.50	59.34	3.58	27.70	44.00	46.62	74	1	-27.38	Pk	Horizontal
	2483.50	43.44	3.58	27.70	44.00	30.72	54	1	-23.28	AV	Horizontal
					1Mbps(GF	SK)-hopping					
	2310.00	54.53	2.97	27.80	43.80	41.50	74.0	00	-32.50	Pk	Vertical
	2310.00	41.15	2.97	27.80	43.80	28.12	54.0	00	-25.88	AV	Vertical
	2310.00	54.89	2.97	27.80	43.80	41.86	74.0	00	-32.14	Pk	Horizontal
	2310.00	42.97	2.97	27.80	43.80	29.94	54.0	00	-24.06	AV	Horizontal
	2390.00	54.38	3.14	27.21	43.80	40.93	74.0	00	-33.07	Pk	Vertical
	2390.00	41.02	3.14	27.21	43.80	27.57	54.0	00	-26.43	AV	Vertical
	2390.00	53.84	3.14	27.21	43.80	40.39	74.0	00	-33.61	Pk	Horizontal
	2390.00	40.00	3.14	27.21	43.80	26.55	54.0	00	-27.45	AV	Horizontal
	2483.50	54.57	3.58	27.70	44.00	41.85	74.0	00	-32.15	Pk	Vertical
	2483.50	42.51	3.58	27.70	44.00	29.79	54.0	00	-24.21	AV	Vertical
	2483.50	50.86	3.58	27.70	44.00	38.14	74.0	00	-35.86	Pk	Horizontal
	2483.50	42.85	3.58	27.70	44.00	30.13	54.0	00	-23.87	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:	UT: SoundExtreme SE26			Mod	Model No.:		GDI-EXSNDXTR01				
Tempe	erature:	20 °C			Rela	tive Humidi	ty:	48%			
Test M	lode:	Mode2/ Mode4			Test	By:		Alle	en Liu		
All the	e modulatio	n modes	have be	een teste	d, and th	e worst res	sult wa	is re	port as l	below:	
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limi	ts	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	′/m)	(dB)	Туре	
	3260	61.25	4.04	29.57	44.70	50.16	74		-23.84	Pk	Vertical
	3260	57.07	4.04	29.57	44.70	45.98	54		-8.02	AV	Vertical
	3260	61.43	4.04	29.57	44.70	50.34	74		-23.66	Pk	Horizontal
	3260	56.64	4.04	29.57	44.70	45.55	54		-8.45	AV	Horizontal
	3332	64.55	4.26	29.87	44.40	54.28	74		-19.72	Pk	Vertical
	3332	54.60	4.26	29.87	44.40	44.33	54		-9.67	AV	Vertical
	3332	63.07	4.26	29.87	44.40	52.80	74		-21.20	Pk	Horizontal
	3332	52.78	4.26	29.87	44.40	42.51	54		-11.49	AV	Horizontal
	17797	43.64	10.99	43.95	43.50	55.08	74		-18.92	Pk	Vertical
	17797	32.69	10.99	43.95	43.50	44.13	54		-9.87	AV	Vertical
	17788	45.45	11.81	43.69	44.60	56.35	74		-17.65	Pk	Horizontal
	17788	32.61	11.81	43.69	44.60	43.51	54		-10.49	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	SoundExtreme SE26	Model No.:	GDI-EXSNDXTR01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	SoundExtreme SE26	Model No.:	GDI-EXSNDXTR01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

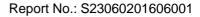
7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	SoundExtreme SE26	Model No.:	GDI-EXSNDXTR01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	SoundExtreme SE26	Model No.:	GDI-EXSNDXTR01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	SoundExtreme SE26	Model No.:	GDI-EXSNDXTR01 48% Allen Liu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

- RBW = 100KHz
- VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	SoundExtreme SE26	Model No.:	GDI-EXSNDXTR01
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

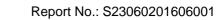
7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 0dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

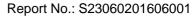

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

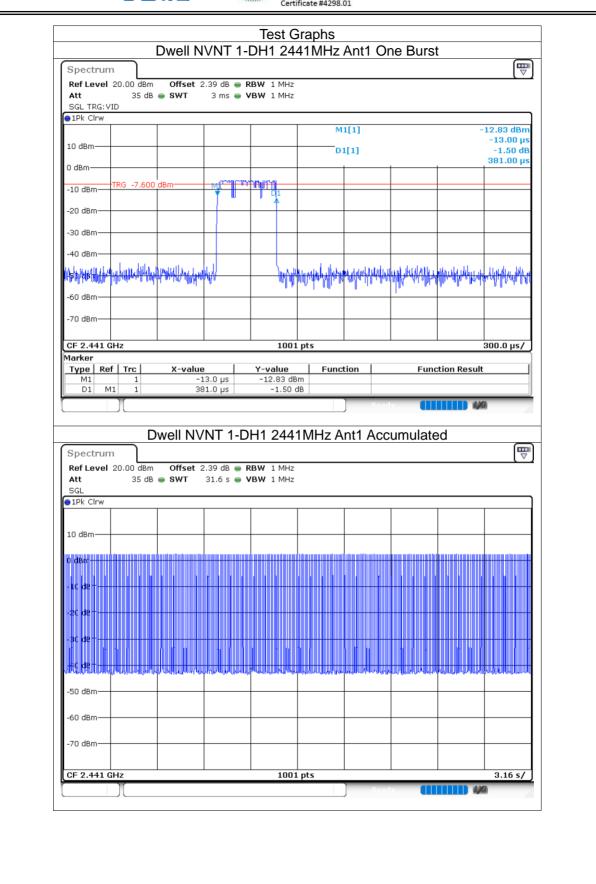
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

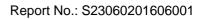
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

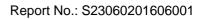
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



8 TEST RESULTS


8.1 DWELL TIME

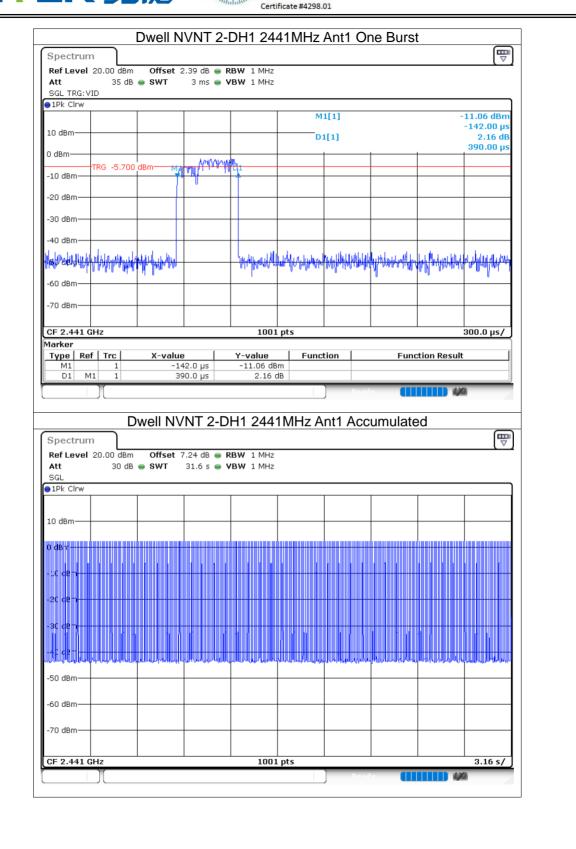

						_			
Condition	Mode	Frequency	Antenna	Pulse	Total	Burst	Period	Limit	Verdict
		(MHz)		Time	Dwell	Count	Time	(ms)	
				(ms)	Time		(ms)		
				. ,	(ms)		. ,		
NVNT	1-DH1	2441	Ant1	0.381	121.539	319	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.64	260.76	159	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.888	306.128	106	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.381	121.539	319	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.64	260.76	159	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.896	306.976	106	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.387	123.453	319	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.635	259.965	159	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	306.128	106	31600	400	Pass



Spectrun		-							
Ref Level Att	20.00 dBm 35 dB	Offset 2 SWT	2.39 dB 👄 R 5 ms 👄 V	RBW 1 MHz /BW 1 MHz					
SGL TRG: V		- 011	J 115 🖶 🖣						
1Pk Clrw					-				
					M	1[1]			-14.53 dBm -15.00 μs
10 dBm					Di	l[1]			7.48 dB
) dBm							1		1.64000 ms
10 dBm	TRG -7.600	dBm	Maria Maria	Man Marine	R1				
20 dBm									
-30 dBm									
40 dBm									
	1 Mathematic				Larson Int.	udhdisaa addaa	Handalahan Handalaha	en ferre Mart Mar	shoutheddatas at lea
ארף ה ואוסי מכי	uh w . a.th. that				JA HAL	Աս- տուստվու	a	hall vite d. Ithings	a - n muller and
60 dBm									
-70 dBm									
CF 2.441 (GHz			1001	pts				500.0 μs/
larker Type Re	f Trc	X-value		Y-value	Fund	tion	Fund	ction Resul	t l
M1 D1 M	1	-1	l5.0 μs .64 ms	-14.53 dB 7.48 (m				
DI N		1		7.40 (l Door			×4
	Tr								
						, Keat			
		well NV	ח-1 NT	H3 244	1MH7 A	nt1 Acc	umulate	ed	
Spooteur		well NV	′NT 1-D	H3 244	1MHz A	nt1 Acc	cumulate	ed	
	n				1MHz A	nt1 Acc	cumulate	ed	
Ref Level Att	n 20.00 dBm		2.39 dB 👄 R		1MHz A	nt1 Acc	cumulate	ed	
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc	cumulate	ed	
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc		ed	
Spectrun Ref Level Att SGL)1Pk Clrw 10 dBm) dBm 	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 1Pk Clrw 10 dBm	n 20.00 dBm	Offset 2	2.39 dB 👄 R	RBW 1 MHz	1MHz A	nt1 Acc			
Ref Level Att SGL 91Pk Clrw 10 dBm 10 dBm 21 dBm 22 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz	1MHz A	nt1 Acc			
Ref Level Att SGL >1Pk Clrw 0 dBm 0 dBm 12 dBm 22 dBm	n 20.00 dBm	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz	1MHz A	nt1 Acc		ed	
Ref Level Att SGL 9 IPk Cirw 10 dBm 10 dBm 21 d5m 22 d5m 32 d5m	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL SGL 1PK CIrw IO dBm IO dBm 20 dBm 21 dBm 22 dBm 32 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz					
Ref Level Att SGL SGL 1PK CIrw IO dBm IO dBm 20 dBm 21 dBm 22 dBm 32 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL SGL 1PK CITW 10 dBm 110 dBm 22 dBm 32 dBm 42 dBm 50 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL SGL 1PK CIrw 10 dBm 10 dBm 21 dBm 22 dBm 32 dBm 45 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL SGL 1P K CIrw 10 dBm 10 dBm 12 dBm 22 dBm 32 dBm 42 dBm 50 dBm 60 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL SGL 1P K CIrw 10 dBm 10 dBm 12 dBm 22 dBm 32 dBm 42 dBm 50 dBm 60 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL SGL 1PK CINW 10 dBm 112 dBm 22 dBm 32 dBm 50 dBm 60 dBm 70 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					
Ref Level Att SGL SGL 1PK CITW 10 dBm 110 dBm 22 dBm 32 dBm 42 dBm 50 dBm	n 20.00 dBm 35 dB	Offset 2	2.39 dB • R 31.6 s • V	RBW 1 MHz /BW 1 MHz					3.16 s/

ilac-MR/

ACCREDITED Certificate #4298.01


	trum									
Ref Lo Att	evel 2	0.00 dBm	Offset 2 SWT		RBW 1 MHz					
	RG: VIE		- 3WI	0 IIIS						
∍1Pk C	lrw		1							
						M1	[1]			-11.98 dBm -16.00 μs
10 dBn						D1	[1]			6.07 dB
0 dBm·					D1			1	1	2.88800 ms
-10 dB	mT	RG -7.500	dBm							
		T '								
-20 dB	m									
-30 dB	m									
-40 dB	m									
	die la	4				-	n sok Analishin	Jubilet Aleman Han	and the set of the set	allow Marthall
-⊅₩dB						R	- OU AN AN ANA ANA	lan a valo av ar		
-60 dB	m-+-									
-70 dB	m									
	41 GF	Iz			100	1 pts				800.0 µs/
1arkeı Type	Ref	Trc	X-value		Y-value	Functi	ion	Fun	ction Resul	lt
M1 D1		1		16.0 µs 388 ms	-11.98 d 6.07					
01	INIT		2.1	500 1115	0.07	ub				
Spec	trum		well N∨	'NT 1-	DH5 244	1MHz Ar	nt1 Acc	cumulate	ed	
Ref L		0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz		nt1 Acc	cumulate	ed	
Ref Lo Att SGL	evel 2	0.00 dBm		2.39 dB 😑			nt1 Acc	cumulate	ed	
Ref Lo Att SGL	evel 2	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz		nt1 Acc		ed	
Ref Lo Att SGL	evel 2 Cirw	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz		nt1 Acc		ed	
Ref Lo Att SGL	evel 2 Cirw	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz		nt1 Acc		ed	
Att	evel 2 Cirw	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz		ht1 Acc		ed	
Ref Lo Att SGL 1Pk C	evel 2 Cirw	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz		nt1 Acc		ed	
Ref Lo Att SGL 1Pk C	evel 2	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz				ed	
Ref Lo Att SGL 1Pk C 10 dBm	evel 2	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz		ht1 Acc			
Ref Lo Att SGL 1Pk C 10 dBm	evel 2	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz					
Ref Lo Att SGL 1Pk C 10 dBm	evel 2	0.00 dBm	Offset 2	2.39 dB 😑	RBW 1 MHz					
Ref Lo Att SGL 1Pk C 10 dBm -10 dB -20 dB	2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
Ref Lo Att SGL 1Pk C 10 dBm -10 dB -20 dB	2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz					
Ref Lo Att SGL 1Pk C 10 dBm -10 dB -20 dB	irw	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
Ref Ld Att SGL ■ 1Pk C 10 dBn 10 dBn 10 dBn 10 dBn 10 dB 40 dB -50 dB	n n n n n n n n n n n n n n n n n n n	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
Ref Ld Att SGL 10 dBm 10 dBm	n n n n n n n n n n n n n n n n n n n	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
Ref Lt Att SGL ∋ 1Pk C 10 dBn 10 dBn 10 dB 10 d	ilrw	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
Ref Lt Att SGL ∋ 1Pk C 10 dBn 10 dBn 10 dB 10 d	ilrw	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz					
Ref Ld SGL SGL 10 dBn 10	n m m m m m m m m m m m m m m m m m m m	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz VBW 1 MHz					
Ref Ld SGL SGL 10 dBn 10	ilrw	0.00 dBm 35 dB	Offset 2	2.39 dB = 31.6 s =	RBW 1 MHz VBW 1 MHz VBW 1 MHz					3.16 s/

ilac-MR/

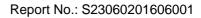
ACCREDITED

AC-MR

ACCREDITED

●1Pk Clrw			M	[1]			-9.65 dBm
10 dBm			D1	[1]			-140.00 µs 2.80 dB
0 dBm	and an address of the second sec	n a la facalata tita a com				1	.64000 ms
-10 dBm	o dBm	adulan atalaya	1				
-20 dBm							
-30 dBm							
-40 dBm							
			مانيدانا منكطاه	under	And	Malexander	изалимизна
			Ատետի մի դեր	իտ վեստերո	and the difference	kode-olek dere i	a an all a ma fair.
-60 dBm							
-70 dBm							
CF 2.441 GHz Marker		1001	pts				500.0 µs/
Type Ref Trc	X-value	Y-value -9.65 dB	Funct	ion	Fund	tion Result	
M1 1 D1 M1 1	-140.0 μs 1.64 ms	-9.65 dB 2.80 d					
				Read	y a		1
	Dwell NVNT 2	2-DH3 244	1MHz A	nt1 Acc	umulate	d	
Spectrum							Ē
Ref Level 20.00 dBr Att 35 dl SGL 91Pk Clrw		 RBW 1 MHz VBW 1 MHz 					
10 dBm							
0 58m+							
-10 d6m							
-20 dBm							
-35 d5m							
	an disa da fatan tahun an ana ang	Un united and an and a second	ALAN JANA M	Alana ku likina k	a da babalan		
145.05m			roundunu	hliveli anna anna anna anna anna anna anna an	annan ann ann an	nimente	
145.05m							
կ։†Յ.։։(5 0 dBm							
-60 dBm							
-50 dBm				Read			3.16 s/

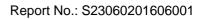
SGL TRG: V 1Pk Clrw	10															
									M1[1]						10.32 dE -144.00	
10 dBm						1			D1[1]						3.48 2.89600 r	dB
0 dBm	TRG -5.7	JO dBr	" 41.644w0 Tr	may	when the state	www.pyp	1/1-10/1									
-10 dBm—	1			Ť		+	Ť									-
-20 dBm				+		+										-
-30 dBm—		-		+		+										-
-40 dBm		_		+		+										-
NAPOLAR HICHA	Y	_		-		+	W,	<u>Marthalla</u>	hpinukity)	(h,hihay)()	<u>Yewery</u> e	ad (Mar	<mark>Applinter</mark> d	<u>Apple an</u>	Hillinkhuzeh	(Hileles
-60 dBm—		_		+		+			_							_
-70 dBm—				_		_										-
CF 2.441 (GHz						100	1 pts							800.0 µs	
Marker Type Re			X-val		1	U			unction	1		F	ction I			\exists
M1	1 11 1		-	ue 144. 2.896			value 10.32 d 3.48	iBm	unction			Fun	ction	kesun		
	11 1															
								ab I		Rea	ly				9	
										Rea	17			. 48	0	
Spectrur	n			VN	IT 2-I		5 244	1MHz	 z Ant1	Rea I Acc	iv cumi	ulate	ed		1	
Spectrur Ref Level Att SGL ● 1Pk Clrw	n 20.00 dB	m		VN : 2.3		RBW	5 24 4	11MHz 2	z Ant1	Pool	tv sumi	ulate	эd		0 (1	
Ref Level Att SGL	n 20.00 dB	m	Offset	VN : 2.3	IT 2-I 9 dB •	RBW	5 24 4	11MHz 2	z Ant1	Pow Acc		ulate	ed		۵ ۱ ۱	
Ref Level Att SGL	n 20.00 dB	m	Offset	VN : 2.3	IT 2-I 9 dB •	RBW	5 24 4	11MHz 2	z Ant1	Pear Acc			ed		[t	
Ref Level Att SGL 1Pk Clrw	n 20.00 dB	m	Offset	VN : 2.3	IT 2-I 9 dB •	RBW	5 24 4	11MHz 2	z Ant1				ed		۵ ۱ ۱	
Ref Level Att SGL 1Pk Clrw	n 20.00 dB	m	Offset	VN : 2.3	IT 2-I 9 dB •	RBW	5 24 4	11MHz 2	z Ant1				ed		((
Ref Level Att SGL 1Pk Clrw	n 20.00 dB	m	Offset	VN : 2.3	IT 2-I 9 dB •	RBW	5 24 4	11MHz 2					ed			
Ref Level Att SGL 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	n 20.00 dB 35 c	m	Offset	VN : 2.3	IT 2-I 9 dB •	RBW	5 24 4	11MHz 2								
Ref Level Att SGL 1Pk Clrw	n 20.00 dB 35 c	m	Offset	VN : 2.3	IT 2-I 9 dB •	RBW	5 24 4	11MHz 2								
Ref Level Att SGL ● 1Pk Clrw 10 dBm	n		Offset SWT	VN : 2.3 3:	9 dB • 1.6 s •	RBW	1 MH									
Ref Level Att SGL ● 1Pk Clrw 10 dBm +10 dBm +20 dBm +20 dBm +20 dBm +40 tBm	n		Offset SWT	VN : 2.3 3:	9 dB • 1.6 s •	RBW	1 MH									
Ref Level Att SGL 10 dBm 10	n		Offset SWT	VN : 2.3 3:	9 dB • 1.6 s •	RBW	1 MH									
Ref Level Att SGL ● 1Pk Clrw 10 dBm +10 dBm +20 dBm +20 dBm +20 dBm +40 tBm	n		Offset SWT	VN : 2.3 3:	9 dB • 1.6 s •	RBW	1 MH									
Ref Level Att SGL 10 dBm 10	n		Offset SWT	VN : 2.3 3:	9 dB • 1.6 s •	RBW	1 MH									
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	n 20.00 dB 35 c		Offset SWT	VN : 2.3 3:	9 dB • 1.6 s •	RBW	1 MH									
Ref Level Att SGL 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -50 dBm -60 dBm	n 20.00 dB 35 c		Offset SWT	VN : 2.3 3:	9 dB • 1.6 s •	RBW	1 MH							yini yi	3.16 s	


					м	1[1]			-9.82 dBm
10 dBm						1[1]			-142.00 μs 0.44 dB
0 dBm			A des de sel se						387.00 µs
-10 dBm	TRG -5.000	dBm M	2 Marthall	01 *					
-20 dBm									
-30 dBm									
-40 dBm									
lizionine ^e litionia	ullu alay alay	Although the state of the state		WHELE		Martin and a second of the second	hand here we have the second	W. HAMAR AND I	worked the pro-
-60 dBm			-	- 1 · ·		սլ։ պ			0
-70 dBm									
CF 2.441 0	Hz			1001	pts				300.0 μs/
Marker Type Re		X-valu	e I	Y-value	Func	tion	Func	tion Result	
M1 D1 M	1	-1	.42.0 μs 187.0 μs	-9.82 dB 0.44 d	m				
][]					Read	· .		
	D	well N\	/NT 3-D	H1 2441	MHz A	nt1 Acc	umulate	d	
		-						-	□
Spectrun	n]								
	20.00 dBm		2.39 dB 👄 🛛						∇
Ref Level Att SGL	20.00 dBm		2.39 dB 👄 R 31.6 s 👄 V						
Ref Level Att	20.00 dBm								
Ref Level Att SGL	20.00 dBm								
Ref Level Att SGL 1Pk Clrw	20.00 dBm								
Ref Level Att SGL IPk Clrw 10 dBm	20.00 dBm								
Ref Level Att SGL IPk Clrw 10 dBm	20.00 dBm								
Ref Level Att SGL IPk Clrw 10 dBm	20.00 dBm								
Ref Level Att SGL 1Pk Clrw 10 dBm	20.00 dBm								
Ref Level Att SGL ● 1Pk Clrw 10 dBm	20.00 dBm 35 dB	• SWT	31.6 s • •	28W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm	20.00 dBm 35 dB	• SWT		28W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - LC dB r - 2C dB r - 3C dB r - 50 dBm	20.00 dBm 35 dB	• SWT	31.6 s • •	28W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - 10 dBm - 10 dBm - 20 dB r - 30 dB r - 50 dBm - 60 dBm	20.00 dBm 35 dB	• SWT	31.6 s • •	28W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - LC dB r - 2C dB r - 3C dB r - 50 dBm	20.00 dBm 35 dB	• SWT	31.6 s • •	28W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - 1C dBm - 2C dBm - 3C dBm - 50 dBm - 60 dBm	20.00 dBm 35 dB	• SWT	31.6 s • •	28W 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - 10 dBm - 10 dBm - 20 dBr - 30 dBr - 50 dBm - 60 dBm - 70 dBm	20.00 dBm 35 dB	• SWT	31.6 s • •	'BW 1 MHz					3.16 s/

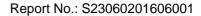
					MI	L[1]			-9.58 dBm
10 dBm						.[1]			-140.00 µs 4.53 dB
0 dBm									1.63500 ms
-10 dBm—	TRG -4171	0 dBm	outer all and	astro House and a sub-	4 5				
-20 dBm—									
-30 dBm—									
-40 dBm—									
-50 dBm ////////////////////////////////////	hytypHann)				Kuryyy Handridd yn yn	Nontunfutiofith	harden	haddadada	rt (thatal) for any
-70 dBm—									
CF 2.441 Marker	GHz			1001	l pts				500.0 μs/
	(] = 1				Funct	ion	Fund	tion Resul	+ 1
Type Re	et Trc	X-val		Y-value					<u> </u>
M1	9 f Trc 1 41 1	-	ue 140.0 µs 1.635 ms	<u>Y-value</u> -9.58 dB 4.53 (Sm				
M1 D1 M Spectrur Ref Leve	1 41 1 m	Dwell N Bm Offse	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read	umulate	ed	4 ₩
M1 D1 M Spectrum Ref Leve Att SGL	1 41 1 m	- Dwell N	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 de 4.53 d	1MHz Ai	Read	umulate	ed	9
M1 D1 M Spectrur Ref Leve	1 41 1 m	Dwell N Bm Offse	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read	umulate	ed	9
M1 D1 M Spectrum Ref Leve Att SGL	1 41 1 m	Dwell N Bm Offse	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read		ed	9
M1 D1 M Ref Leve Att SGL 1Pk Cirw	1 41 1 m	Dwell N Bm Offse	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read		ed	9
M1 D1 M Ref Leve Att SGL 1Pk Cirw	1 41 1 m	Dwell N Bm Offse	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read		ed	9
M1 D1 M Ref Leve Att SGL 1Pk Cirw	1 41 1 m	Dwell N Bm Offse	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read		ed	9
M1 D1 M Ref Leve Att SGL 1Pk Cirw	1 41 1 m	Dwell N Bm Offse dB • SWT	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read		ed	9
M1 D1 M Ref Leve Att SGL 1Pk Cirw	1 41 1 m	Dwell N Bm Offse	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read		ed	9
M1 D1 M Spectrun Ref Leve Att SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm	1 41 1 m	Dwell N Bm Offse dB • SWT	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read			9
M1 D1 M Spectrun Ref Leve Att SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 41 1 m	Dwell N Bm Offse dB • SWT	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read			9
M1 D1 M Spectrum Ref Leve Att SGL 1Pk Clrw 10 dBm	1 41 1 m	Dwell N Bm Offse dB • SWT	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read			9
M1 D1 P Spectrum Ref Leve Att SGL 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	1 41 1 m	Dwell N Bm Offse dB • SWT	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read			9
M1 D1 P Spectrum Ref Leve Att SGL 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 41 1 m	Dwell N Bm Offse dB • SWT	140.0 µs 1.635 ms VNT 3 t 2.39 dB	-9.58 dE 4.53 d -DH3 244	1MHz Ai	Read			9

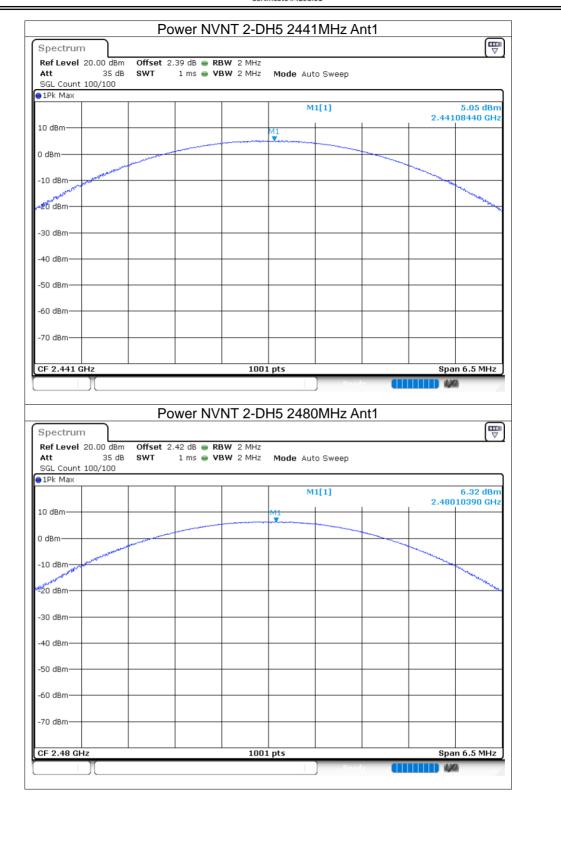
●1Pk Clrw									
10.15					м	1[1]			-9.67 dBm -144.00 µs
10 dBm					D	1[1]		2	2.45 dB 2.88800 ms
0 dBm	G -5.100 (dBm	milling warman	Marin marging 1					
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-9848844040				lited	henridgedened	hole-handelprog	allor supported	UMAN Marine	Marphala
-60 dBm									
-70 dBm									
, o ubili									
CF 2.441 GH: Marker	z			1001	pts				800.0 µs/
Type Ref		X-valu		Y-value	Func	tion	Fund	tion Result	
M1 D1 M1	1		44.0 µs 888 ms	-9.67 dB 2.45 (
						Read	y M		
				H5 244		n+1 / 00	umuloto	d	
C a atuma				115 244			unnulate	,u	
Spectrum Ref Level 20).00 dBm	Offset	2.39 dB 👄 I	RBW 1 MHz					(▽)
Att		● SWT		BW 1 MHz					
SGL									
SGL									
SGL									
SGL 1Pk Clrw									
SGL 1Pk Clrw 10 dBm 0 dBm									
SGL 1Pk Clrw 10 dBm									
SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm									
SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm									
SGL									
SGL 1Pk Clrw 10 dBm -10 dBm -10 dBm -20 dBm									
SGL									
SGL									
SGL									
SGL 1Pk Clrw 10 dBm 10 dBm									
SGL 1Pk Clrw 10 dBm 10 dBm									
SGL ● 1Pk Clrw 10 dBm + 10 dBm + 10 dBm + 20 dBm + 20 dBm + 30 dBm + 50 dBm - 60 dBm - 70 dBm									3.16 s/

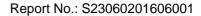
ACCREDITED Certificate #4298.01

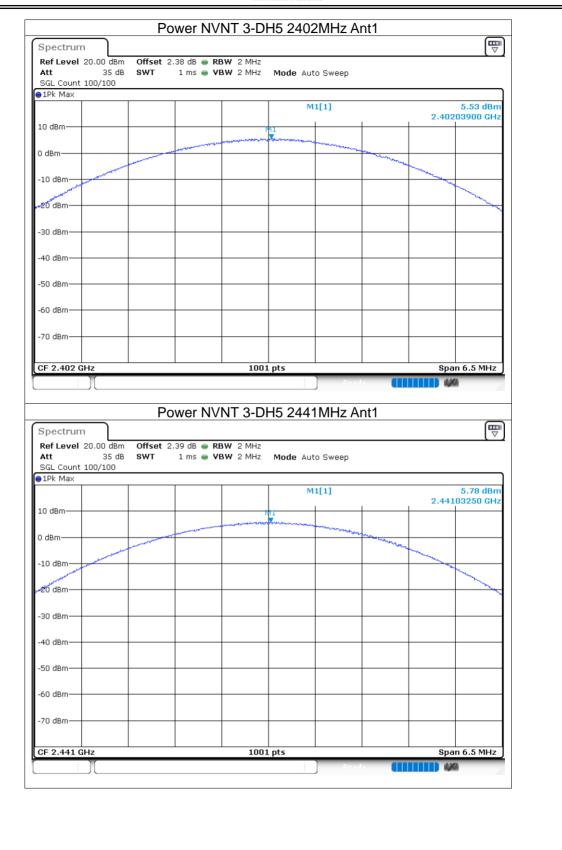

8.2 MAXIMUM CONDUCTED OUTPUT POWER

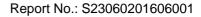
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	2.21	21	Pass
NVNT	1-DH5	2441	Ant1	2.58	21	Pass
NVNT	1-DH5	2480	Ant1	3.9	21	Pass
NVNT	2-DH5	2402	Ant1	4.76	21	Pass
NVNT	2-DH5	2441	Ant1	5.05	21	Pass
NVNT	2-DH5	2480	Ant1	6.32	21	Pass
NVNT	3-DH5	2402	Ant1	5.53	21	Pass
NVNT	3-DH5	2441	Ant1	5.78	21	Pass
NVNT	3-DH5	2480	Ant1	7.03	21	Pass

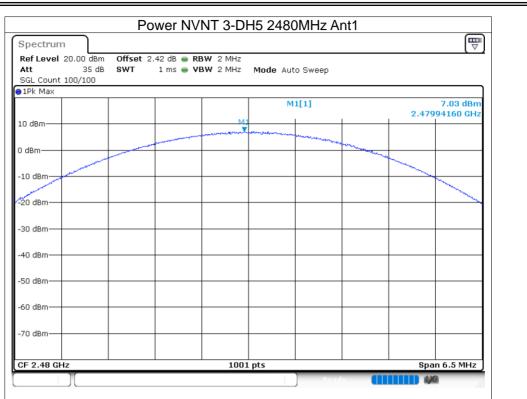

Spectrum						
Ref Level 20.00 dBm Att 35 dB		8 dB 👄 RBW 2 MHz 1 ms 👄 VBW 2 MHz	Mode Auto Sweep			
SGL Count 100/100			·····			
1Pk Max						0.01.10
			M1[1]		2.401	2.21 dBm 87010 GHz
10 dBm						
		M1				
0 dBm					_	
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm	++			+		
-50 dBm						
	Ι Τ					
-60 dBm	++			+		
-70 dBm						
CE 2 402 CHz		100	1 nts		Snai	n 5 0 MHz
Spectrum			^{1 pts} H5 2441MHz A	nt1	Spar	n 5.0 MHz)
Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz	Rea	dv ())) Int1	Spar	
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz	H5 2441MHz A	tr Contraction	Spar	
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz	H5 2441MHz A	tre anti		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	dv ())))		(The second seco
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 10 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	H5 2441MHz A Mode Auto Sweep	tv CIIII		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 10 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	* • • • • • • • • • • • • • • • • • • •		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	int1		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	4v ()))		
Att 35 dB	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	** •••••••••••••••••••••••••••••••••••		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	Av ()))		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	int1		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	Av () () () () () () () () () () () () ()		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	** •••••••••••••••••••••••••••••••••••		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	Av () () () () () () () () () () () () ()		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	Av () () () () () () () () () () () () ()		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	Av () () () () () () () () () () () () ()		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 2.3	ver NVNT 1-D 9 dB • RBW 2 MHz 1 ms • VBW 2 MHz	Mode Auto Sweep	Av () () () () () () () () () () () () ()		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 2.3	Ver NVNT 1-D	Mode Auto Sweep	Int1	2.440	

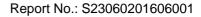



Att 35 dB SGL Count 100/100	SWT	1 ms 🔵 ۷	BW 2 MHz	Mode Aut	to Sweep			
1Pk Max				м	1[1]			3.90 dBm
10 dBm						1	2.48	015980 GHz
				M1				
0 dBm								
-10 dBm								
00 db								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								┼───┨│
-70 dBm								
			1001	. pts			Sp	an 5.0 MHz
CF 2.48 GHz								MA
Spectrum Ref Level 20.00 dBm	Offset 2	.38 dB • RE 1 ms • VI				nt1		
SGL Count 100/100	Offset 2	.38 dB 👄 RE	BW 2 MHz			nt1		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2	.38 dB 👄 RE	BW 2 MHz	Mode Aut		nt1		4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 91Pk Max 10 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 91Pk Max 10 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PIPk Max 10 dBm -10 dBm -10 dBm -10 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PIPk Max 10 dBm -10 dBm -10 dBm -10 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max I0 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -50 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max I0 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1	2.40	4.76 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max I0 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1		4.76 dBm 206490 GHz
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Offset 2	.38 dB 👄 RE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep	nt1		4.76 dBm 206490 GHz

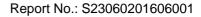


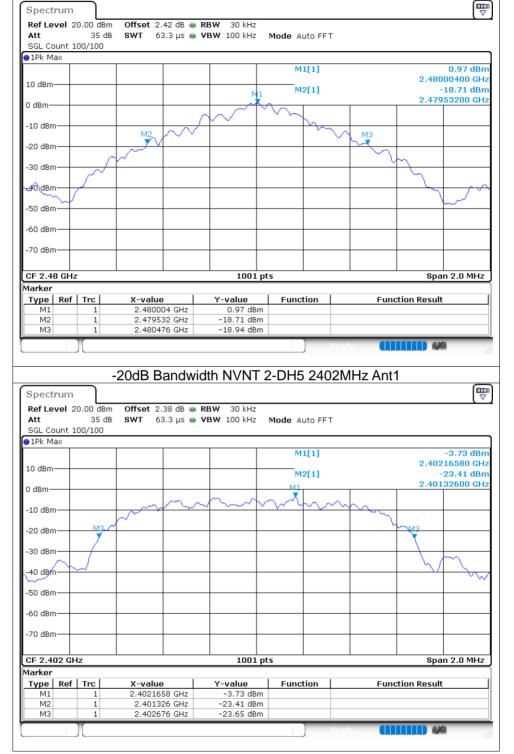


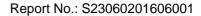


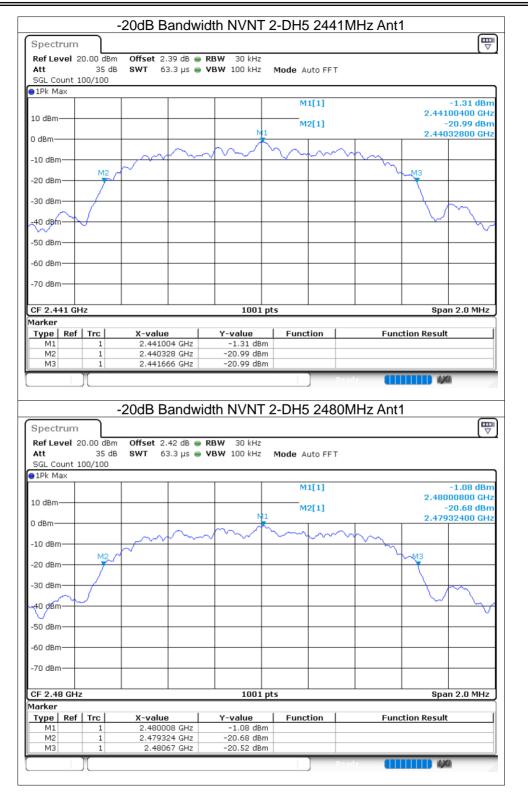


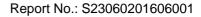
8.3 -20DB BANDWIDTH

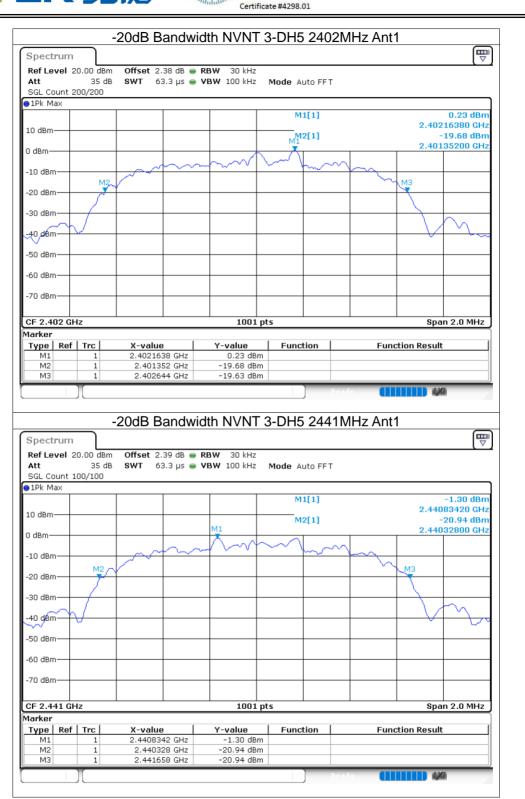

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.95	Pass
NVNT	1-DH5	2441	Ant1	0.956	Pass
NVNT	1-DH5	2480	Ant1	0.944	Pass
NVNT	2-DH5	2402	Ant1	1.35	Pass
NVNT	2-DH5	2441	Ant1	1.338	Pass
NVNT	2-DH5	2480	Ant1	1.346	Pass
NVNT	3-DH5	2402	Ant1	1.292	Pass
NVNT	3-DH5	2441	Ant1	1.33	Pass
NVNT	3-DH5	2480	Ant1	1.32	Pass





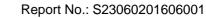






ac-M

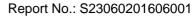
ACCREDITED



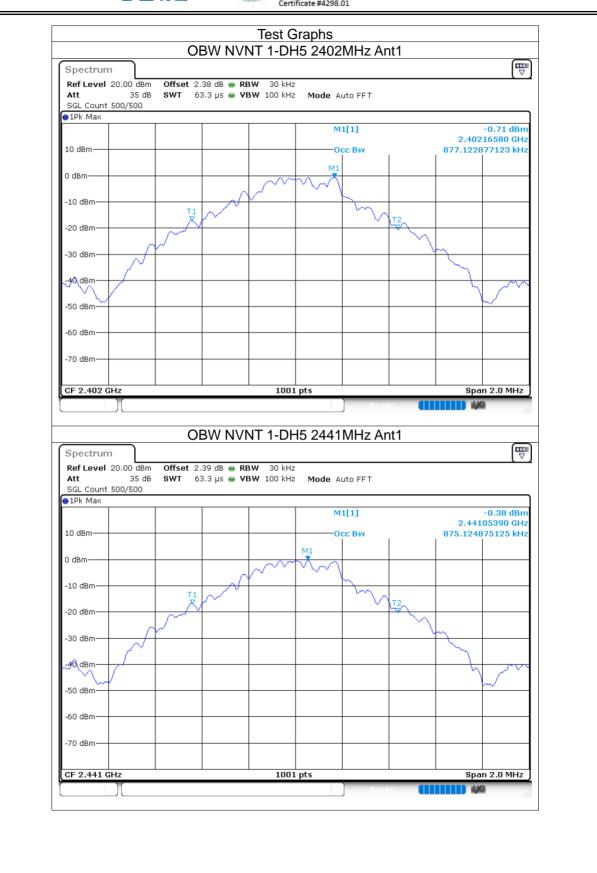
ac-ME

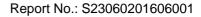
ACCREDITED

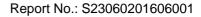
Certificate #4298.01

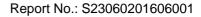

	-20	dB E	Bandwi	dth NVNT	3-DH5 2	2480M	Hz Ant	:1	_
Spectrum	ר								
Ref Level 20.0	0 dBm Of	ffset 2	.42 dB 😑	RBW 30 kHz					`
Att	35 dB 🛛 🛚 SV	WT 6	3.3 µs 🧉	VBW 100 kHz	Mode Auto	FFT			
SGL Count 100,	/100								
)1Pk Max									
					M1[1	L]			0.82 dBm
10 dBm									000200 GHz
				M1	M2[1	1			-19.00 dBm
) dBm				_ *				2.479	933200 GHz
		\sim	ha		m	\sim	~ ~		
-10 dBm		\sim				-	\sim \sim \sim		
	M2							™3	
-20 dBm			<u> </u>					1	
-30 dBm									h.
man /								$ \qquad \qquad$	$1 \sim 1$
40 d8m								Ť	
50 dBm									
Jo ubiii									
60 dBm									
70 dBm									
F 2.48 GHz				1001	ate			Pn:	n 2.0 MHz
larker				1001				эрс	III 2.0 MIN2
	-	X-valu	n	Y-value	Functio	n	Eur	ction Resul	. 1
Type Ref T M1	1 1		IO2 GHz	0.82 dBm			Fun	ction Resul	L
M2	1		132 GHZ	-19.00 dBm					
M3	1		52 GHz	-19.11 dBm					
									6 4

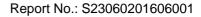
ACCREDITED Certificate #4298.01

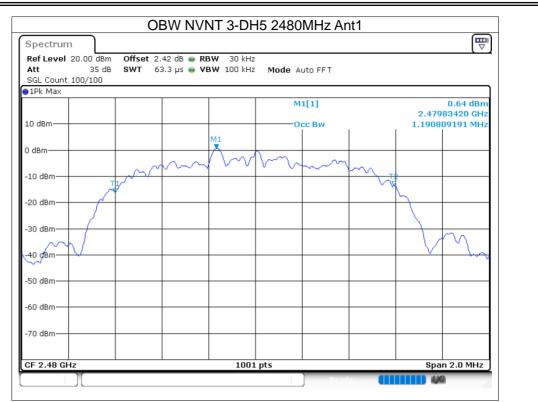

8.4 OCCUPIED CHANNEL BANDWIDTH

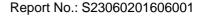

					00001120
Hz)	99% OBW (MHz	Antenna	Frequency (MHz)	Mode	Condition
	0.877	Ant1	2402	1-DH5	NVNT
	0.875	Ant1	2441	1-DH5	NVNT
	0.869	Ant1	2480	1-DH5	NVNT
	1.209	Ant1	2402	2-DH5	NVNT
	1.201	Ant1	2441	2-DH5	NVNT
	1.211	Ant1	2480	2-DH5	NVNT
	1.195	Ant1	2402	3-DH5	NVNT
	1.197	Ant1	2441	3-DH5	NVNT
	1.191	Ant1	2480	3-DH5	NVNT
-	1.209 1.201 1.211 1.195 1.197	Ant1 Ant1 Ant1 Ant1 Ant1 Ant1	2402 2441 2480 2402 2441	2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	NVNT NVNT NVNT NVNT NVNT









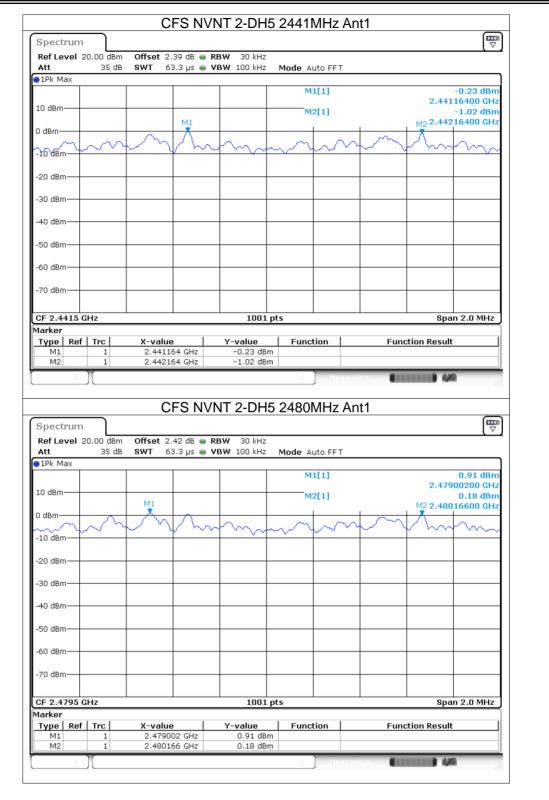


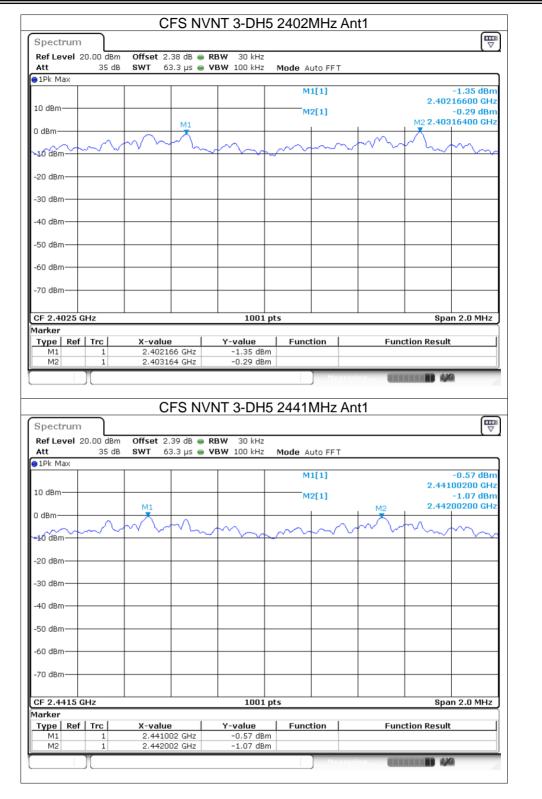
8.5 CARRIER FREQUENCIES SEPARATION

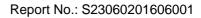
0.0			QUENCIL					-
	Condition	Mode	Antenna	Hopping	Hopping	HFS	Limit	Verdict
				Freq1 (MHz)	Freq2 (MHz)	(MHz)	(MHz)	
	NVNT	1-DH5	Ant1	2401.978	2403.016	1.038	0.633	Pass
	NVNT	1-DH5	Ant1	2441.002	2442.164	1.162	0.637	Pass
	NVNT	1-DH5	Ant1	2479.056	2479.978	0.922	0.629	Pass
	NVNT	2-DH5	Ant1	2401.837	2402.818	0.981	0.9	Pass
	NVNT	2-DH5	Ant1	2441.164	2442.164	1	0.892	Pass
	NVNT	2-DH5	Ant1	2479.002	2480.166	1.164	0.897	Pass
	NVNT	3-DH5	Ant1	2402.166	2403.164	0.998	0.861	Pass
	NVNT	3-DH5	Ant1	2441.002	2442.002	1	0.887	Pass
	NVNT	3-DH5	Ant1	2479.164	2480.164	1	0.88	Pass

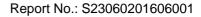
ACCREDITED Certificate #4298.01

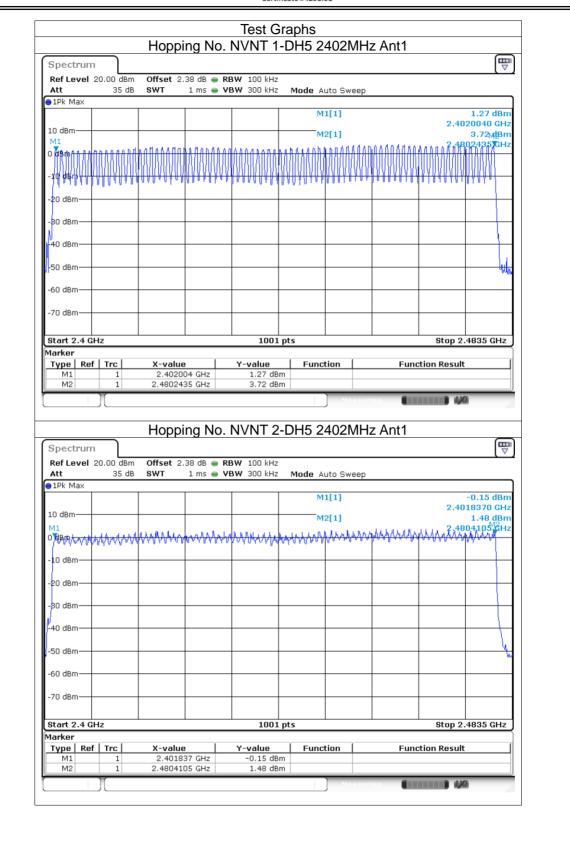
ilac-MR








Spectrum						□
RefLevel 20.00 dBn Att 35 dB	_					
Att 35 de 1Pk Max	в SWT 63.3 µs 👄	VBW 100 kHz	Mode Auto FFT			
			M1[1]			1.60 dBm
					2.479	16400 GHz
10 dBm			M2[1]		M2	2.28 dBm
	M1 X				2.480	16400 GHz
	mm					
10 dBm		-to m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~	\sim
-10 ubiii						
20 dBm						
20 00.00						
-30 dBm						
40 dBm				+ +		
-50 dBm	+			++		
-60 dBm				+ +		
-70 dBm						
CF 2.4795 GHz		1001 pt:	5		Spa	n 2.0 MHz
larker						
Type Ref Trc	X-value	Y-value	Function	Funct	ion Result	
M1 1 M2 1	2.479164 GHz 2.480164 GHz	1.60 dBm 2.28 dBm				


8.6 NUMBER OF HOPPING CHANNEL

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

pectrum	dBm Offset 2.38 dB 👄	PRW 100 kHz				∀
	_		Mode Auto Swee	en .		
LPk Max				·r		
			M1[1]		-3.05 dB	m
					2.4014195 G	
) dBm			M2[1]		0.54 dB	
	MARA ANA ANA ANA ANA ANA ANA ANA ANA ANA		in a la catalacada	المحالية المحالية المحالية	14 1.12 4804940 C	Hz
ᠹᠯᡦᢦᠻᡘᢥᠾ᠊ᡰᢛᡧᡒᡰ <mark>ᢛᡃ᠋ᠿᢥᢢᡀᢛᠰ</mark>	ᢂᡁᡩ᠒᠋ᡎᡌ᠋ᡎ᠖ᡆᡐᡝ᠃᠋ᡌᡀ᠃ᡰ᠉ᢉ ᢦ	Marthalle	᠕ᢔᢦᡐ᠋᠋ᡎᢑᡘᢦᡀᢦᠬᢛᢦ᠊ᡧᠬ	n d de la la constanta de 	al and the second of the secon	
0 dBm						
J dBm						
0 dBm						
0 dBm						
0 dBm						
0 dBm						
o doni						Mun
0 dBm						
0 dBm						
art 2.4 GHz		1001 pt	5		Stop 2.4835 GH	z l
rker						
ype Ref Trc	X-value	Y-value	Function	Functi	ion Result	
M1 1 M2 1		-3.05 dBm 0.54 dBm				

8.7 BAND EDGE

0.1		JUCL						
	Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	1-DH5	2402	Ant1	No-Hopping	-51.87	-20	Pass
	NVNT	1-DH5	2480	Ant1	No-Hopping	-53.14	-20	Pass
	NVNT	2-DH5	2402	Ant1	No-Hopping	-52.05	-20	Pass
	NVNT	2-DH5	2480	Ant1	No-Hopping	-56.11	-20	Pass
	NVNT	3-DH5	2402	Ant1	No-Hopping	-52.28	-20	Pass
	NVNT	3-DH5	2480	Ant1	No-Hopping	-60.44	-20	Pass

			i ⊏uge l	NVINI 1	-บที่อ 240	2MHz Ant1	1-0/1	loppi	iy ker	
Spect		Ļ								
Ref Le Att	vel 2	0.00 dB: 35 c			RBW 100 kHz VBW 300 kHz	Mode Auto FF	т			
SGL C		.00/100				, tene hato fi	-			
⊜1Pk M	ax									1.40.40
						M1[1]			2.402	1.42 dBm 202400 GHz
10 dBm	+			+						
0 40					M1	~				
0 dBm-										
-10 dBr	<u>ا</u> ر		_			\rightarrow				
						2				
-20 dBr	+י			+	+	\rightarrow				
-30 dBr					1					
-30 aBr	'									
-40 dBr	∩				Y	A				
				/		[\				
-50 dBr	<u>ו</u> ן-ו	~		+	++		wh			
-60 dBr	\sim	~~~	m					••••	m	
-00 080	'									
-70 dBr	-			_						
CF 2.4)[dge NV	NT 1-D	1001 H5 2402M	Hz Ant1 N	Peady o-Hop	Coping l	W	
Spect	Ba						Ready o-Hop	oping l	W	a
Spect Ref Le Att	Ba rum vel 2	ind E	m Offset	2.38 dB 🖷	H5 2402M	Hz Ant1 N		oping l	W	on
Spect Ref Le Att SGL Co	Ba rum vel 2		m Offset	2.38 dB 🖷	H5 2402M	Hz Ant1 N		oping l	W	on
Att	Ba rum vel 2	ind E	m Offset	2.38 dB 🖷	H5 2402M	Hz Ant1 N		oping l	Emissic	2.12 dBm
Spect Ref Le Att SGL Co	Ba rum vel 2 ount 5 ax	ind E	m Offset	2.38 dB 🖷	H5 2402M	Hz Ant1 No Mode Auto F		an oping l	Emissic 2.402	n (The second se
Spect Ref Le Att SGL Co 1Pk M	Ba rum vel 2 ount 5 ax	ind E	m Offset	2.38 dB 🖷	H5 2402M	Hz Ant1 No Mode Auto F		oping I	Emissic	2.12 dBm 215000 GHz
Spect Ref Le Att SGL Co 1Pk M 10 dBm 0 dBm-	Ba rum vel 2 ount 5 ax	ind E	m Offset	2.38 dB 🖷	H5 2402M	Hz Ant1 No Mode Auto F		oping l	Emissic	2.12 dBm 2.12 dBm 252.92¥tBm
Spect Ref Le SGL Co 1Pk M 10 dBm 0 dBm-	Ba rum vel 2 ount 5 ax	Ind E 0.00 dB 35 c	m Offset IB SWT	2.38 dB 🖷	H5 2402M	Hz Ant1 No Mode Auto F		oping l	Emissic	2.12 dBm 2.12 dBm 252.92¥tBm
Spect Ref Le SGL Co 1Pk M 10 dBm 0 dBm-	Ba rum vel 2 ount 5 ax	ind E	m Offset IB SWT	2.38 dB 🖷	H5 2402M	Hz Ant1 No Mode Auto F		oping l	Emissic	2.12 dBm 2.12 dBm 252.92¥tBm
Spect Ref Le SGL Co 1Pk M 10 dBm 0 dBm-	Ba rum vel 2 ount 5 ax	Ind E 0.00 dB 35 c	m Offset IB SWT	2.38 dB 🖷	H5 2402M	Hz Ant1 No Mode Auto F		oping l	Emissic	2.12 dBm 2.12 dBm 252.92¥tBm
Spect Ref Le SGL Cr) 1Pk M 10 dBm 0 dBm- -10 dBr -20 dBr	Ba rum vel 2 ount 5 ax	Ind E 0.00 dB 35 c	m Offset IB SWT	2.38 dB = 227.5 µs =	H5 2402M	Hz Ant1 No Mode Auto F		oping l	Emissic	2.12 dBm 2.12 dBm 252.92¥tBm
Spect Ref Le SGL Cd 1Pk M 10 dBm- -10 dBm- -20 dBr -30 dBr	Ba rum vel 2 ax	Ind E 0.00 dB 35 c	m Offset B SWT	2.38 dB • 227.5 µs •	H5 2402M	Mode Auto F	FT		2.402 2.400	2.12 dBm 2.52.924tBm 000000 GHz 52.924tBm
Spect Ref Le SGL C: Att ID dBm ID dBm -10 dBm -20 dBr -30 dBr -40 dBr -50 dBr	Ba rum vel 2 pount 5 ax	Ind E 0.00 dB 35 c	m Offset B SWT	2.38 dB • 227.5 µs •	H5 2402M	Mode Auto F	FT	opping I	Emissic	2.12 dBm 2.52.924tBm 000000 GHz 52.924tBm
Spect Ref Le SGL Cr J IPk M 10 dBm -10 dBr -20 dBr -20 dBr -30 dBr -40 dBr -50 dBr -50 dBr	Ba rum vel 2 2 aunt 5 ax	1 -18.5	m Offset B SWT	2.38 dB • 227.5 µs •	H5 2402M	Mode Auto F	FT		2.402 2.400	2.12 dBm 2.52.924tBm 000000 GHz 52.924tBm
Spect Ref Le SGL C: Att ID dBm ID dBm -10 dBm -20 dBr -30 dBr -40 dBr -50 dBr	Ba rum vel 2 2 aunt 5 ax	1 -18.5	m Offset B SWT	2.38 dB • 227.5 µs •	H5 2402M	Mode Auto F	FT		2.402 2.400	2.12 dBm 2.52.924tBm 000000 GHz 52.924tBm
Spect Ref Le SGL Cr) IPK M 10 dBm -10 dBm -10 dBm -20 dBr -30 dBr -30 dBr -50 dBr -50 dBr -70 dBr	Ba rum vel 2 bunt 5 baut 5	1 -18.5	m Offset B SWT	2.38 dB • 227.5 µs •	H5 2402M	Hz Ant1 No Mode Auto F M1[1] M2[1]	FT		2.402 2.400	2.12 dBm 215000 GHz 52.92MBm 000000 GHz
Spect Ref Le Att SGL C(D IPk M 10 dBm -10 dBm -20 dBr -20 dBr -30 dBr -30 dBr -50 dBr -50 dBr -70 dBr -70 dBr -70 dBr	Ba rum vel 2 aunt 5 ax	0.00 dB 35 c 00/500	m Offset B SWT	2.38 dB = 227.5 µs =	H5 2402M	Hz Ant1 No Mode Auto F M1[1] M2[1]	FT		Emissic 2.402 2.400	2.12 dBm 215000 GHz -52.92dBm 000000 GHz -000000 GHz -000000 GHz -2.406 GHz
Spect Ref Le SGL Cd J IPk M 10 dBm -10 dBm -20 dBr -20 dBr -20 dBr -30 dBr -30 dBr -50 dBr -70 dBr -70 dBr Ztart 2 Marker Type	Ba rum vel 2 aunt 5 ax	1 -18.5	m Offset B SWT	2.38 dB = 227.5 µs =	H5 2402M	Mode Auto F Mode Auto F M1[1] M2[1]	FT		2.402 2.400	2.12 dBm 215000 GHz -52.92dBm 000000 GHz -000000 GHz -000000 GHz -2.406 GHz
Spect Ref Le Att SGL Cd JIPK M 10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Ba rum vel 2 aunt 5 ax	0.00 dB 35 c 00/500	m Offset B SWT 75 dBm 75 dBm X-valu 2.40	2.38 dB = 227.5 µs = 227.5 µs = 400 mm = 100 m	H5 2402M	Hz Ant1 No	FT		Emissic 2.402 2.400	2.12 dBm 215000 GHz -52.92dBm 000000 GHz -000000 GHz -000000 GHz -2.406 GHz
Spect Ref Le SGL Cr J IPK M 10 dBm -10 dBm -20 dBr -20 dBr -20 dBr -30 dBr -40 dBr -50 dBr -60 dBr -60 dBr -70 dBr Start 2 Warker Type M1	Ba rum vel 2 aunt 5 ax	0.00 dB 35 c 00/500	m Offset B SWT	2.38 dB 227.5 µs	H5 2402M	Hz Ant1 No Mode Auto F M1[1] M2[1] M2[1]	FT		Emissic 2.402 2.400	2.12 dBm 215000 GHz -52.92dBm 000000 GHz -000000 GHz -000000 GHz -2.406 GHz

Spectru	m								
	1 20.00 dB			BW 100 kHz					
Att SGL Cour	35 d t 100/100	B SWT 18.	a ha 😑 🗚	BW 300 KHZ	Mode A	uto FFT			
1Pk Max	100, 100								
					M	1[1]			3.16 dBm
10 dBm							1	2.480)15980 GHz
10 ubiii					M1				
0 dBm		_			<u> </u>				
0.0011									
-10 dBm—					<u> </u>				
-20 dBm—		++		+					
				1/ 1					
-30 dBm—									
40 40			$ \land$			\wedge			
-40 dBm—									
-50,dBm	h		$\sim \perp$				~	L	
$\sqrt{1}$	¶⁻\∕∿	m					m	m	m
• -60 dBm—	<u> </u>								V .
-70 dBm—		+ +							
								1	
Spectru	Band E	dge NVNT			IHz Ant) Pe t1 No-I	adv 🚺 Hopping		- //
Spectru Ref Leve Att	Band E m		42 dB 👄 I	5 2480N	IHz Ant		etr ()		n
Spectru Ref Leve Att SGL Cour	Band E	m Offset 2.4	42 dB 👄 I	5 2480N	IHz Ant		Hopping		n
Spectru Ref Leve Att SGL Cour	Band E m	m Offset 2.4	42 dB 👄 I	5 2480N	IHz Ant		Hopping		n
Spectru Ref Leve Att SGL Cour	Band E m	m Offset 2.4	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000 (₩ 3.40 dBm 985000 GHz
Spectru Ref Leve Att SGL Cour IPk Max	Band E m	m Offset 2.4	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000
Spectru Ref Leve Att SGL Cour IPk Max 10 _N dBm- 0 dBm-	Band E m	m Offset 2.4	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000 (₩ 3.40 dBm 985000 GHz
Spectru Ref Leve Att SGL Cour IPk Max	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000
Spectru Ref Leve Att SGL Cour 10 _N dBm- 0 dBm-	Band E m	m Offset 2 B SWT 227	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000
Spectru Ref Leve Att SGL Cour 9 1Pk Max 10,dBm- -10 dBm- -20 dBm-	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000
Spectru Ref Leve Att SGL Cour 10 _M dBm- 0 dBm- -10 dBm-	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000
Spectru Ref Leve Att SGL Cour 9 IPk Max 10,dBm- -10 dBm- -20 dBm-	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB 👄 I	5 2480N	IHz Ant Mode	Auto FFT	Hopping	Emissic	000
Spectru Ref Leve Att SGL Cour ● 1Pk Max 10µdBm	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB • Ι	15 2480N	Mode .	Auto FFT 1[1] 2[1]		2.475 2.485	000 3.40 dBm 985000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour 9 1Pk Max 10,dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	Band E m I 20.00 dB 35 d it 100/100	m Offset 2.4 B SWT 227	42 dB 👄 I	15 2480N	Mode .	Auto FFT 1[1] 2[1]	Adv	2.475 2.485	000 3.40 dBm 985000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour ● 1Pk Max 10 _N dBm— -10 dBm— -20 cBm— -30 dBm— -40 dBm—	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB • Ι	15 2480N	Mode .	Auto FFT 1[1] 2[1]		2.475 2.485	000 3.40 dBm 985000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour • 1Pk Max 10,dBm	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB • Ι	15 2480N	Mode .	Auto FFT 1[1] 2[1]		2.475 2.485	000 3.40 dBm 985000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour • 1Pk Max 10, dBm	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB • Ι		Mode . Mode . M	Auto FFT 1[1] 2[1]		2.479 2.485	3.40 dBm 085000 GHz 55.39 dBm 050000 GHz 0 0 0 0 0 0 0 0 0 0 0 0 0
Spectru Ref Leve Att SGL Cour • 1Pk Max 10, dBm	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB • Ι	15 2480N	Mode . Mode . M	Auto FFT 1[1] 2[1]		2.479 2.485	000 3.40 dBm 985000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour 9 1Pk Max 10,dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm-	Band E m I 20.00 dB 35 d it 100/100	m Offset 2 B SWT 227	42 dB • Ι	100 kHz VBW 100 kHz 300 kHz 100 kHz	Mode . Mode . M	Auto FFT 1[1] 2[1]	, A Ny WARMAN	Emissic	000 3.40 dBm 085000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour © 1Pk Max 10,dBm- -0 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -70 dBm- -70 dBm- -70 dBm- Type R M1	Band E m I 20.00 dBi 35 d it 100/100 D1 -16.8 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	m Offset 2.4	42 dB • 1	15 2480N	IHZ Ant Mode Mode M m m m m m m m fts	Auto FFT 1[1] 2[1]	, A Ny WARMAN	2.479 2.485	000 3.40 dBm 085000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour © 1Pk Max 10, dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -40 dBm- -70 dBm- Start 2.4 Marker Type R M1 M2	Band E m I 20.00 dBi 35 d it 100/100 D1 -16.8 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	m Offset 2.4 B SWT 227	42 dB • 1 7.5 μs • 1 	15 2480N	IHz Ant Mode . 	Auto FFT 1[1] 2[1]	, A Ny WARMAN	Emissic	000 3.40 dBm 085000 GHz -55.39 dBm 55000 GHz
Spectru Ref Leve Att SGL Cour © 1Pk Max 10,dBm- -0 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -70 dBm- -70 dBm- -70 dBm- Type R M1	Band E m I 20.00 dBi 35 d it 100/100 D1 -16.8 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	m Offset 2.4 B SWT 227	42 dB • 1	15 2480N	IHz Ani Mode M m m m pluges/shillow pts Func n n n	Auto FFT 1[1] 2[1]		Emissic	000 3.40 dBm 085000 GHz -55.39 dBm 55000 GHz

Spect	rum]										[₩
Ref Le Att		3	5 dB		2.38 dB 👄 18.9 µs 👄			Mode A	uto FFT			
SGL C		100/10	JU									
								М	1[1]			2.00 dBn
10 dBm					_						2.40	200800 GH
							M1					
0 dBm-						~	᠕ᠰ	$\overline{\gamma}$				
-10 dBr	n-+					+/-		\rightarrow				
-20 dBr	n_					_/		\rightarrow				
								1				
-30 dBr	n-+					\int			λ_{-}			
-40 dBr	n_				\mathcal{N}	,			- <u></u>	\		
					Λ					X		
-50 dBr			~	m	/					\mathbb{N}_{\sim}	n n m	man
-60 dBr	n <mark>~ </mark>	~~~	~~~							~ ~ ~	10 v.w	- V - VM
-70 dBr	n-+											
CF 2.4												
Spect	Ba) and	Edç	je NV	NT 2-D		001 pt 02MH) Rev t1 No-H	dv 🔲 Hopping		on 8.0 MHz
Spect Ref Le Att	Ba rum evel :	20.00	dBm 5 dB	Offset	NT 2-D	H5 240	02MH	Iz Ant		Hopping		on
Spect Ref Le Att SGL C	Ba rum evel :	20.00	dBm 5 dB	Offset	2.38 dB 🖷	H5 240	02MH	Iz Ant		de C		on
Spect Ref Le Att	Ba rum evel :	20.00	dBm 5 dB	Offset	2.38 dB 🖷	H5 240	02MH	Iz Ant		dy 🚺	Emissi	0n ↓ 1.51 dBn
Spect Ref Le Att SGL C	Ba rum vel : ount : lax	20.00	dBm 5 dB	Offset	2.38 dB 🖷	H5 240	02MH	Iz Ant Mode /	Auto FFT	dv 🔳	Emissi	on (Territoria
Spect Ref Le Att SGL Cr 9 1Pk M	Ba rum vel : ount : lax	20.00	dBm 5 dB	Offset	2.38 dB 🖷	H5 240	02MH	Iz Ant Mode /	Auto FFT	dopping	Emissi 2.40	000 1.51 dBn 1205000 GH:
Spect Ref Le Att SGL CI PIPK M	Ba svel :	20.00	dBm 5 dB	Offset	2.38 dB 🖷	H5 240	02MH	Iz Ant Mode /	Auto FFT	dv ()	Emissi 2.40	000
Spect Ref Le Att SGL CI 1Pk M 10 dBm 0 dBm-	Ba crum vvel : ount :	20.00	dBm 5 dB)0	Offset SWT	2.38 dB 🖷	H5 240	02MH	Iz Ant Mode /	Auto FFT	lopping	Emissi 2.40	000
Spect Ref Le Att SGL Cr 1Pk M 10 dBm -10 dBm -20 dBr	Ba crum vvel :	20.00 3. 100/10	dBm 5 dB)0	Offset SWT	2.38 dB 🖷	H5 240	02MH	Iz Ant Mode /	Auto FFT	lopping	Emissi 2.40	000
Spect Ref Le Att SGL CI 10 dBm -10 dBm -10 dBm -20 dBr	Barrum Svel : ount : ax	20.00 3. 100/10	dBm 5 dB)0	Offset SWT	2.38 dB 🖷	H5 240	02MH	Iz Ant Mode /	Auto FFT	lopping	Emissi 2.40	000
Spect Ref Le SGL Co 9 1Pk M 10 dBm - 10 dBm - 20 dBm - 20 dBr - 30 dBr	Barrum evel : lax	20.00 3. 100/10	dBm 5 dB)0	Offset SWT	2.38 dB 227.5 µs	H5 240	02MH	Mode /	Auto FFT 1[1] 2[1]	lopping	Emissi 2.40	000
Spect Ref Le Att SGL C IPk M 10 dBm- -10 dBm- -20 dBr -30 dBr -30 dBr -30 dBr		20.00 3 100/10	dBm 5 dB 00	Offset SWT	2.38 dB 227.5 µs	H5 240	02MH	Mode /	Auto FFT 1[1] 2[1]		2.40 2.40	ON 1.51 dBn 1205000 GH: -51.69 dBn 000000 GH: M2
Spect Ref Le Att SGL Cd 9 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBr -40 dBr -50 dBr -50 dBr		20.00 3 100/10	dBm 5 dB 00	Offset SWT	2.38 dB 227.5 µs	H5 240	02MH	Mode /	Auto FFT 1[1] 2[1]		2.40 2.40	ON 1.51 dBn 1205000 GH: -51.69 dBn 000000 GH: M2
Spect Ref Le Att SGL C IPk M 10 dBm- -10 dBm- -20 dBr -30 dBr -30 dBr -30 dBr		20.00 3 100/10	dBm 5 dB 00	Offset SWT	2.38 dB 227.5 µs	H5 240	02MH	Mode /	Auto FFT 1[1] 2[1]		2.40 2.40	ON 1.51 dBn 1205000 GH: -51.69xdBn 000000 GH: M2
Spect Ref Le Att SGL Cl 9 1Pk M 10 dBm -10 dBm -10 dBm -20 dBr -30 dBr -30 dBr -30 dBr -30 dBr -40 dBr -50 dBr -50 dBr -50 dBr -50 dBr -50 dBr -70 dBr		20.00 300/10 100/10	dBm 5 dB 00	Offset SWT	2.38 dB 227.5 µs	H5 240	02MH	Mode / Mode / M	Auto FFT 1[1] 2[1]		2.40 2.40	ON 1.51 dBn 1205000 GH: -51.69xdBn 000000 GH: M2
Spect Ref Le Att SGL C IPk M 10 dBm- -10 dBm- -10 dBm- -20 dBr -20 dBr -30 dBr -30 dBr -30 dBr -50 dBr -70 dBr -70 dBr -70 dBr		and 20.00 3 100/10 D1 -18	dBm 5 dB 300 8.005	Offset ՏWT dBm	2.38 dB 227.5 µs	H5 240	2MH	Mode / Mode / M	Auto FFT		Emissi 2.40 2.40	ON 1.51 dBn 1205000 GH: -51.69 dBn 000000 GH: -51.69 dBn 000000 GH: -51.69 dBn 000000 GH: -51.69 dBn
Spect Ref Le Att SGL Co 9 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm		20.00 300/10 00/10 01 -18 GHz 1 Tre	dBm 5 dB 00	Offset SWT	2.38 dB 227.5 µs	H5 240	2MH 0 kHz kHz 0 kHz 0 kHz	Mode / Mode / M	Auto FFT		2.40 2.40	ON 1.51 dBn 1205000 GH: -51.69 dBn 000000 GH: -51.69 dBn 000000 GH: -51.69 dBn 000000 GH: -51.69 dBn
Spect Ref Le SGL Co SGL Co SGL Co IPk M 10 dBm- 10 dBm- 10 dBm- 10 dBm- 10 dBr -20 dBr -30 dBr -30 dBr -30 dBr -50 dBr -50 dBr -70 dBr -70 dBr -70 dBr -70 dBr -70 dBr -70 dBr		and 20.00 3 100/10 01 -18	dBm 5 dB 10	Offset SWT	2.38 dB = 227.5 µs =	H5 240	2001 pt: 0 kHz 0 kHz	Mode / Mode / M	Auto FFT		Emissi 2.40 2.40	ON 1.51 dBn 1205000 GH: -51.69 dBn 000000 GH: -51.69 dBn 000000 GH: -51.69 dBn 000000 GH: -51.69 dBn

Spectrum Ref Level 20.00	dam Officiat a	40 dp	RBW 100 kHz					
Att 3. SGL Count 100/10	5 dB SWT 18			Mode A	uto FFT			
●1Pk Max				м	1[1]			3.65 dBm
				M.	*[*]		2.480	3.65 dBm 015980 GHz
10 dBm				M1				
0 dBm			1~^	Δ_{n}				
				$\langle \rangle$				
-10 dBm								
-20 dBm								
-30 dBm				l	h			
-56 0.511		. ~	/		h			
-40 dBm		$\wedge -$						
-50 dBm		, i				A.,		
m	www.						\sim	\sim
-60 dBm								
-70 dBm								
Spectrum	Edge NVN			IHz Ant) Pead 1 No-H	opping		an 8.0 MHz DN
Band Spectrum Ref Level 20.00 Att 3	dBm Offset 2 5 dB SWT 22	2.42 dB 👄	H5 2480M	IHz Ant		opping		on
Band Spectrum Ref Level 20.00	dBm Offset 2 5 dB SWT 22	2.42 dB 👄	H5 2480M	IHz Ant	Auto FFT	opping		n T
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max	dBm Offset 2 5 dB SWT 22	2.42 dB 👄	H5 2480M	IHz Ant		opping	Emissic	on
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 • 1Pk Max	dBm Offset 2 5 dB SWT 22	2.42 dB 👄	H5 2480M	IHz Ant Mode /	Auto FFT	opping	Emissic	2.45 dBm 005000 GHz -53.84 dBm
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm 0 dBm	dBm Offset 2 5 dB SWT 22	2.42 dB 👄	H5 2480M	IHz Ant Mode /	Auto FFT 1[1]	opping	Emissic	2.45 dBm 005000 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 PIPk Max 10 dBm -10 dBm -10 cBm -10 cBm	dBm Offset 2 5 dB SWT 22 00	2.42 dB 👄	H5 2480M	IHz Ant Mode /	Auto FFT 1[1]	opping	Emissic	2.45 dBm 005000 GHz -53.84 dBm
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 • IPk Max 10 dBm -10 dBm -20 dBm	dBm Offset 2 5 dB SWT 22	2.42 dB 👄	H5 2480M	IHz Ant Mode /	Auto FFT 1[1]	opping	Emissic	2.45 dBm 005000 GHz -53.84 dBm
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 PIPk Max 10 dBm -10 dBm -10 cBm -10 cBm	dBm Offset 2 5 dB SWT 22 00	2.42 dB 👄	H5 2480M	IHz Ant Mode /	Auto FFT 1[1]	opping	Emissic	2.45 dBm 005000 GHz -53.84 dBm
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 • IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 2 5 dB SWT 22 00	2.42 dB 👄	H5 2480M	IHz Ant Mode /	Auto FFT 1[1]	opping	Emissic	2.45 dBm 005000 GHz -53.84 dBm
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ● 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm	dBm Offset 2 5 dB SWT 22 00	2.42 dB	H5 2480M	IHz Ant Mode 4	Auto FFT 1[1] 2[1]		2.480 2.480	2.45 dBm 005000 GHz -53.84 dBm 53.80000 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ● 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm	dBm Offset 2 5 dB SWT 22 00	2.42 dB • ??.5 µs •	H5 2480M	IHz Ant Mode 4	Auto FFT 1[1]		2.480 2.480	2.45 dBm 005000 GHz -53.84 dBm 53.80000 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 PIPk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm	dBm Offset 2 5 dB SWT 22 00	2.42 dB	H5 2480M	IHz Ant Mode 4	Auto FFT 1[1] 2[1]		2.480 2.480	2.45 dBm 005000 GHz -53.84 dBm 53.80000 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 • IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	dBm Offset 2 5 dB SWT 22 00	2.42 dB	H5 2480M	IHz Ant Mode 4 M M	Auto FFT 1[1] 2[1]		2.480 2.480 2.483	2.45 dBm 005000 GHz -53.84 dBm 350000 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 • IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm Start 2.476 GHz	dBm Offset 2 5 dB SWT 22 00	2.42 dB	H5 2480M	IHz Ant Mode 4 M M	Auto FFT 1[1] 2[1]		2.480 2.480 2.483	2.45 dBm 005000 GHz -53.84 dBm 53.80000 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ● 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type Type	dBm Offset 2 5 dB SWT 22 00 0.348 dBm 0.348 dBm	2.42 dB • 7.5 µs •	H5 2480M	IHz Ant Mode A M M M M	Auto FFT 1[1] 2[1]		2.480 2.480 2.483	2.45 dBm 05000 GHz -53.84 dBm 53.8000 GHz -2.576 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 • IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type M1 M2	dBm Offset 2 5 dB SWT 22 00 	2.42 dB 77.5 µs 77.5 µs 70.0	H5 2480M	IHz Ant Mode / M M M M	Auto FFT 1[1] 2[1]		Emissic 2.480 2.480	2.45 dBm 05000 GHz -53.84 dBm 53.8000 GHz -2.576 GHz
Band Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 ● 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.476 GHz Marker Type Ref Trc M1 1	dBm Offset 2 5 dB SWT 22 00 3.348 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.42 dB • 27.5 µs • - - - - - - - - - - - - -	H5 2480M	IHz Ant Mode A M M M M	Auto FFT 1[1] 2[1]		Emissic 2.480 2.480	2.45 dBm 05000 GHz -53.84 dBm 53.8000 GHz -2.576 GHz