

Engineering Test Report No. 2100035-01 Rev. A			
Report Date	February 25, 2021		
Manufacturer Name	Genie		
Manufacturer Address	2501 S State Hwy 121 Ste 200 Lewisville, TX 75067		
Model No.	U2	ISED HVIN: ACSCTG-UNV2 ; OUT-P ISED PMN: ACSCTG-UNV2 ; OUT-P	
Date Received	February 22, 2021		
Test Dates	February 22 - 24, 2021		
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 (b) Innovation, Science, and Economic Development Canada, RSS-210 Innovation, Science, and Economic Development Canada, RSS-GEN		
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107	
Signature	Javin Condense	Tylar Jappy	
Tested by	Javier Cardenas	Tylar Jozefczyk	
Signature	Kaymond J. Klouda		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894		
PO Number	940215	940215	

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210 and RSS-Gen test specification(s). The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
2.1.	Scope of Tests	4
2.2.	Purpose	4
2.3.	Identification of the EUT	4
3.	Power Input	4
4.	Grounding	4
5.	Support Equipment	4
6.	Interconnect Leads	4
7.	Modifications Made to the EUT	4
8.	Modes of Operation	5
9.	Test Specifications	5
10.	Test Plan	5
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	6
13.	Summary	6
14.	Sample Calculations	6
15.	Statement of Conformity	6
16.	Certification	6
17.	Photographs of EUT	7
18.	Block Diagram of Test Setup	8
19.	Equipment List	9
20.	Periodic Operation Measurements	10
21.	Duty Cycle Factor Measurements	25
22.	Spurious Radiated Emissions	71
23.	Occupied Bandwidth Measurements	90
24.	Scope of Accreditation	121

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
-	12 MAR 2021	Initial Release of Engineering Test Report No. 2100035-01 Rev. A
A	7 JULY 2021 By REK	 Throughout report: Changed 2100035-01 to 2100035-01 Rev. A. Throughout report: Added ISED HVIN and ISED PMN numbers. Section 8.0: Changed 733.92MHz to 433.92MHz.

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Genie Universal 2 Button Transmitter (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Genie located in Lewisville, TX.

2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 15.231(b).

The test series was also performed to determine if the EUT meets the RF emission requirements of the Industry Canada Radio Standards Specification RSS-Gen and Industry Canada Radio Standards Specification RSS-210 for Transmitters.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

EUT Identification		
Product Description	Universal 2 Button Transmitter	
Model/Part No.	U2	
ISED HVIN	ACSCTG-UNV2 ; OUT-P	
ISED PMN	ACSCTG-UNV2 ; OUT-P	
Serial No.	NA	
Band of Operation	303 – 433.92MHz	

The EUT listed above was used throughout the test series.

3. Power Input

The EUT was powered by 3VDC from a coin-cell battery.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

No support equipment was submitted with the EUT.

6. Interconnect Leads

No interconnect leads were used during the tests.

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

Mode	Description
Continuous Tx	The EUT was powered on and set to transmit at one of the following protocols/frequencies: - 303MHz - 310MHz - 315MHz – Intellicode - 315MHz – Intellicode 2 - 315MHz – Chamberlain Purple - 315MHz – Marantec - 318MHz - 372.5MHz – Wayne Dalton - 372.5MHz – Ryobi - 390MHz – Intellicode - 390MHz – Intellicode 2 - 390MHz – Chamberlain Red - 390MHz – Chamberlain Red - 390MHz – Chamberlain Green - 433.92MHz – Rolling Code
Pulsed Tx	The EUT was powered on and set to transmit a transmission sequence.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- RSS-210 Issue 10, December 2019, "License-Exempt Radio Apparatus: Category I Equipment"
- RSS-Gen Issue 5, March 2019, Amendment 1, Innovation, Science, and Economic Development Canada, "Spectrum Management and Telecommunications, Radio Standards Specification, General Requirements for Compliance of Radio Apparatus"

10. Test Plan

The 41654_U2_FCC_Test_Plan_20210107 (01/07/2021) test plan was provided by Genie and was referenced during the testing.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

Ambient Parameters	Value
Temperature	21°C
Relative Humidity	18%
Atmospheric Pressure	1013.4mb

13. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Requirements	Test Methods	Results
Periodic Operation Measurements	FCC 15C ISED RSS-210	ANSI C63.10:2014	Conforms
Duty Cycle Factor Measurements	FCC 15C ISED RSS-210	ANSI C63.10:2014	Conforms
Spurious Radiated Emissions	FCC 15C ISED RSS-210	ANSI C63.10:2014	Conforms
Occupied Bandwidth Measurements	FCC 15C ISED RSS-210	ANSI C63.10:2014	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL (dBuV) = MTR (dBuV) + CF (dB).

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS (dBuV/m) = MTR (dBuV) + AF (dB/m) + CF (dB) + (- PA (dB)) + DC (dB)

To convert the Field Strength dBuV/m term to uV/m, the dBuV/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in uV/m terms.

Formula 2: FS (uV/m) = AntiLog [(FS (dBuV/m))/20]

15. Statement of Conformity

The Genie Universal 2 Button Transmitter, Model No. U2, Serial No. NA, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.231 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Block Diagram of Test Setup

Radiated Measurements Test Setup

19. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
NTA4	BILOG ANTENNA	TESEQ	6112D	46660	20-2000GHZ	10/5/2020	10/5/2021
NWQ0	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66657	1GHZ-18GHZ	5/13/2020	5/13/2022
RBG0	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101533	10HZ-44GHZ	3/2/2021	3/2/2022
T2DS	20DB, 25W ATTENUATOR	WEINSCHEL	46-20-34	BS0916	DC-18GHZ	4/2/2020	4/2/2022
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

20. Periodic Operation Measurements

Test Information	
Manufacturer	Genie
Product	Universal 2 Button Transmitter
Model No.	U2
Serial No.	NA
Mode	Pulsed Tx

Test Setup Details		
Setup Format	Tabletop	
Type of Test Site	Semi-Anechoic Chamber	
Note	None	

Measurement Uncertainty	
	Expanded
Measurement Type	Measurement
	Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site)	4.2
(30 MHz – 1000 MHz)	4.3

Requirements

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. A transmitter activated automatically shall cease transmission within 5 seconds after activation. Transmission of set-up information for security systems may exceed said transmission duration limits, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

Procedures The spectrum analyzer was setup to display the time domain trace. The EUT was set to transmit normally. The spectrum analyzer was used to record the amount of time that the EUT remained active following activation.

Test Details	
Manufacturer	Genie
Model No.	U2
Serial No.	NA
Mode	Pulsed Tx
Carrier Frequency	303MHz
Notes	None

MultiView 88	Receiver	Spectrum 👹	Spectrum 2 💡	Spectrum	з 🕅		
Ref Level 87 Att Input TRG:VID	00 dBμV 0 dB ● SWT 1 AC PS	RBW 1 MHz 6 s VBW 1 MHz On Notch Off	SGL			Frequency	303.0000000 MHz
1 Zero Span		f - E		F			2Pk Max
100000 - 100 00 - 100							
80 dBµV	2	2		1 10			
70 dBμV	35	8	5	8	8		
богавич		1					
50 dBµV				τ.			
40 dвµV			15	15		2	2
	TRG 37.000 d	ВµV —————		8			
30 dвµV							
20 dBuV							1
11.11.13	ALL ALL ALL A	WWWWWWWWWWWWWWWWWWWWWW	al and a second and a second of the	A Mariada A a sarar and	- drynn y dryn yw ar an ar ar	about the second managed and	and a second and a second of the second s
10 dBuV-							
o coh v			5	5			
to do un				2			000 c
-TO 0804			100	11 ptc		VI 5.	600.0 mg/
GE SUSIU MHZ	1		100	ni pis		24.02.2021	(Ref Level) (RBW
	JI.			Ready		14:43:01	

14:43:02 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	310MHz					
Notes	None					

MultiView 83	Receiver	Spectrum	Spectrum 2	Spectrum	3 🕅		
Ref Level 87.0 Att Input TRG:VID	00 dBµV 0 dB ● SWT 1 AC PS	 RBW 1 MHz 6 s VBW 1 MHz On Notch Off 	SGL			Frequenc	cy 310.0000000 MHz
1 Zero Span				- C			● 2Pk Max
80 dBuV							
	-			5	8		
1 F 4							
60 dBµV				ç.			-
50 dBµV				ė			
40 d0 4				5			
		вич	6	e.			
30 dBµV							
20 dBuy	www.www.	a normality more		A hard mining when the	por hand with marker	mound	munumanter
10 dBµV		-					*
- I- U							
U dBµV	3	5	5	6		2	
-10 dBuV				2		V1	5.000 s
CF 310.0 MHz			100)1 pts			600.0 ms/
)(Ready		24.02.2021 14;46:02	Ref Level RBW

14:46:03 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	315MHz					
Notes	Intellicode					

MultiView 😂 R	leceiver	Spectru	m 🕱 Sp	ectrum 2	Spectrum	3 🕅			▼
Ref Level 87.00 Att Input TRG:VID	0 dBµV 0 dB ● SW 1 AC PS	RBW T 6 s VBW On Notch	1 MHz SGL 1 MHz Off	55			Freque	ncy 315.0	000000 MHz
1 Zero Span		1			8			ľ	• 2Pk Max
80 dBuV									
00 000									
				~					
60 dBµV				e	G.				
50 dBµV				e	č.	G			
40 dBµV	TRC27_000_0	19.11	2	15.	65		27		
	1KG 37.000 0	aph A		6					
30 dBµV				7					
20 GBHKI W Lundow	without the	U Whitehas	arange and a second sec	an human who who	homenterione	in marken	reprised and and and and a	this provident	and the second at low in
10 dBuV				~					
10 0001									
0 dBµV				5					
-10 dBµV				*				/1 5.000 s	
CF 315.0 MHz		P		100	l pts		1		600.0 ms/
)[Ready	*******	4.02.20 14:49:	21 Ref Level	RBW

14:49:59 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	315MHz					
Notes	Intellicode 2					

MultiView 88	Receiver	Spectrun	n 🕅 Spe	ectrum 2	Spectrum	3 🕅			▼
Ref Level 87 Att Input TRG:VID	.00 dBµV 0 dB ● SW 1 AC PS	● RBW 1 T6s VBW 1 On Notch	MHz SGL MHz Off	8			Freque	ency 315.00	000000 MHz
1 Zero Span	1		1		8		1		• 2Pk Max
80 dBuV-									
	П				10				
60 dBµV				6	4 <u>6</u>				
50 dвµV									7
		A. C.							
40 dBµV	TRG 37.000 0	18µV		-	55 		2		
20 doub									
зо авру						n n			
20 dBµV			an te se that to see a		· · · · · · · · · ·				
in a we do that	When the strategies of the state of the stat	a na nà naikhrall.A.A.a	An An Alberta Breach and Andrea	and had the set of the	Lud and she make a the	lithers, freeze zin Ale tendezenesszon	the also Manufacture Constru	N-10-44 OF VICKORE-WAR	Martin and Carling and Characters
10 dBµV		-	-		6				
0 dBµV	5	5			5				
							2		
-10 dBµV	- K 	-		100			†	V1 5.000 s	
UF 315.0 MHZ	T			100.			24,02,20	21 Ref Level	600.0 ms/
					Ready		14:52:	00	

14:52:00 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	315MHz					
Notes	Marentec					

MultiView 😁	Receiver	Spectrum	Spe	ectrum 2	Spectrum	3 🕅			
Ref Level 97 Att Input TRG:VID	7.00 dBµV 0 dB ● SWT 1 AC PS	● RBW 1 6s VBW 1 On Notch	MHz SGL MHz Off	8			Freque	ency 315.0	000000 MHz
1 Zero Span								-	• 2Pk Max
1212 122 12									
90 dBµV									*
80 dBµ∨		5	0	8		2			
70 dBµ∨					40 			-	
60 dBµ∨		X		č.	ē.			-	-
50 dBµ∨	TRG 47.000 d	Buv			15				
40 dBµV									-
30 dBµ∨									
		M. indeed better out	He down doweldnesde	and an a stall a second as	1. december and i dela -	martine all the cure	I marches & marches	a to allow the No	at when there was referred
20 dBµV		and the sould have de-	I M A M S I I I I I I I I I I I I I I I I I I	and the state of the state of the state	and a second second second	Juda and any her all of	and a start of the start of the	and a block a second th	A A A A A A A A A A A A A A A A A A A
10 dBµV		6			¢		2		-
								and a state	
0 dBµV	-				2 			V1 5.000 s	-
CF 315.0 MHz	·			100:	l pts		04.00.00		600.0 ms/
					Ready		44.02.20 15:05:	29 Ref Leve	RBW

15:05:29 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	315MHz					
Notes	Chamberlain Purple					

MultiView 88	Receiver	Spectrur	n 🕱 Sp	ectrum 2	Spectrum	3 🕅			
Ref Level 97 Att Input TRG:VID	.00 dBµV 0 dB ● SWT 1 AC PS	● RBW 6 s VBW On Notch	L MHz SGL L MHz Off	53			Frequence	cy 315.00	00000 MHz
1 Zero Span								-	2Pk Max
90 dBµV		5			1				
80 dBµV		5		5	5			-	
70 dBµV				-	6			_	
					_				
00 000					45				
				-	*5				
SU UBHV		вμ∨			7			-	
and a star									
40 dBµV			5			×			
30 dBµV									
				The second second	D-1			E Constant	- Material Material State
20 dBµV	Mundhing Manager M	or w whiteway	an and a second and the second s	and the second second second	ge de la company de la comp	and with the second street	and the could serve and	en frank and and	www.www.www.www.
10 dBµV		5		5	8			-	
0 dвµV		4		-	2		-V1	5.000 s	
CF 315.0 MHz	1			1001	. pts				600.0 ms/
					Ready		44.02.2021	Ref Level	RBW

15:03:28 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	318MHz					
Notes	None					

MultiView 88	Receiver	Spectrum	n 🕅 Sp	ectrum 2	Spectrum	3 🕅			
Ref Level 97 Att Input TRG:VID	.00 dBµV 0 dB ● SWT 1 AC PS	● RBW 1 6s VBW 1 On Notch	MHz SGL MHz Off	81	_		Freque	ncy 318.0 0	000000 MHz
1 Zero Span				-			-		2Pk Max
20 JD 11									
ап авhл						n		7.	
80 dBuV									
00 abpv				8	12				
70 dвµV					4 <u>.</u>				
V. Burner									
60 dBµV		7		ė	e.			*	
50 dBµV	TRG 47,000 d	BuV		8	55 		2		
40 dBµ∨			0	2					
PO dBuV						0			
20 dBµV		almanananta	and the second state of the second	an white any white	annababapabaan	monorman	m when have a second	hubbanyarah	andhannahan
0									
10 dBµV		6		8	8				
0 dBµV		4 2		2	2		×	/1 5.000 s	
CF 318.0 MHz	1			1003	l pts		24.03.30	21 (Bof Louis	600.0 ms/
ί					Ready		15:08:		KBW

15:08:30 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	372.5MHz					
Notes	Wayne Dalton & Ryobi					

MultiView 😂	Receiver	Spectrum	n 🕅 Spe	ctrum 2	Spectrum	3 🕅		▽
Ref Level 97 Att Input TRG:VID	7.00 dBµV 0 dB ● SWT 1 AC PS	● RBW 1 「6s VBW 1 On Notch	MHz SGL MHz Off				Frequency	/ 372.5000000 MH
1 Zero Span					_		1	2Pk Max
90 dBµV								
Ser.								
80 dBµV		6				0		
70 dBµV	hnnnn	7 17 1			9			
60 dBuy								
50 dBµV	TRG 47.000 d	ВµV			5 9			
40 dBµV								
30 dBµV								
20 dBµV	U WUWUUU	6 6 Wheneyou have	allenselfterhoutenables	show have a second	nadenteenalen	harvorseehannoor	ar and an a second s	and a second
10 dBµV		p						
							una tava	
0 dBµ∨		2					V1 5	.000 s
CF 372.5 MHz	2			1001	pts			600.0 ms/
	T.				Ready		24.02.2021 15:11:35	Ref Level RBW

15:11:36 24.02.2021

	Test Details
Manufacturer	Genie
Model No.	U2
Serial No.	NA
Mode	Pulsed Tx
Carrier Frequency	390MHz
Notes	Chamberlain Green

MultiView 88	Receiver	Spectrum	n 🖾 Sp	ectrum 2	Spectrum	3 🕅			
Ref Level 97 Att Input TRG:VID	.00 dBµV 0 dB ● SWT 1 AC PS	RBW 1 6 s VBW 1 On Notch	MHz SGL MHz Off	8			Frequenc	y 390.00	00000 MHz
1 Zero Span	-							-	💿 2Pk Max
server others are									
90 dBµV		2			10 15				
80 dBµV	35	3		5 	(x	e		0	
70 dBµV		2		-	40	·······			
	i se l								
60 dBµV			-	e	ō.	-		-	
	k i i								
50 dBµV				5	15		2		
		вру —							
40 dBµV		2	1	-	0	× *		-	
30 dвµ∨		2			6 1				
			1 A.		the second back	and the second second	h ha		
20 dBµV	V W P V V V V V V	and a contract of the second o	and and the second of the	and the second second	Marcher Rowsend and Inderend	mmmmm	and we see a second second	and all the second of the	mananaphan
10 dBµV		5	2		5			-	
0 dBµV		4		-	*		V1 5	5.000 s	
CF 390.0 MHz			18	1001	l pts				600.0 ms/
[Π				Ready		44.02.2021 15:19:35	Ref Level	RBW

15:19:35 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	390MHz					
Notes	Chamberlain Red					

MultiView 88	Receiver	Spectrum	Spe	ctrum 2	Spectrum	3 🕅			
Ref Level 97 Att Input TRG:VID	.00 dBµV 0 dB ● SWT 1 AC PS	● RBW 1 6s VBW 1 On Notch	MHz SGL MHz Off	ŝ			Frequenc	y 390.00	00000 MHz
1 Zero Span								1	2Pk Max
1272 1272 12									
90 авно	5	9		č	201 2 C				
80 dBµV	35	5		-	5	s			
						17. X			
60 dBµV		2			τ.				
	1.41								
50 dBµV		вич ———							
40 dBµV									
30 dвµV		-							
	www	and have been and the second	momental	and management manager	minufirmation	an march and and and and and and	a human a show the horas a	nonmany	annon addated
20 dBµV									
10 dBµV		6			Ş				
							12.22		
		2		1001			V1	5.000 s	
CF 390.0 MHz	1			1001	. pts		444 24 02 2021	Reflevel	600.0 ms/
l	Л				Ready		15:15:41	Kei Level	N BW

15:15:42 24.02.2021

Test Details						
Manufacturer	Genie					
Model No.	U2					
Serial No.	NA					
Mode	Pulsed Tx					
Carrier Frequency	390MHz					
Notes	Chamberlain Yellow					

MultiView 😣	Receiver		Spectru	n 🕱	Spect	rum 2	Sp	ectrum	3 🕅				ſ	▽
Ref Level 97 Att Input TRG:VID	.00 dBμV 0 dB ● 1 AC	SWT6s PS Or	 RBW VBW Notch 	1 MHz 1 MHz Off	SGL		_			Freq	uency	390.00	00000	MHz
1 Zero Span	ſ	-		1	-		1			1		-	• 2Pk N	Max
90 dBµV							к. К							
80 dBµV									8	.4	-	6		
70 dBµV				-						~	_			
60 dBµV									5 - 2	2	-			
50 dBµV		000 dBµV -					<u>es</u>			2 0	22			
40 dBμV						17								
30 dBµV			5								-			
20 dBµV	hu	Muran		10 months have	ww	h	mark		homemory	montraner	mandur	unnannahadha	municip	condensaria
10 dBµV	5	6			5		5		2		-			
0 dBµV		2			2						V1 5.	000 s		
[CF 390.0 MHz	10					100	1 pts		d	24.02	2021	Reflevel	600.0	ms/
	Л							Ready		15:3	16:47			

15:16:48 24.02.2021

	Test Details
Manufacturer	Genie
Model No.	U2
Serial No.	NA
Mode	Pulsed Tx
Carrier Frequency	390MHz
Notes	Intellicode

MultiView 88	Receiver	Spectrum	n 🕱 St	ectrum 2	Spectrum	з 🔌 🖾			
Ref Level 97 Att Input TRG:VID	.00 dBµV 0 dB ● SW1 1 AC PS	● RBW 1 「6s VBW 1 On Notch	MHz SG MHz Off				Freque	ency 390.0	000000 MHz
1 Zero Span									2Pk Max
90 dBµV									
80 dBµV	3				5	2			
70 dBµV				-					
60 dBµ∨									
50 dBµV	-			25	15				
40 dBμV	TRG 47.000 d	ВµV —							
у Ц Ц Ц Ц Ц 30 dвµv	an and the second second	mprovenerality	allowellowellowellow	abunanananahala	mounderable	a harmon and work	homemount	mmultur	www.www.www.wheel
20 dBµV									
10 dBµV	8				F				
0 dвµV				-	*			_V1 5.000 s	
CF 390.0 MHz				100	1 pts			E.	600.0 ms/
					Ready		4.02.21 14:59	021 Ref Leve	RBW

14:59:01 24.02.2021

	Test Details
Manufacturer	Genie
Model No.	U2
Serial No.	NA
Mode	Pulsed Tx
Carrier Frequency	390MHz
Notes	Intellicode 2

MultiView 88	Receiver	Spectrun	n 🖾 Sp	ectrum 2	Spectrum	3			
Ref Level 97 Att Input TRG:VID	.00 dBµV 0 dB ● SWT 1 AC PS	● RBW 1 6s VBW 1 On Notch	MHz SG MHz Off	L			Frequenc	y 390.00	00000 MHz
1 Zero Span	r		ŕ		18				2Pk Max
Varian away ke									
90 dBµV	-	5			ie	÷			
80 dBµV	8	3		5	8	e		-	
70 dBµV		2			6				
60 dBµV		2	-	-	÷				
204 3765,217									
50 dBµY		3		15	15		2		
	TRG 47.000 de	Вµ∨ ———		8	8			-	
40 dBuV				-	3				
		2		-	0	0			
55 GDPV									
	mannuhadion	makerakananan	howamphianon	manhamman	manneman	-allege of the consist	ange hundraman many work	mutromano	manhahahahaha
20 000					0				
40.10.11									
το qβhΛ		5		5	6	5	2		
							12.22		
0 dBµV		2					V1	5.000 s	
CF 390.0 MHz	11			100	l pts		24.02.2021	(Doft ours!	600.0 ms/
	Д				Ready		15:01:01	RerLevel	RBW •

15:01:02 24.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Mode	Pulsed Tx	
Carrier Frequency	433.92MHz	
Notes	None	

MultiView 88	Receiver	Spectrum	n 🕱 Spe	ectrum 2	Spectrum	з 🕅			
Ref Level 97 Att Input TRG:VID	.00 dBµV 0 dB ● SWT 1 AC PS	● RBW 1 6 s VBW 1 On Notch	MHz SGL MHz Off	8			Frequen	cy 433.92	00000 MHz
1 Zero Span									2Pk Max
90 dBµV		- 							
80 dBµV	a	8		9		8			
70 dBµV		<u>v</u>							6
-60 dBµV		-			0				
50 dBµV			e	75	б				
40 dBµ∨	TRG 47.000 al	вру		с. Х	C.				
30 dBµV ———			·		-				
20 dBµV		monomorphic	nonthernorthematelined	mummun	haven-book-book-	anapproximately	wath body Amadula	enter manademan	m. manakaraa
10 dBµV		5		5	¢.				
0 dBµV		-		2	*			L 5.000 s	
CF 433.92 MH	z			100	l pts		•	1	600.0 ms/
	Л				Ready		24.02.202 15:22:0	1 Ref Level	RBW

15:22:03 24.02.2021

21. Duty Cycle Factor Measurements

Test Information		
Manufacturer	Genie	
Product	Universal 2 Button Transmitter	
Model No.	U2	
Serial No.	NA	
Mode	Pulsed Tx	

Test Setup Details		
Setup Format	Tabletop	
Type of Test Site	Semi-Anechoic Chamber	
Notes	None	

Procedures

The duty cycle factor is used to convert peak detected readings to average readings. This factor is computed from the time domain trace of the pulse modulation signal. The following procedure was used to measure a representative sample: Since this EUT utilizes a rolling code modulation, the duty is calculated based on the worst case. The following procedure was used to measure a representative sample:

- 1) With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer.
- 2) The pulse width is measured, and a plot of this measurement is recorded.
- 3) Next the number of pulses in the word period is measured and a plot is recorded.
- 4) Finally, the length of the word period is measured, and a third plot is recorded. If the word period exceeds 100msec, the word period is limited to 100msec.
- 5) The pulse width and number of pulses for the word period are used to compute the on-time. The duty cycle is then computed as the (on-time/ word period).
- 6) The duty cycle factor is computed from the duty cycle.

Frequency	Code Format	Duty Cycle (Calculated)
303MHz	Fixed Learn Code	-7.32dB
310MHz	Rolling Code	-12.98dB
315MHz	Intellicode	-13.22dB
315MHz	Intellicode 2	-12.70dB
315MHz	Chamberlain Purple	-8.89dB
315MHz	Marantec	-11.75dB
318MHz	Mega Code	-15.39dB
372.5MHz	Wayne Dalton	-12.39dB
372.5MHz	Ryobi	-13.19dB
390MHz	Intellicode	-13.61dB
390MHz	Intellicode 2	-13.23dB
390MHz	Chamberlain Red	-6.005dB
390MHz	Chamberlain Yellow	-6.70dB
390MHz	Chamberlain Green	-9.43dB
433.92MHz	Rolling Code	-7.89dB

	Test Details		
Manufacturer	Genie		
Model No.	U2		
Serial No.	NA		
Test	FCC §15.231, RSS-210 Duty Cycle		
Mode	Pulsed Tx		
Carrier Frequency	303MHz		
Notes	Wide Pulse = 990µs = 0.99ms		

Spectrum X ∇ MultiView Receiver X Ref Level 112.00 dBμV Att 10 dB SWT 5 ms Input 1 AC PS On RBW 1 MHz VBW 1 MHz Notch Off Frequency 303.000000 MHz Att Input TRG:VID 1 Zero Span 01AP Clrw 110 dBµV D2[1] 0.00 dB 990.00 µs 100 dBµV-M1[1]-101.33 dBµV -TRG 96.000 dBµV 995.00 µs 90 dBµV-80 dBµV-70 dBµV· 60 dBµ∨-50 dBµV∙ 40 dBµV 30 dBµV-White a tuliut ! 20 dBµV-1001 pts CF 303.0 MHz 500.0 µs/ 2 Marker Table X-Value 995.0 µs 0.0 s Y-Value 101.33 dBµV 0.00 dB 0.00 dB Type | Ref | Trc | Function Function Result M1 D1 D2 M1 990.0 µs M1 22.02.2021 10:20:30 Ref Level RBW Measuring... Spectrum: Waiting for Trigger.

10:20:31 22.02.2021

DUTY CYCLE – WIDE PULSE

	Test Details		
Manufacturer	Genie		
Model No.	U2		
Serial No.	NA		
Test	FCC §15.231, RSS-210 Duty Cycle		
Mode	Pulsed Tx		
Carrier Frequency	303MHz		
Notes	Narrow Pulse = 495µs = 0.495ms		

DUTY CYCLE - NARROW PULSE

MultiView 8	Receiver	Spectrur	m 🖾					\bigtriangledown
Ref Level 112 Att Input TRG:VID	2.00 dBµV 10 dB ● SW 1 AC PS	● RBW 1 MH T5ms VBW 1 MH On Notch C	Hz Hz Dff			Freque	ncy 303.00	00000 MHz
1 Zero Span								●1AP Clrw
110 dBµV					7		D2[1]	0.21 dB
				MP	D2			495.00 µs
100 dBµV							M1[1]	-101.08 dBµV-
		ψν						2.98500 ms
on druk								
90 ubpv								
								1
80 dBµV			21 ¹ 11				55	
70 dBµV								
07								
60 dbuy							22	
ου αθμν								
50 dBµV								
40 dBµV								
12				10 M		S. Mith		
20 dbuV-	and the start of the		and the little set	had Bearly 1		and with the	A.	
30 UBH V	A MAL WILL T		Alled Antive Medical all	IL ADD IN A. U.	1	astu de la de la la	24	
	i de la companya de la							
20 dBµV	a da nati	· · · · · · · · · · · · · · · · · · ·	Water and the second second second	a di setili			3	
	the A state of the		al dan Marka Kalata k	a a all a fill all				
CF 303.0 MHz		,	1001	pts				500.0 µs/
2 Marker Table	3							
Type Ref	Trc	X-Value	Y-Value		Function		Function Res	sult
M1	1	2.985 ms	101.08 dBµV	L 33		6		assessments I
D1 M1	1	0.0 s	0.00 dB					
D2 M1	1	495.0 µs	0.21 dB					
		Spectrum: Waiting	for Trigger	Measuring		22.02.20	21 Ref Level	RBW
l		spool and a strong	100 100 00 00 00 00 00 00 00 00 00 00 00			10:21:	04	

10:21:04 22.02.2021

Test Details			
Manufacturer	Genie		
Model No.	U2		
Serial No.	NA		
Test	FCC §15.231, RSS-210 Duty Cycle		
Mode	Pulsed Tx		
Carrier Frequency	303MHz		
Notes	Duty Cycle Calculation: 30 × 0.99ms = 29.7ms 27 × 0.495ms = 13.365ms 29.7 + 13.365 = 43.065 D.C = 20log(43.065/100) = -7.32dB		

DUTY CYCLE

10:22:10 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	310MHz	
Notes	Wide Pulse = 395µs = 0.395ms	

10:32:11 22.02.2021

	Test Details		
Manufacturer	Genie		
Model No.	U2		
Serial No.	NA		
Test	FCC §15.231, RSS-210 Duty Cycle		
Mode	Pulsed Tx		
Carrier Frequency	310MHz		
Notes	Narrow Pulse = 195µs = 0.195ms		

DUTY CYCLE – NARROW PULSE

10:32:43 22.02.2021

Test Details				
Manufacturer	Genie			
Model No.	U2			
Serial No.	NA			
Test	FCC §15.231, RSS-210 Duty Cycle			
Mode	Pulsed Tx			
Carrier Frequency	310MHz			
Notes	Duty Cycle Calculation: 37 × 0.395ms = 14.615ms 40 × 0.195ms = 7.8ms 14.615 + 7.8 = 22.415 D.C = 20log(22.415/100) = -12.98dB			

DUTY CYCLE

10:34:52 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	315MHz (Intellicode)	
Notes	Wide Pulse = 395µs = 0.395ms	

DUTY CYCLE – WIDE PULSE

10:41:24 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	315MHz (Intellicode)	
Notes	Narrow Pulse = 195µs = 0.195ms	

X Spectrum 2 ∇ MultiView 8 Spectrum X Receiver X Ref Level 122.00 dBμV Att 20 dB SWT 5 ms Input 1 AC PS On RBW 1 MHz VBW 1 MHz Notch Off Frequency 315.000000 MHz Att Input TRG:VID 1 Zero Span 1AP Clrw 120 dBµV D2[1] 0.22 dB 195.00 µs Mł -109.76 dBµV 110 dBµV M1[1] 1.79500 ms 100 dBµ∨ -TRG 95.000 dBµV 90 dBµV-80 dBµV-70 dBµ∨-60 dBµV∙ 50 dBµV 40 dBµ∨ 30 dBµV-AD DUDING AND DUDING A CF 315.0 MHz 1001 pts 500.0 µs/ 2 Marker Table ۲-Value 109.76 dBµV 0.00 dB 0.22 dB X-Value 1.795 ms 0.0 s Type | Ref | Trc | **Function Result** Function M1 D1 D2 M1 195.0 µs M1 22.02.2021 10:42:32 **HANNANN** Ref Level RBW Measuring... Spectrum: Waiting for Trigger.

DUTY CYCLE – NARROW PULSE

10:42:32 22.02.2021

Test Details				
Manufacturer	Genie			
Model No.	U2			
Serial No.	NA			
Test	FCC §15.231, RSS-210 Duty Cycle			
Mode	Pulsed Tx			
Carrier Frequency	315MHz (Intellicode)			
Notes	Duty Cycle Calculation: 34 × 0.395ms = 13.43ms 43 × 0.195ms = 8.385ms 13.43 + 8.385 = 21.815 D.C = 20log(21.815/100) = -13.22dB			

DUTY CYCLE

10:43:28 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	315MHz (Intellicode 2)	
Notes	Wide Pulse = 395µs = 0.395ms	

DUTY CYCLE – WIDE PULSE

11:12:51 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	315MHz (Intellicode 2)	
Notes	Narrow Pulse = 195µs = 0.195ms	

X Spectrum 2 ∇ MultiView Spectrum X Receiver X Ref Level 122.00 dBμV Att 20 dB SWT 5 ms Input 1 AC PS On RBW 1 MHz VBW 1 MHz Notch Off Frequency 315.0000000 MHz Att Input TRG:VID 1 Zero Span ●1AP Clrw 120 dBµV D2[1] -0.03 dB 195.00 µs M M1[1]-109.24 dBµV 110 dBµV 600.00 µs 100 dBµV -TRG 95.000 dBµV 90 dBµV 80 dBµ 70 dBµ 60 dBµ 50 dBµ 40 dBuV 1 TTT 30 dBµ ril I CF 315.0 MHz 1001 pts 500.0 µs/ 2 Marker Table ۲-Value 109.24 dBµV 0.00 dB −0.03 dB X-Value 600.0 µs 0.0 s Type | Ref | Trc | **Function Result** Function M1 D1 D2 M1 195.0 µs M1 22.02.2021 11:12:15 Ref Level RBW Measuring... Spectrum: Waiting for Trigger.

DUTY CYCLE – NARROW PULSE

11:12:15 22.02.2021

	Test Details
Manufacturer	Genie
Model No.	U2
Serial No.	NA
Test	FCC §15.231, RSS-210 Duty Cycle
Mode	Pulsed Tx
Carrier Frequency	315MHz (Intellicode 2)
Notes	Duty Cycle Calculation: 32 × 0.395ms = 12.645ms 54 × 0.195ms = 10.53ms 12.64 + 10.53 = 23.17 D.C. = 20log(23 17/100) = -12.7dB

DUTY CYCLE

11:13:49 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	315MHz (Chamberlain Purple)	
Notes	Wide Pulse = 1.0ms	

DUTY CYCLE – WIDE PULSE

10:49:19 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	315MHz (Chamberlain Purple)	
Notes	Narrow Pulse = 495µs = 0.495ms	

DUTY CYCLE – NARROW PULSE

MultiView	Receiver	Spect	rum 🖾	Spectrum 2	2 🕱				
Ref Level 12 Att Input TRG/VID	2.00 dBµV 20 dB ● SW 1 AC PS	RBW T 5 ms VBW On Notch	1 MHz 1 MHz Off				Frequer	acy 315.00	00000 MHz
1 Zero Span									●1AP Clrw
120 dBµV	2 2							D2[1]	1.17 dB
148									495.00 us
	12			i.				M1[1]	-108.24 dBuV
									0.00000000 s
100 dBuV	,								
100 0004	TRC 05 000 d	Duty							
and the second se	TKG 95.000 u	рни				5			
ао qвhл		5	S. 12	92 - 12 12				1	
1000 (200 Ke									
80 dBµV			1					1	
70 dBµ∨		2	<u> </u>						
60 dBµ∨									
50 dBµV									
85			14				1 Le		
40 dBuV	4 July Here July	ale a shi tara a	IL		and but the	1 day under a state	and the bull		L. L. WALLAND
	o bet e thead	And a sublide the a	descriptions of T				AATA DAA	1	in total data in the self.
20 dbuV							l.i.i.		
30 авр∨-	III and that is	s. M. M. Lihr.	ral da Local de			d tila tal tillar	a set la react de la		for a set of
	A LINE LAND A	i kati i di di ang kati kati kati kati kati kati kati kati	ALLA DE LA MERCIA	1001	l is a bank cat i. W	AN ALEN IL MENNEL I.	I. B. Ch. A. LANNI		
CF 315.0 MHZ	12.71			1001 p	ots				500.0 µs/
2 Marker Tabl	e : Tan	V Ushan	1		T	E	i i i	E	
iype Ref		x-value	102	74 dBuV		Function		Function Re	suit
D1 M1	1	0.0 s	100	0.00 dB					
D2 M1	î	495.0 µs		1.17 dB					
	Υ ·	Spectrum: Wait	ting for Trigger		Measuring		22.02.202	1 Ref Level	RBW

10:47:43 22.02.2021

Test Details				
Manufacturer	Genie			
Model No.	U2			
Serial No.	NA			
Test	FCC §15.231, RSS-210 Duty Cycle			
Mode	Pulsed Tx			
Carrier Frequency	315MHz (Chamberlain Purple)			
	Duty Cycle Calculation:			
	27 × 1.0ms = 27ms			
Notes	18 × 0.495ms = 8.91ms			
	27 + 8.91 = 35.91			
	D.C = 20log(35.91/100) = -8.89dB			

DUTY CYCLE

10:49:53 22.02.2021

Test Details		
Manufacturer	Genie	
Model No.	U2	
Serial No.	NA	
Test	FCC §15.231, RSS-210 Duty Cycle	
Mode	Pulsed Tx	
Carrier Frequency	315MHz (Marantec)	
Notes	Wide Pulse = 1.53ms	

DUTY CYCLE – WIDE PULSE

MultiVi	ew 🕄	Receiver	🖾 Sp	ectrum	X	Spectrum	2 🗵					▼
Ref Lev Att Input TBG:VID	vel 122.0	0 dBµV 20 dB ● SW 1 AC PS	● RE T 10 ms VB On No	W 1 MHz W 1 MHz otch Off	SC	L			Frequ	lency	315.00	00000 MHz
1 Zero Sp	ban											01AP Clrw
120 dBµV—			5		-						D2[1]	0.95 dB
				1	41		0.9					1.53000 ms
110 dBµV—	-		v	-	1		D2				M1[1]	-109.55 dBµV
					Ĩ							3.82000 ms
100 dBuV-			2	5								NITUS CONSTRUCTION
assure Fo			311V									
oo douw		1110 93.000 4	2H X									
90 ивµv —			9		5 - 12 - 12	12				55		
19535 (N26 Ke												
80 dBµV			2			1				-		
70 dBµV			4	-	<u></u>	55	1 17			25		
60 dBuV-				-	-			Q		-	-	3
0000000000												
FO HD HI												
50 dBµV			2			12		S		8		1
1000 Millio 10	Sec. di	and the state of the	a line shares	der an har the			1 . J. H. L	dat our stadie o	Witness All		diana a	hit worker late
40 dBµ∨		n apal yan an a	·····································	a set a s	<u> </u>					8	t fil ne - h fi	
												No. 1017 - 101
30 dBµV	<u></u>				-		<u> </u>			2		
	Salla a	A. Sankl					1001 09505 1000		Sec. R. S. Hall		a. if a	Law Karmer
CE 315.0	MHz			i litti ti liitti		1001	ots	<u>l is is a sin in factoris</u>	idi di ko Bird	<i></i>	kalahar U	1.0 ms/
2 Marker	Table					1001	10000					110 1110/
Type	Ref	Trc	X-Value	1	1	-Value	1	Function		Eu	nction Re	sult
M1		1	3.82 ms	1	109	55 dBµV	E.	. unddon		, u		
D1	M1	1	0.0 s			0.00 dB						
D2	M1	1	1.53 ms			0.95 dB						
	0	(Ready	-	400 22.02.	2021	Ref Level	RBW

11:17:55 22.02.2021

Test Details				
Manufacturer	Genie			
Model No.	U2			
Serial No.	NA			
Test	FCC §15.231, RSS-210 Duty Cycle			
Mode	Pulsed Tx			
Carrier Frequency	315MHz (Marantec)			
Notes	Narrow Pulse = 750µs = 0.75ms			

DUTY CYCLE – NARROW PULSE

MultiView 🗟 Receive	er 🛛 🖾 Spectrui	n 🛛 🖾 Spectrum 2	X				▼
Ref Level 122.00 dBµV Att 20 dB Input 1 AC	● RBW 1 № SWT 10 ms VBW 1 № PS On Notch	IHz SGL IHz Off			Frequ	ency 315.00	00000 MHz
1 Zero Span							01AP Clrw
120 dBµV-			1			D2[1]	-0.02 dB
Mł	no						750.00 µs
110 dBµV — 🔀 👘						M1[1]	-110.81 dBµV-
							1.28000 ms
100 dBuV		2	7				and we are a sub-
TPC OF O		1					
			(a)				
90 UBH V		12			5	0.000	
80 dBµV-			10				
70 dBµ∨		n n n n n n n n n n n n n n n n n n n			1		
60 dBuV-		(<u></u>	0				3
FO dBuW							
30 0BHV				· · · · · · · · · · · · · · · · · · ·			
added to the astronomic	he should be be to the first	in 1.10 million of a larger		10.00	all and the second bit is	whet the bound	
40 dBµV	The second s	and the second	÷		a the second states as	TTP TT	
1.							
3 <mark>0 dBµV</mark>							
iii Factor Lines.	the Hilling carling the	the first first of early at		M. She		and there are add	
CF 315.0 MHz		1001 pt	S				1.0 ms/
2 Marker Table							
Type Ref Trc	X-Value	Y-Value		Function		Function Res	sult
M1 1	1.28 ms	110.81 dBµV			E		eservice and
D1 M1 1	0.0 s	0.00 dB					
D2 M1 1	750.0 µs	-0.02 dB					
			Ready		22.02.2	021 Ref Level	RBW

11:18:40 22.02.2021