SAR TEST REPORT Report No.: DDT-B22042401-1E01 | Applicant | : | Harman International Industries, Inc. | | |----------------------|-----|--|--| | Applicant Address | : | 8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES | | | Equipment Under Test | : | Portable Bluetooth Speaker | | | Model No. | : | PULSE5 | | | Trade Mark | | JBL | | | FCC ID | : 3 | APIJBLPULSE5 | | | IC ID | / | 6132A-JBLPULSE5 | | | Manufacturer | 4 | Harman International Industries, Inc. | | | Manufacturer Address | : | 8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES | | Issued By: Tianjin Dongdian Tosting Service Co. Ltd. Address: Building D-1, No. 1 Peisi Road, Michelectronics Industrial Park, Development Area, Tianjin, China Tel: +86-22-58038033, E-mail: ddt@ddt是m_http://www.ddttest.com # **Table of Contents** | 1. | Summary of Test Results | 6 | |--------|--|----| | 1.1. | Max SAR results | 6 | | 1.2. | RF exposure limits | 6 | | 2. | General Test Information | | | 2.1. | Description of EUT | 7 | | 2.2. | RF Channel Information | 7 | | 2.3. | Accessories of EUT | | | 2.4. | Assistant equipment used for test | | | 2.5. | Block diagram of EUT configuration for test | 9 | | 2.6. | Test environment conditions | 9 | | 2.7. | Test laboratory | 10 | | 3. | SAR Measurements System Configuration | 11 | | 3.1. | The SAR Measurement System | 11 | | 3.2. | Isotropic E-field Probe EX3DV4 | 12 | | 3.3. | SAM Twin Phantom | 12 | | 3.4. | ELI Phantom | 13 | | 3.5. | Data Acquisition Electronics (DAE) | | | 3.6. | Device Holder for Transmitters | | | 4. | Measurement procedure | 15 | | 4.1. | Scanning procedure | | | 5. | RF Exposure Conditions | 17 | | 5.1. | test sides | | | 5.2. | Standalone SAR Test Exclusion Considerations | 17 | | 6. | SAR System Verification Procedure | 19 | | 6.1. | Tissue Simulate Liquid | 19 | | 6.1.1. | Recipes for Tissue Simulate Liquid | | | 6.1.2. | Measurement for Tissue Simulate Liquid | | | 6.2. | SAR System Validation | 20 | | 6.2.1. | Justification for Extended SAR Dipole Calibrations | 21 | | 6.2.2. | Validation Test Setup Photograph | 22 | | 6.2.3. | Summary System Validation Result(s) | 22 | | 6.2.4. | Detailed System Validation Results | 22 | | 7. | Equipment list | 23 | | 8. | Measurement Uncertainty | 24 | | 9. | Test results and Measurement Data | 25 | | 9.1. | RF conducted Power | 25 | Tianjin Dongdian Testing ServiceCo.,Ltd. Report No.: DDT-B22042401-1E01 9.2. Measurement of SAR Data 9.2.1. 9.2.2. SAR Result of BLE ______ 26 9.2.3. Appendix 10. Page 3 of 27 # **Test Report Declare** Report No.: DDT-B22042401-1E01 | Applicant | : | Harman International Industries, Inc. | |-----------------------------|----|--| | Address | : | 8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES | | Equipment under Test | | Portable Bluetooth Speaker | | Model No. | : | PULSE5 | | Trade Mark | | JBL | | Manufacturer | | Harman International Industries, Inc. | | Address | J: | 8500 Balboa Boulevard, Northridge, CA 91329, UNITED STATES | #### **Test Standard Used:** IEEE Std. 1528-2013; IEC/IEEE 62209-1528:2020 FCC Rules and Regulations: 47 CFR § 2.1093; § 1.1310 ISED Rules and Regulations: RSS-102 Issue5, Mar. 2015 #### **Test Procedure Used:** KDB447498 D01 v06, KDB 865664 D01 v01r04, KDB 865664 D02 v01r02, #### We Declare: The equipment described above is tested by Tianjin Dongdian Testing Service Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Tianjin Dongdian Testing Service Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests. After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC and ISED standards. | Report No: | DDT-B22042401-1E01 | | | |------------------|--------------------|---------------|-------------------------------| | Date of Receipt: | Apr. 25, 2022 | Date of Test: | Apr. 26, 2022 ~ Apr. 26, 2022 | Prepared By: Sunny Zhang / Engineer Leon Li / RF Manager Approved By: Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Tianjin Dongdian Testing Service Co., Ltd. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. # **Revision History** | Rev. | Revisions | @
 | Issue Date | Revised By | |------|---------------|-------|---------------|------------| | | Initial issue | A C | May. 05, 2022 | 3 | | | DP/ | nP) | nP |) /* | # 1. Summary of Test Results #### 1.1. Max SAR results | Band | Test
Position | Test mode | Max SAR1g
(W/kg) | SAR1g limit
(W/kg) | Verdict | |-----------|------------------|-----------|---------------------|-----------------------|---------| | Bluetooth | Body | BDR+EDR | 0.0685 | 1.6 | Pass | | SRD | Body | SRD | 0.0653 | 1.6 | Pass | | Bluetooth | Body | BLE | 0.0322 | 1.6 | Pass | ### 1.2. RF exposure limits | Human Exposure | Uncontrolled Environment General Population | Controlled Environment Occupational | | |--|---|-------------------------------------|--| | Spatial Average SAR** (Whole Body) | 0.08 W/kg | 0.40 W/kg | | | Spatial Peak SAR*
(Brain*Trunk) | [®] 1.60 W/kg | 8.00 W/kg | | | Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist) | 4.00 W/kg | 20.00 W/kg | | Notes: - 1) The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time - 2) The Spatial Average value of the SAR averaged over the whole body. - 3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 4) Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. - 5) Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.) # 2. General Test Information # 2.1. Description of EUT | | (3 | 3) (8) | |---------------------|----|---| | EUT Description | È | Portable Bluetooth Speaker | | Model Number | : | PULSE5 | | Trade Mark | 1 | JBL | | Serial Number | : | N/A | | Hardware Version | ŀ | V0.4 | | Software Version | | V0.1.7.0 | | Sample Type | : | Portable Device | | Radio Specification | | Bluetooth V5.3: BDR+EDR
Bluetooth V5.3: BLE
SRD | | Frequency Range | : | BDR+EDR: 2402-2480MHz
BLE: 2402-2480MHz
SRD: 2407-2475MHz | | Modulation | : | BRD+EDR: GFSK, π/4-DQPSK, 8DPSK
BLE: GFSK
SRD: GFSK, π/4-DQPSK, 8DPSK | | Date Rate | : | BDR+EDR: 1Mbps, 2Mbps, 3Mbps
BLE: 1Mbps
SRD: 1Mbps, 2Mbps, 3Mbps | | Antenna Type | : | FPC antenna ® | | Antenna Gain | : | Maximum PK gain 2.57dBi | | Power Supply | : | DC 5V from external AC Adapter DC 3.6V built-in battery | Note: EUT is the abbreviation of equipment under test. ### 2.2. RF Channel Information | 1 | 1 | BDR+EDR Cha | nnel Information | ×. | | |---------|--------------------|-------------|--------------------|---------|--------------------| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 0 | 2402 | 27 | 2429 | 54 | 2456 | | 1 | 2403 | 28 | 2430 | 55 | 2457 | | 2 | 2404 | 29 | 2431 ® | 56 | 2458 | | 3 | 2405 | 30 | 2432 | 57 | 2459 | | 4 | 2406 | 31 | 2433 | 58 | 2460 | | 5 | 2407 | 32 | 2434 | 59 | 2461 | | 6 | 2408 | 33 | 2435 | 60 | 2462 | | 7 | 2409 | 34 | 2436 | 61 | 2463 | | 8 | 2410 | 35 | 2437 | 62 | 2464 | | 9 | 2411 | 36 | 2438 | 63 | 2465 | | 10 | 2412 | 37 | 2439 | 64 | 2466 | | 11 | 2413 | 38 | 2440 | 65 | 2467 | | 12 | 2414 | 39 | 2441 | 66 | 2468 | | 13 | 2415 | 40 | 2442 | 67 | 2469 | | 14 | 2416 | 41 | 2443 | 68 | 2470 | | 15 ® | 2417 | 42 ® | 2444 | _69® | 2471 | | 16 | 2418 | 43 | 2445 | 70 | 2472 | | 17 | 2419 | 44 | 2446 | 71 | 2473 | |----|------|----|------|----|------| | 18 | 2420 | 45 | 2447 | 72 | 2474 | | 19 | 2421 | 46 | 2448 | 73 | 2475 | | 20 | 2422 | 47 | 2449 | 74 | 2476 | | 21 | 2423 | 48 | 2450 | 75 | 2477 | | 22 | 2424 | 49 | 2451 | 76 | 2478 | | 23 | 2425 | 50 | 2452 | 77 | 2479 | | 24 | 2426 | 51 | 2453 | 78 | 2480 | | 25 | 2427 | 52 | 2454 | | | | 26 | 2428 | 53 | 2455 | | | | | | SRD Channe | el Information | | | |---------|--------------------|------------|--------------------|---------|--------------------| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 5 | 2407 | 28 | 2430 | 51 | 2453 | | 6 | 2408 | 29 | 2431 | 52 | 2454 | | 7 | 2409 | 30 | 2432 | 53 | 2455 | | 8 | 2410 | 31 | 2433 | 54 | 2456 | | 9 | 2411 | 32 | 2434 | 55 | 2457 | | 10 | 2412 | 33 | 2435 | 56 | 2458 | | 11 | 2413 | 34 | 2436 | 57 | 2459 | | 12 | 2414 | 35 | 2437 | 58 | 2460 | | 13 | 2415 | 36 | 2438 | 59 | 2461 | | 14 ® | 2416 | 37 ® | 2439 | 60 ® | 2462 | | 15 | 2417 | 38 | 2440 | 61 | 2463 | | 16 | 2418 | 39 | 2441 | 62 | 2464 | | 17 | 2419 | 40 | 2442 | 63 | 2465 | | 18 | 2420 | 41 | 2443 | 64 | 2466 | | 19 | 2421 | 42 | 2444 | 65 | 2467 | | 20 | 2422 | 43 | 2445 | 66 | 2468 | | 21 | 2423 | 44 | 2446 | 67 | 2469 | | 22 | 2424 | 45 | 2447 | 68 | 2470 | | 23 | 2425 | 46 | 2448 | 69 | 2471 | | 24 | 2426 | 47 | 2449 | 70 | 2472 | | 25 | 2427 | 48 | 2450 | 71 | 2473 | | 26 | 2428 | 49 | 2451 | 72 | 2474 | | 27 | 2429 ® | 50 | 2452 ® | 73 | 2475 | | | | BLE Channe | l information | | | |---------|--------------------|------------|--------------------|---------|--------------------| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 0 | 2402 | 14 | 2430 | 28 | 2458 | | 1 | 2404 | 15 | 2432 | 29 | 2460 | | 2 | 2406 | 16 | 2434 | 30 | 2462 | | 3 | 2408 | 17 | 2436 | 31 | 2464 | | 4 | 2410 | 18 | 2438 | 32 | 2466 | | 5 | 2412 | 19 | 2440 | 33 | 2468 | | 6 | 2414 | 20 | 2442 | 34 | 2470 | | 7 ® | 2416 | 21 ® | 2444 | 35 ® | 2472 | | 8 | 2418 | 22 | 2446 | 36 | 2474 | | 9 | 2420 | 23 | 2448 | 37 | 2476 | |----|------|----|------|----|------| | 10 | 2422 | 24 | 2450 | 38 | 2478 | | 11 | 2424 | 25 | 2452 | 39 | 2480 | | 12 | 2426 | 26 | 2454 | | | | 13 | 2428 | 27 | 2456 | | (k) | ### 2.3. Accessories of EUT | Description of Accessories | Manufacturer | Model number | Description | Remark ® | |----------------------------|---|--------------|---------------|----------| | USB cable | Harman
International
Industries, Inc. | N/A | Length: 120mm | N/A | ### 2.4. Assistant equipment used for test | Assistant equipment | Manufacturer | Model number | EMC
Compliance | SN | |---------------------|----------------------------|---------------|-------------------|------------| | Notebook | Lenovo Beijing
Co. Ltd. | ThinkPad T450 | FCC/CE | SL10H72009 | ## 2.5. Block diagram of EUT configuration for test EUT Test software: FCCTestTool.exe #### 2.6. Test environment conditions During the measurement the environmental conditions were within the listed ranges: | Condition | Normal Condition | Extreme Condition | | |-------------------|------------------|-------------------|--| | Pressure range | 86-106KPa | N/A | | | Relative Humidity | ® 30-75% | ® N/A | | | Temperature(℃) | 22℃-25℃ | N/A | | | Voltage(V) | 3.6V | N/A | | ### 2.7. Test laboratory Tianjin Dongdian Testing Service Co., Ltd. Address: Building D-1, No. 19, Weisi Road, Microelectronics Industrial Park Development Area, Report No.: DDT-B22042401-1E01 Tianjin, China., 300385 Tel: +86-22-58038033, http://www.ddttest.com, Email: ddt@dgddt.com NVLAP (National Voluntary Laboratory Accreditation Program) CODE: 500036-0 CNAS (China National Accreditation Service for Conformity Assessment) CODE: L13402 FCC Designation Number: CN5004; FCC Test Firm Registration Number: 368676 ISED (Innovation, Science and Economic Development Canada) Company Number: 27768 Conformity Assessment Body Identifier: CN0125 VCCI Facility Registration Number: C-20089, T-20093, R-20125, G-20122 # 3. SAR Measurements System Configuration #### 3.1. The SAR Measurement System This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate. Report No.: DDT-B22042401-1E01 The DASY5 system for performing compliance tests consists of the following items: ® - A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE). - An isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the (absolute) accuracy of the probe positioning. - A computer operating Windows 7. - DASY52 software. - Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage. - The device holder for handheld mobile phones. - Tissue simulating liquid mixed according to the given recipes. - Validation dipole kits allowing to validating the proper functioning of the system. ### 3.2. Isotropic E-field Probe EX3DV4 | | Symmetrical design with triangular core
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents,
e.g., DGBE) | |---------------|--| | Calibration | ISO/IEC 17025 calibration service available. | | Francisco | 10 MHz to > 6 GHz | | Frequency | Linearity: ± 0.2 Db (30 MHz to 6 GHz) | | Directivity | ± 0.3 Db in TSL (rotation around probe axis) | | Directivity | ± 0.5 Db in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g to > 100 Mw/g | | Dynamic Kange | Linearity: ± 0.2 Db (noise: typically < 1 μW/g) | | | Overall length: 337 mm (Tip: 20 mm) | | Dimensions | Tip diameter: 2.5 mm (Body: 12 mm) | | | Typical distance from probe tip to dipole centers: 1 mm | | ® | High precision dosimetric measurements in any exposure | | Application | scenario (e.g., very strong gradient fields); the only probe | | Αρριισατίστι | that enables compliance testing for frequencies up to 6 | | | GHz with precision of better 30%. | | Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI | #### 3.3. SAM Twin Phantom | Material | Vinylester, glass fiber reinforced (VE-GF) | |---|---| | Liquid Compatibility | Compatible with all SPEAG tissue simulating liquids (incl. DGBE type) | | Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point) | | Dimensions
(incl. Wooden
Support) | Length: 1000 mm
Width: 500 mm
Height: adjustable feet | | Filling Volume | esolut. 25 liters | | Wooden Support | SPEAG standard phantom table | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure. #### 3.4. ELI Phantom | Material | Vinylester, glass fiber reinforced (VE-GF) | | | |----------------------|---|--|--| | Liquid Compatibility | Compatible with all SPEAG tissue simulating liquids (incl. DGBE type) | | | | Shell Thickness | 2 ± 0.2 mm (bottom plate) | | | | Dimensions | Major axis: 600 mm
Minor axis: 400 mm | | | | Filling Volume | esolut. 30 liters | | | | Wooden Support | SPEAG standard phantom table | | | Report No.: DDT-B22042401-1E01 Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. #### 3.5. Data Acquisition Electronics (DAE) | Model | DAE4 | |-------------------------|--| | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | Measurement
Range | -100 to +300 Mv (16 bit resolution and two range settings: 4Mv,400Mv) | | Input Offset
Voltage | < 5Mv (with auto zero) | | Input Bias
Current | < 50 f A | | Dimensions | 60 x 60 x 68 mm | #### 3.6. Device Holder for Transmitters Report No.: DDT-B22042401-1E01 The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. ### 4. MEASUREMENT PROCEDURE #### 4.1. Scanning procedure #### **Step 1: Power reference measurement** The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. Report No.: DDT-B22042401-1E01 #### Step 2: Area scan The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. #### Step 3: Zoom scan Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points (≤2GHz)and 7x7x7 points (≥2GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure: The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found. The area and zoom scan esolutionns specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE 1528-2013. | | | | ≤3 GHz | > 3 GHz | | |---|--|--|--|---|--| | Maximum distance fro
(geometric center of p | | measurement point rs) to phantom surface | 5 mm ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$ | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | | | 30° ± 1° | 20° ± 1° | | | | | | \leq 2 GHz: \leq 15 mm 3 – 4 GHz: \leq 12 mm 2 – 3 GHz: \leq 12 mm 4 – 6 GHz: \leq 10 mm | | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | | | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | Maximum zoom scan | spatial res | olution: Δx _{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm* | $3 - 4 \text{ GHz}$: $\leq 5 \text{ mm}^*$
$4 - 6 \text{ GHz}$: $\leq 4 \text{ mm}^*$ | | | | $\begin{array}{c} \text{uniform grid: } \Delta z_{Zoom}(n) \\ \\ \text{Maximum zoom} \\ \text{scan spatial} \\ \text{resolution, normal to} \\ \text{phantom surface} \\ \\ \text{graded} \\ \text{grid} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | | ≤ 5 mm | $3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$
$4 - 5 \text{ GHz}$: $\leq 3 \text{ mm}$
$5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$ | | | scan spatial
resolution, normal to | | | ≤ 4 mm | $3-4 \text{ GHz}: \le 3 \text{ mm}$
$4-5 \text{ GHz}: \le 2.5 \text{ mm}$
$5-6 \text{ GHz}: \le 2 \text{ mm}$ | | | | | | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$ | | | | Minimum zoom
scan volume | x, y, z | | 3 – 4 GHz: ≥ 28 mm
≥ 30 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | | Report No.: DDT-B22042401-1E01 Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. #### Step 4: Power reference measurement (drift) The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 % #### Step 5: Z-Scan (FCC only) The Z scan measures points along a vertical straight line. The line uns along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be greater than the staep size in Z-direction. ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # 5. RF EXPOSURE CONDITIONS #### 5.1. test sides Report No.: DDT-B22042401-1E01 | | <i>) </i> | | SAR test sides | | | | |---------|--|-------|----------------|--------|----------|-------| | | | | Body | | | | | Band | Back | Front | Тор | Bottom | Left | Right | | BDR+EDR | V (4) | × | √ | × | √ | V | | SRD | V | × | √ | × | √ | V | | BLE | V | × | V | × | √ | V | Note: The SAR test distance is 0mm(body) ## 5.2. Standalone SAR Test Exclusion Considerations According to RSS-102, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 4mW. | Frequency | Exemption Limits (mW) | | | | | | | |-----------|---------------------------------------|--------|---------------------------|---------------------------|---------------------------|--|--| | (MHz) | At separation distance of distance of | | At separation distance of | At separation distance of | At separation distance of | | | | | ≤5 mm | 10 mm | 15 mm | 20 mm | 25 mm | | | | ≤300 | 71 mW | 101 mW | 132 mW | 162 mW | 193 mW | | | | 450 | 52 mW | 70 mW | 88 mW | 106 mW | 123 mW | | | | 835 | 17 mW | 30 mW | 42 mW | 55 mW | 67 mW | | | | 1900 | 7 mW | 10 mW | 18 mW | 34 mW | 60 mW | | | | 2450 | 4 mW | 7 mW | 15 mW | 30 mW | 52 mW | | | | 3500 | 2 mW | 6 mW | 16 mW | 32 mW | 55 mW | | | | 5800 | 1 mW | 6 mW | 15 mW | 27 mW | 41 mW | | | Report No.: DDT-B22042401-1E01 | Frequency | Exemption Limits (mW) | | | | | | | |-----------|---|--------|---------------------------|---------------------------|---------------------------|--|--| | (MHz) | At separation At separation distance of | | At separation distance of | At separation distance of | At separation distance of | | | | | 30 mm | 35 mm | 40 mm | 45 mm | ≥50 mm | | | | ≤300 | 223 mW | 254 mW | 284 mW | 315 mW | 345 mW | | | | 450 | 141 mW | 159 mW | 177 mW | 195 mW | 213 mW | | | | 835 | 80 mW | 92 mW | 105 mW | 117 mW | 130 mW | | | | 1900 | 99 mW | 153 mW | 225 mW | 316 mW | 431 mW | | | | 2450 | 83 mW | 123 mW | 173 mW | 235 mW | 309 mW | | | | 3500 | 86 mW | 124 mW | 170 mW | 225 mW | 290 mW | | | | 5800 | 56 mW | 71 mW | 85 mW | 97 mW | 106 mW | | | Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation. The result is rounded to one decimal place for comparison According to the KDB447498, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 3mW. | | | | | | Dis | stance | (mm) | | | | | |-----------|------|----|----|----|-----|--------|------|-----|-----|-----|-----| | | | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | (Z) | 300 | 39 | 65 | 88 | 110 | 129 | 148 | 166 | 184 | 201 | 217 | | (MHz) | 450 | 22 | 44 | 67 | 89 | 112 | 135 | 158 | 180 | 203 | 226 | | | 835 | 9 | 25 | 44 | 66 | 90 | 116 | 145 | 175 | 207 | 240 | | enc | 1900 | 3 | 12 | 26 | 44 | 66 | 92 | 122 | 157 | 195 | 236 | | Frequency | 2450 | 3 | 10 | 22 | 38 | 59 | 83 | 111 | 143 | 179 | 219 | | Fr | 3600 | 2 | 8 | 18 | 32 | 49 | 71 | 96 | 125 | 158 | 195 | | | 5800 | 1 | 6 | 14 | 25 | 40 | 58 | 80 | 106 | 136 | 169 | ## 6. SAR SYSTEM VERIFICATION PROCEDURE #### 6.1. Tissue Simulate Liquid #### 6.1.1. Recipes for Tissue Simulate Liquid The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands: | Ingredients | | | | Frequ | ency (MH | z) | | | | |---------------|-------|-------------|-------|-------|----------|--------|-----------|-------|--| | (% by weight) | 450 | | 8 | 835 | |)-2000 | 2300-2700 | | | | Tissue Type | Head | Head Body H | | Body | Head | Body | Head | Body | | | Water | 38.56 | 51.16 | 40.30 | 50.75 | 55.24 | 70.17 | 55.00 | 68.53 | | | Salt (NaCl) | 3.95 | 1.49 | 1.38 | 0.94 | 0.31 | 0.39 | 0.2 | 0.1 | | | Sucrose | 56.32 | 46.78 | 57.90 | 48.21 | 0 | ® 0 | 0 | 0 ® | | | HEC | 0.98 | 0.52 | 0.24 | 0 | 0 | 0 | 0 | 0 | | | Bactericide | 0.19 | 0.05 | 0.18 | 0.10 | 0 | 0 | 0 | 0 | | | Tween | 0 | 0 | 0 | 0 | 44.45 | 29.44 | 44.80 | 31.37 | | Salt: 99+% Pure Sodium Chloride Sucrose: 98+% Pure Sucrose Report No.: DDT-B22042401-1E01 Water: De-ionized, 16 $M\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose Tween: Polyoxyethylene (20) sorbitan monolaurate #### 6.1.2. Measurement for Tissue Simulate Liquid The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C. | Tissue | Measured
Frequency | Target Tiss | ue (±5%) | Measure | d Tissue | Liquid
Temp. | Measured | |--------------|-----------------------|----------------------------|------------------------|---------|----------|-----------------|-----------| | Type | (MHz) | εr | σ(S/m) | εr | σ(S/m) | (℃) | Date | | | 2402MHz | 39.296
(37.331~41.261) | 1.758
(1.670~1.846) | 37.869 | 1.823 | 22.0 | 2022/4/26 | | (8) | 2407MHz | 39.286
(37.322~41.250) | 1.763
(1.675~1.851) | 37.882 | 1.830 | 22.0 | 2022/4/26 | | 2450
head | 2440MHz | 39.220
(37.259 ~41.181) | 1.791
(1.701~1.881) | 37.837 | 1.871 | 22.0 | 2022/4/26 | | | 2441MHz | 39.218
(37.257~41.179) | 1.792
(1.702~1.882) | 37.836 | 1.872 | 22.0 | 2022/4/26 | | | 2450MHz | 39.20
(37.240~41.160) | 1.80
(1.710~1.890) | 37.840 | 1.884 | 22.0 | 2022/4/26 | | > | 2475MHz | 39.167 | 1.827 | 37.750 | 1.904 | 22.0 | 2022/4/26 | |---|------------------------|-----------------|---------------|--------|-------|------|-----------| | | 247 SIVITIZ | (37.209~41.125) | (1.736~1.918) | 37.730 | 1.904 | 22.0 | 2022/4/20 | | | 2480MHz | 39.160 | 1.832 | 37.722 | 1.907 | 22.0 | 2022/4/26 | | | ∠ 4 0∪IVI⊓∠ | (37.202~41.118) | (1.740~1.924) | 31.122 | 1.907 | 22.0 | 2022/4/20 | #### 6.2. SAR System Validation The microwave circuit arrangement for system verification is sketched in bellow figure. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table 5 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. Report No.: DDT-B22042401-1E01 ### 6.2.1. Justification for Extended SAR Dipole Calibrations - 1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C. - a) There is no physical damage on the dipole; - b) System check with specific dipole is within 10% of calibrated value; - c) Return-loss is within 10% of calibrated measurement; - d) Impedance is within 5Ω from the previous measurement. - 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters. # 6.2.2. Validation Test Setup Photograph # 6.2.3. Summary System Validation Result(s) | Validation Kit | Measured
SAR
250mW | Measured
SAR
normalized
to 1w) | Target SAR
(normalized
to 1w)
(±10%) | Liquid
Temp.
(°C) | Measured Date | |----------------|--------------------------|---|---|-------------------------|---------------| | 4 | 1g (W/kg) | 1g (W/kg) | 1-g(W/kg) | | | | D2450V2 | 12.60 | 50.40 | 53.1
(47.79~58.41) | 22.0 | 2022/4/26 | # 6.2.4. Detailed System Validation Results See the Appendix A. #### 7. EQUIPMENT LIST | Test Platform | | SPE | AG DASY5 Profess | sional | | |---|---------------|---------------|-------------------|---------------------|-------------------------| | Location | | | SAR room | | | | Description | ® SAF | R Test Syste | m (Frequency rang | e 300MHz-6GI | Hz) | | Equipment | Manufacturer | Model | Serial Number | Calibration
Date | Due date of calibration | | Robot | Staubli | TX90 XL | F12/5N3XC/A/01 | NCR | NCR | | SAM twin
Phantom | SPEAG | SAM | 1752 | NCR | NCR | | DAE | SPEAG | DAE4 | 1366 | 2022-01-21 | 2023-01-20 | | SAR test Probe | SPEAG | EX3DV4 | 3906 | 2022-02-27 | 2023-02-26 | | Validation Kits | SPEAG | D2450V2 | 904 | 2022-01-26 | 2025-01-25 | | Agilent Network Analyzer | Agilent | E5071C | MY46316792 | 2022-02-16 | 2023-02-15 | | Dielectric Probe
Kit | Agilent | 85070E | 85070-20037 | NCR | NCR | | 0.1G-2Ghz
DUAL
DIRECTIONAL
COUPLER | Agilent | ® 778D | MY52180233 | NCR | NCR | | Signal Generator | Agilent | N5182A | MY50143288 | 2022-03-07 | 2023-03-06 | | Preamplifier | Mini-Circuits | ZHL-42W | QA1240001 | NCR | NCR | | Preamplifier | Mini-Circuits | ZVE-8G+ | 926701231 | NCR | NCR | | EPM Series
Power Meter | Agilent | N1914A | MY53040013 | 2022-02-16 | 2023-02-15 | | Power Sensor | Agilent | 8481H | MY52490005 | 2022-02-16 | 2023-02-15 | | Attenuator | Agilent | 8491A
3dB | MY52460179 | NCR | NCR | | Attenuator | Agilent | 8491A
10dB | MY52460275 | NCR | _® NCR | | Humidity and
Temperature
Indicator | Anymetre | JR900 | #4 | 2022-02-09 | 2023-02-08 | # 8. MEASUREMENT UNCERTAINTY | Uncertainty Component | probability
distribution | Contains
the
factor | Standard
uncertainty
Ui | C1(1g) | C1(10g) | |--|-----------------------------|---------------------------|-------------------------------|--------|---------| | Sensitivity of probe | N | 1 | ±6.55% | 1 | 1 | | Isotropy of the probe | R | √3 | ±1.08% | 1 | 1 | | Linearity of the probe | R | √3 | ±0.35% | 1 | 1 | | Coupling effect between probe and dielectric boundary | R | √3 | ±0.46% | 1 | 1 | | The detection limit of the system | R | √3 | ±0.14% | 1 | 1, | | Errors in electronic reading equipment | N | 1 | ±0.35% | 1 | 1 | | Measure the response time of the equipment | R | √3 | 0 | 1 | 1 | | Measure the integral time of the equipment | R | √3 | ±1.50% | 1 | 1 | | Data post-processing algorithm | R | √3 | ±0.58% | 1 | 1 | | Electromagnetic environment disturbance | R | √3 | ±1.73% | 1 | 1 | | the positioning accuracy of the probe | R | √3 | ±0.87% | 1 | 1 | | The positioning accuracy of the probe tip relative to the model surface | R | √3 | ±1.67% | 1 | 1 | | Manufacturing tolerances for models | R | √3 | ±2.31% | 1 | 1 | | Deviation of measured liquid conductivity from target value | R | √3 | ±2.89% | 0.64 | 0.43 | | Liquid conductivity test system accuracy | N | 1 | ±2.5% | 0.64 | 0.43 | | The deviation between the measured permittivity of liquid and the target value | R | √3 | ±2.89% | 0.6 | 0.49 | | Test precision of liquid permittivity test system | N | 1 | ±2.5% | 0.6 | 0.49 | | The disturbance of the positioning fixture | N | 1 | ±5.2% | 1 | 1 | | Accuracy of sample positioning | N | 1 | ±4.6% | 1 | 1 | | The output power of the tested sample drifts | R | √3 | ±2.89% | 1 | 1 | | Combined standard uncertainty | | Uc(1g)=11 | .3%, Uc(10g)= | 11.0% | | | Expanded uncertainty(95% confidence interval) k=2 | 011 | U(1g)=22 | 2.6%, U(10g)= | 22% | | | | | <u> </u> | | | | # 9. TEST RESULTS AND MEASUREMENT DATA # 9.1. RF conducted Power | Y | | Bluetooth E
Average cond | | | | |------|---------|-----------------------------|----------------|------------|--------------------------------| | Mode | Channel | Frequency
(MHz) | Power
(dBm) | Duty-Cycle | Max. Tune-up
Power
(dBm) | | DH5 | 0 ® | 2402 | 4.55 ® | 0.7760 | 6® | | | 39 | 2441 | 4.50 | 0.7760 | 6 | | | 78 | 2480 | 4.31 | 0.7760 | 6 | | | 0 | 2402 | 7.10 | 0.7733 | 9 | | 2DH5 | 39 | 2441 | 7.00 | 0.7733 | 9 | | | 78 | 2480 | 6.54 | 0.7733 | 8 | | 3DH5 | 0 | 2402 | 7.12 | 0.7707 | 9 | | | 39 | 2441 | 6.96 | 0.7707 | 9 | | 1 | 78 | 2480 | 6.59 | 0.7707 | 8 | | | | SF | RD | 7 | | | | | | | | |-------------------------|---------|--------------------|----------------|------------|--------------------------------|--|--|--|--|--|--| | Average conducted power | | | | | | | | | | | | | Mode ® | Channel | Frequency
(MHz) | Power
(dBm) | Duty-Cycle | Max. Tune-up
Power
(dBm) | | | | | | | | | 5 | 2407 | 9.81 | 0.7760 | 11 | | | | | | | | DH5 | 39 | 2441 | 9.90 | 0.7760 | 11 | | | | | | | | | 73 | 2475 | 9.89 | 0.7760 | 11 | | | | | | | | | 5 | 2407 | 9.86 | 0.7760 | 11 | | | | | | | | 2DH5 | 39 | 2441 | 9.94 | 0.7760 | 11 | | | | | | | | | 73 | 2475 | 9.94 | 0.7760 | 11 | | | | | | | | | 5 | 2407 | 9.85 | 0.7760 | 11 | | | | | | | | 3DH5 | 39 | 2441 | 9.90 | 0.7733 | 11 | | | | | | | | | 73 | 2475 | 9.93 | 0.7733 | 11 | | | | | | | | | BLE | | | | | | | | | | | |------|-------------------------|--------------------|----------------|------------|--------------------------------|--|--|--|--|--|--| | | Average conducted power | | | | | | | | | | | | Mode | Channel | Frequency
(MHz) | Power
(dBm) | Duty-Cycle | Max. Tune-up
Power
(dBm) | | | | | | | | | 0 | 2402 | 1.61 | 0.619 | 3 | | | | | | | | BLE | 19 | 2440 | 2.84 | 0.619 | 4 | | | | | | | | | 39 | 2480 | 3.15 | 0.619 | 5 | | | | | | | #### Note: - 1. The output power of the device was set to transmit at maximum power for all test. - 2.The BDR+EDR maximum output power mode 3DH5, select the 3DH5 as the primary mode to test SAR. - 3.The SRD maximum output power mode 2DH5, select the 2DH5 as the primary mode to test SAR. #### 9.2. Measurement of SAR Data #### 9.2.1. SAR Result of Bluetooth BDR+EDR | Test position | Test
mode | Test
Ch./Freq. | Duty
Cycle | SAR
1-g
(W/kg) | Power
drift
(dB) | Conducted power (dBm) | Max.
Tune-
up
Power
(dBm) | Scaled factor | Scaled
SAR
1g
(W/kg) | Liquid
Temp. | SAR
limit
1g
(W/kg) | |---------------|--------------|-------------------|---------------|----------------------|------------------------|-----------------------|---------------------------------------|---------------|-------------------------------|-----------------|------------------------------| | | | | | | Body 1 | Γest data | | | | | | | Тор | 3DH5 | 0/2402 | 0.7707 | 0.0026 | 0.16 | 7.12 | 9 | 2.0004 | 0.0053 | @22 | 1.6 | | Back | 3DH5 | 0/2402 | 0.7707 | 0.0220 | 0.15 | 7.12 | 9 | 2.0004 | 0.0440 | 22 | 1.6 | | Left | 3DH5 | 0/2402 | 0.7707 | 0.0170 | 0.11 | 7.12 | 9 | 2.0004 | 0.0340 | 22 | 1.6 | | Right | 3DH5 | 0/2402 | 0.7707 | 0.0100 | 0.02 | 7.12 | 9 | 2.0004 | 0.0200 | 22 | 1.6 | | Back | 3DH5 | 39/2441 | 0.7707 | 0.0330 | -0.16 | 6.96 | 9 | 2.0755 | 0.0685 | 22 | 1.6 | | Back | 3DH5 | 78/2480 | 0.7707 | 0.0220 | -0.14 | 6.59 | 8 | 1.7952 | 0.0395 | 22 | 1.6 | #### 9.2.2. SAR Result of SRD | Test
position | Test
mode | Test
Ch./Freq. | Duty
Cycle | SAR
1-g
(W/kg) | Power
drift
(dB) | Conducted power (dBm) | Max.
Tune-
up
Power
(dBm) | Scaled factor | Scaled
SAR
1g
(W/kg) | Liquid
Temp. | SAR
limit
1g
(W/kg) | |------------------|--------------|-------------------|---------------|----------------------|------------------------|-----------------------|---------------------------------------|---------------|-------------------------------|-----------------|------------------------------| | | | | | | Body 1 | Test data | | | | | - | | Тор | 2DH5 | 73/2475 | 0.776 | 0.0210 | 0.19 | 9.94 | 11 | 1.6449 | 0.0345 | 22 | 1.6 | | Back | 2DH5 | 73/2475 | 0.776 | 0.0300 | -0.06 | 9.94 | 11 | 1.6449 | 0.0493 | 22 | 1.6 | | Left | 2DH5 | 73/2475 | 0.776 | 0.0024 | -0.11 | 9.94 | 11 | 1.6449 | 0.0039 | 22 | 1.6 | | Right | 2DH5 | 73/2475 | 0.776 | 0.0160 | 0.19 | 9.94 | 11 | 1.6449 | 0.0263 | 22 | 1.6 | | Back | 2DH5 | 5/2407 | 0.776 | 0.0390 | 0.12 | 9.86 | 11 | 1.6755 | 0.0653 | 22 | 1.6 | | Back | 2DH5 | 39/2441 | 0.776 | 0.0360 | 0.01 | 9.94 | 11 | 1.6449 | 0.0592 | 22 | 1.6 | ## 9.2.3. SAR Result of BLE | Test
position | Test
mode | Test
Ch./Freq. | © Duty
Cycle | SAR
1-g
(W/kg) | Power
drift
(dB) | Conducted
power
(dBm) | Max. Tune- up Power (dBm) | Scaled
factor | Scaled
SAR
1g
(W/kg) | Liquid
Temp. | SAR
limit
1g
(W/kg) | | |------------------|--------------|-------------------|-----------------|----------------------|------------------------|-----------------------------|---------------------------|------------------|-------------------------------|-----------------|------------------------------|--| | Body Test data | | | | | | | | | | | | | | Тор | BLE | 39/2480 | 0.619 | 0.0075 | -0.16 | 3.15 | 5 | 2.4735 | 0.0186 | 22 | 1.6 | | | Back | BLE | 39/2480 | 0.619 | 0.0130 | -0.19 | 3.15 | 5 | 2.4735 | 0.0322 | 22 | 1.6 | | | Left | BLE | 39/2480 | 0.619 | 0.0100 | -0.05 | 3.15 | ® 5 | 2.4735 | 0.0247 | 22 | ® 1.6 | | | Right | BLE | 39/2480 | 0.619 | 0.0022 | -0.12 | 3.15 | 5 | 2.4735 | 0.0054 | 22 | 1.6 | | | Back | BLE | 0/2402 | 0.619 | 0.0099 | 0.11 | 1.61 | 3 | 2.2249 | 0.0219 | 22 | 1.6 | | | Back | BLE | 39/2480 | 0.619 | 0.0033 | -0.18 | 2.84 | 4 | 2.1101 | 0.0069 | 22 | 1.6 | | Note: 1)The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B 2)If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s). # 10. APPENDIX Appendix A: System Validation Plots Appendix B: Highest Test Plots Appendix C: Calibration Certification Appendix D: Test setup photograph **END REPORT**