

SAR TEST REPORT

Report No.: 20250117G01476X-W1

Product Name: Remote Control

Model Name: D-Series H16

Serial Model: D-Series

Trade Name: /
Brand Name: /

FCC ID: 2BM3J-H16

Applicant: DMR Technologies

Address: 2050 15th St., Detroit, MI 48216

Test Date: 2025/01/20~2025/01/21

Issued by: CCIC Southern Testing Co., Ltd.

Electronic Testing Building, No.43, Shahe Road, Xili Street, Lab Location:

Nanshan District, Shenzhen, Guangdong, China

Tel: 86-755-26627338 E-Mail: manager@ccic-set.com

This test report consists of 66 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The CCIC-SET does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Applicant: DMR Technologies

Applicant Address: 2050 15th St., Detroit, MI 48216

Manufacturer: DMR Technologies Co.,Ltd

7/554 building 2, Moo.6, Mabyangporn, Pluakdaeng, Rayong, Thailand Manufacturer Address:

21140

FCC 47 CFR Part 2(2.1093): Radiofrequency Radiation Exposure

Evaluation: Portable Devices

ANSI/IEEE C95.1–2019: Safety Levels with Respect to Human

Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300

GHz

IEEE 1528–2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human

Test Standards: Head from Wireless Communications Devices: Measurement

Techniques

IEC/IEEE62209-1528:2020: Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices –Part 1528: Human models, instrumentation,

and procedures (Frequency range of 4 MHz to 10 GHz)

Test Result: Pass

Tested by: (a) We i 2025-02-11

Carl Wei, Test Engineer

Reviewed by: Sun Jiaohui 2025-02-11

Sun Jiaohui, Senior Engineer

Approved by: 2025-02-11

Chris You, Manager

Contents

Test	t Report	2
1.	Administrative Data	
2.	Equipment Under Test (EUT)	6
3.	SAR Summary	7
4.	Specific Absorption Rate (SAR)	8
5.	Tissue check and recommend Dielectric Parameters	12
6.	SAR measurement procedure	16
7.	Conducted RF Output Power	17
8.	Antenna Location:	19
9.	Test Results	20
10.	Simultaneous Transmissions Analysis	22
11.	Measurement Uncertainty	23
12.	System Check Uncertainty	27
AN	NEX A: SAR Test Setup	29
AN	NEX B: System Check Plots	32
AN	NEX C: SAR Test Plots	35
AN	NEX D: Calibration Certificate	39

1. Administrative Data

1.1 Testing Laboratory

Test Site:	CCIC Southern Testing Co., Ltd.
Address:	Electronic Testing Building, No.43, Shahe Road, Xili Street,
Audress:	Nanshan District, Shenzhen, Guangdong, China
	CCIC-SET is a third party testing organization accredited by A2LA
A2LA Lab Code:	according to ISO/IEC 17025:2017. The accreditation certificate number is
	5721.01
	CCIC Southern Testing Co., Ltd. EMC Laboratory has been registered and
ECC Designations	fully described in a report filed with the FCC (Federal Communications
FCC Registration:	Commission). The acceptance letter from the FCC is maintained in our
	files. Designation Number: CN1283, valid time is until Iune.30, 2025.
	CCIC-SET Laboratory has been registered by Certification and
ICED Dogistuation	Engineering Bureau of Industry Canada for the performance of radiated
ISED Registration:	measurements with Registration No. 11185A, CAB Identifier: CN0064,
	valid time is until June 30, 2025.
Test Environment	Temperature (°C): 18°C ~25℃
	Relative Humidity (%): 35%~75% RH
Condition:	Atmospheric Pressure (kPa): 86KPa-106KPa

1.2 List of test Equipment

This table is a complete overview of the SAR measurement equipment. Devices used during the test described are marked \boxtimes .

	EQUIPMENT	Model	Serial number	Calibration Date	Due Date
\boxtimes	SAR Probe	SSE2	3723-EPGO-433	2024/04/17	2025/04/16
	Dipole	SID2450	SN 09/13 DIP2G450-220	2023/05/24	2026/05/23
	Dipole	SWG5500	SN15/15 WGA39	2023/05/25	2026/05/24
	Multimeter	Keithley-2000	4014020	2025/01/14	2026/01/13
	Network Analyzer	ZVB8	100343	2024/10/22	2025/10/21
\boxtimes	PC 3.5 Fixed Match Calibration Kit	ZV-Z32	100571	2025/01/14	2026/01/13
	Dielectric Probe Kit	SCLMP	SN 09/13 OCPG51	2025/01/14	2026/01/13
	Signal Generator	SMB 100A	177649	2025/01/06	2026/01/05
	Amplifier	Nucletudes	143060	2025/01/14	2026/01/13
\boxtimes	Directional Coupler	DC6180A	305827	2024/06/02	2025/06/01
	Power Meter	NRP2	103434	2024/06/19	2025/06/18

2. Equipment Under Test (EUT)

Identification of the Equipment under Test

Device type:	portable device			
Exposure category:	uncontrolled environment / general population			
Product Name:	Remote Control			
Brand Name:	/			
Model Name:	D-Series H16, D-Series			
Operating Band(s):	2.4G SRD, 2.4/5.8G WIFI, Bluetoo	th		
Test Band(s):	2.4G SRD, 2.4/5.8G WIFI			
	2.4G/5.8G SRD: (OFDM),			
Test modulation:	2.4G WIFI: (DSSS, OFDM)			
Test modulation.	5.8G WIFI: (OFDM)			
	BT: GFSK, π/4-DQPSK, 8DPSK			
Tested frequency range(s)	transmitter frequency range	receiver frequency range		
SRD:	2412~24	62 MHz		
WIFI:	2412-2462 MHz			
W II 1.	5725-5850 MHz			
Hardware version:	V1.0			
Software version:	V1.0			
A ntonno tyro a	BT/WIFI: FPC Antenna			
Antenna type:	2.4/5.8G SRD: External antenna			
MAX. SAR Value:	Body-support: 0.737 W/Kg(1g-0mn	n,Limit:1.6W/Kg)		

Note:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. Model D-Series H16, D-Series only the model name is different.

3. SAR Summary

Highest SAR Summary

Exposure	Frequency	Scaled 1g-SAR(W/kg)	Highest Scaled
Position	Band		1g-SAR(W/kg)
Body-support (0mm Gap)	2.4G SRD	0.737	0.737

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4.2 Applicable Standards and Limits

4.2.1 Applicable Standards

T.C.C. 1. CTD. D			
FCC 47 CFR Part 2	Radiofrequency Radiation Exposure Evaluation: Portable Devices		
(2.1093)	Radiofrequency Radiation Exposure Evaluation. Fortable Devices		
ANSI/IEEE	Safety Levels with Respect to Human Exposure to Electric, Magnetic, and		
C95.1–2019	Electromagnetic Fields, 0 Hz to 300 GHz		
	IEEE Recommended Practice for Determining the Peak Spatial-Average		
IEEE 1528–2013	Specific Absorption Rate (SAR) in the Human Head from Wireless		
	Communications Devices: Measurement Techniques		
	Measurement procedure for the assessment of specific absorption rate of		
IEC/IEEE	human exposure to radio frequency fields from hand-held and		
62209-1528:2020	body-mounted wireless communication devices –Part 1528: Human models,		
	instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)		
KDB 248227 D01 v02r02 802.11 WIFI SAR			
KDB 447498 D01	v06 General RF Exposure Guidance		

4.2.2 RF exposure Limits

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR* (Brain/Body)	1.60 mW/g
Spatial Average SAR** (Whole Body)	$0.08~\mathrm{mW/g}$
Spatial Peak SAR*** (Limbs)	4.00 mW/g

The limit applied in this test report is shown in bold letters.

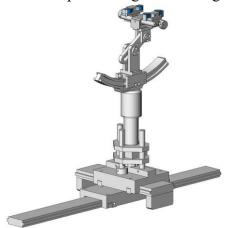
Notes:

- * The Spatial Peak value of the SAR averaged over any 1 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
 - ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

4.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.



SAM Twin Phantom

4.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

4.5 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g.,

DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: \pm 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe

axis)

Dynamic Range $1.5 \mu \text{W/g}$ to 100 mW/g;

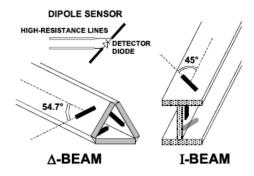
Linearity: $\pm 0.5 \text{ dB}$

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz


Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

5. Tissue check and recommend Dielectric Parameters

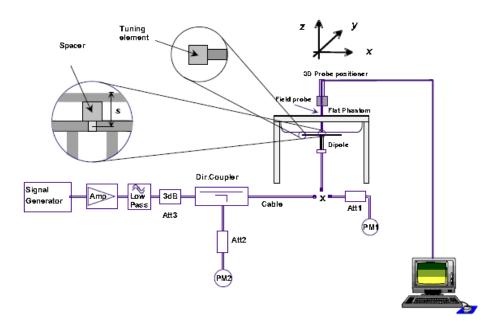
5.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

	Tissue			
Frequency (MHz)	Real part of the complex relative permittivity, ε_r	Conductivity, σ(S/m)		
30	55	0.75		
150	52.3	0.76		
300	45.3	0.87		
450	43.5	0.87		
750	41.9	0.89		
835	41.5	0.9		
900	41.5	0.97		
1450	40.5	1.2		
1800	40	1.4		
1900	40	1.4		
1950	40	1.4		
2000	40	1.4		
2100	39.8	1.49		
2450	39.2	1.8		
2600	39	1.96		
3000	38.5	2.4		
3500	37.9	2.91		
4000	37.4	3.43		
4500	36.8	3.94		
5000	36.2	4.45		
5200	36	4.66		
5400	35.8	4.86		
5600	35.5	5.07		
5800	35.3	5.27		
6000	35.1	5.48		

5.2 Simulate liquid Liquid check results:

Table 3: Dielectric Performance of Tissue Simulating Liquid


/	Frequency	Permittivity ε	Conductivity σ (S/m)	Liquid Temp. (°C)	Test Date
Target value	2450MHz	39.2±5% (37.24~41.16)	1.80±5% (1.71~1.89)	22.6	2025/01/20
Validation value	2430WIIIZ	39.65	1.84	22.0	2023/01/20
Target value	5900MHz	35.3±5% (33.535~37.065)	5.27±5% (5.0065~5.5335)	22.5	2025/01/21
Validation value	5800MHz	34.14	5.25	22.3	

SAR System validation

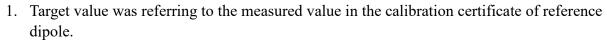
Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below:

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.01W (10 dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.


The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

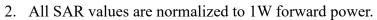
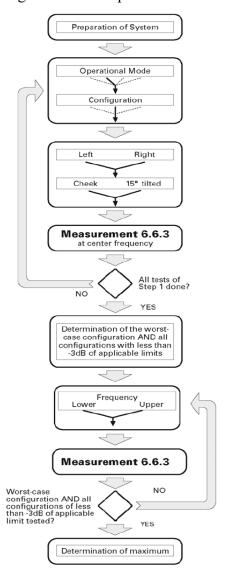
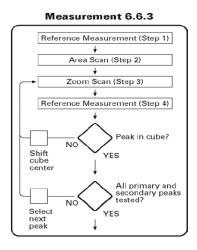


Table 4: system validation (1g) System Check Results

Frequency	Duty cycle	Target value (1-g) (W/Kg)	10mW Test value (1-g) (W/Kg)	Test SAR Normalized to 1W(w/Kg)	Test Date	
2450MHz	1:1	51.74 W/kg±10% (46.566~56.914)	0.5368	53.68	2025/01/20	
5800MHz	1:1	174.67 W/kg±10% (157.203~192.137)	1.7196	171.96	2025/01/21	

Note:





6. SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

7. Conducted RF Output Power

2.4G SRD Power

Frequency (MHz)	Antenna	Conducted Power (dBm) 10MHz	Total Power (dBm) 20MHz	Max. Tune up
2412	Ant1	19.62	18.72	20
2437	Ant1	16.29	16.57	17
2462	Ant1	17.98	18.03	19
2412	Ant2	19.53	18.65	20
2437	Ant2	16.12	16.49	17
2462	Ant2	17.86	17.97	19

WIFI 2.4G Output power

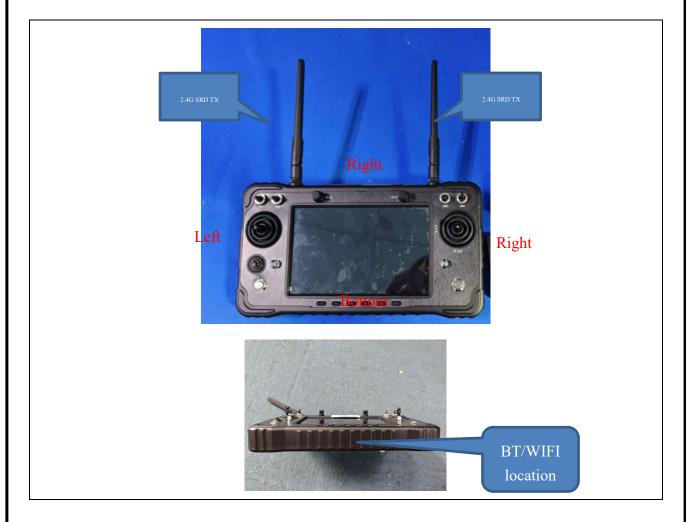
2.4G WIFI Channel/Freq.(MHz)	Mode	Output Power (dBm)	Max. Tune up
1/2412		15.75	16
6/2437	802.11b	15.56	16
11/2462		15.12	16
1/2412		13.99	15
6/2437	802.11g	16.37	17
11/2462		16.67	17
1/2412		16.63	17
6/2437	802.11n(HT20)	14.6	15
11/2462		16.93	17
1/2422		15.74	16
6/2437	802.11n(HT40)	15.08	16
11/2452		15.71	16

WIFI 5G U-NII-3 Output power

Channel/Freq.(MHz)	Mode	Output Power (dBm)	Max. Tune up
149/5745		12.24	14
157/5785	802.11 a	13.74	14
165/5825		13.28	14
149/5745		14.1	15
157/5785	802.11 n20	14.53	15
165/5825		14.1	15
149/5745		15.7	15
157/5785	802.11 ac20	14.41	15
165/5825		13.95	15
151/5755	902 1140	15.66	17
159/5795	802.11 n40	16.43	17
151/5755	902.11 - 40	12.53	13
159/5795	802.11 ac40	12.62	13
155/5775	802.11 ac80	12.75	13

BT Output power

2.4G WIFI Channel/Freq.(MHz)	Mode	Output Power (dBm)	Max. Tune up
2402	1-DH5	6.13	7
2441		6.38	7
2480		5.64	7
2402	2-DH5	5.46	6
2441		5.93	6
2480		4.98	6
2402	3-DH5	5.74	7
2441		6.33	7
2480		5.55	7


BLE Output power

2.4G WIFI Channel/Freq.(MHz)	Mode	Mode Output Power (dBm)	
2402	1M	0.39	1
2441		0.54	1
2480		0.75	1
2402	2M	0.32	1
2441		0.54	1
2480		0.92	1

Note: according to KDB447498, BT SAR no required due to the low power(exclusion 9.6mW)

8. Antenna Location:

EUT Unfold Antenna-to-User (Edge Side) distance (mm):

Antenna	Front	Back	Left	Right	Тор	Bottom
BT/WIFI	11	11	115	110	135	2

Note:

- 1. The SAR evaluation procedures for Portable Devices with Wireless Router function is according to KDB 941225 D06 Hotspot SAR v02r01.
- 2. Head/Body-worn/Hotspot mode SAR assessments are required.
- 3. Referring to KDB 941225 D06, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

9. Test Results

Results overview of 2.4G SRD

10MHz BW

Body-support(0mm)	Channel /Frequency	ANT	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	Limit (W/kg)	SAR Plot.
Тор	2412	ANT1	0.675	-0.85	1.091	0.737	1.6	1
Тор	2412	ANT2	0.644	1.45	1.114	0.718	1.6	/

Results overview of WIFI 2.4G

Body-support(0mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	Limit (W/kg)	SAR Plot.
Front Upward	11/2462	802.11n20	0.107	-1.22	1.089	0.117	1.6	/
Back Upward	11/2462	802.11n20	0.134	3.01	1.089	0.146	1.6	/
Bottom	11/2462	802.11n20	0.551	-0.23	1.089	0.600	1.6	2

Results overview of 5.8G WIFI

110000000000000000000000000000000000000										
Body-support(0mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	Limit (W/kg)	SAR Plot.		
Front Upward	5795	802.11n40	0.160	4.22	1.140	0.182	1.6	/		
Back Upward	5795	802.11n40	0.180	0.28	1.140	0.210	1.6	/		
Bottom	5795	802.11n40	0.636	3.11	1.140	0.730	1.6	3		

Note:

- 1. The maximum SAR value of each test band is marked bold.
- 2. When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v06)
 - \leq 0.8 W/kg, when the transmission band is \leq 100 MHz
 - $\bullet \le 0.6$ W/kg, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg, when the transmission band is ≥ 200 MHz
- 3. *: Due the antenna location and antenna performance results the SAR value lower than the lowest system limit, then we show <-0.001 W/Kg" in the report.

10. Simultaneous Transmissions Analysis

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.

Simultaneous SAR

No.	Simultaneous Tx Combination	Body
1	2.4G SRD MIMO	Support
2	2.4G SRD+WIFI	Not Support
3	2.4G WIFI+5.8G WIFI	Not Support

Applicable Multiple Scenario Evaluation

Position 1gSAR(W/kg)	2.4G SRD ANT 1	2.4G SRD ANT 2	2.4G WIFI	5.8G WIFI
igorii(w/kg)	1	2	3	4
Body-support	0.737	0.718	0.600	0.730

Position	Simultaneous SAR	Max Simultaneous SAR
1gSAR(W/kg)	1+2	
Body-support	1.455	1.455

11. Measurement Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi					
	Measurement System												
1	- Probe Calibration	В	5.8	N	1	1	5.8	∞					
2	- Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞ ×					
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞					
4	- Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞					
5	- Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	∞					
6	- System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.58	∞					
7	Modulation response	В	3	N	1	1	3.00						
8	- Readout Electronics	В	0.5	N	1	1	0.50	∞					
9	- Response Time	В	1.4	R	$\sqrt{3}$	1	0.81	∞					
10	- Integration Time	В	3.0	R	$\sqrt{3}$	1	1.73	∞					
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞					
12	- Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞					
13	- Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	∞					
14	- Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	œ					

							20230117 GC		
	Uncertainties of the DUT								
15	- Position of the DUT	A	2.6	N	$\sqrt{3}$	1	2.6	5	
16	- Holder of the DUT	A	3	N	$\sqrt{3}$	1	3.0	5	
17	- Output Power Variation – SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.89	∞	
			Phantom and T	issue Paramete	rs				
18	- Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞	
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00		
20	- Liquid Conductivity Target – tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	8	
21	- Liquid Conductivity – measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9	
22	- Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	80	
23	- Liquid Permittivity – measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞	
Co	Combined Standard Uncertainty			RSS			10.63		
	Expanded uncertainty (Confidence interval of 95 %)			K=2			21.26		

Uncertainty component	Uncertainty ±%	Probability distributions	Factor	Ci (1 g)	Ci (10 g)	Standard Uncertainty ±%,(1 g)	Standard Uncertainty ±%, (10 g)
		Measurement	System er	rors		,(3)	, (- 3)
Probe calibration	5.8	N	2	1	1	2.90	2.90
Probe calibration drift	1.7	R	$\sqrt{3}$	1	1	0.98	0.98
Probe linearity and detection Limit	4.7	R	√3	1	1	2.71	2.71
Broadband signal	2.8	R	√3	1	1	1.62	1.62
Probe isotropy	3.5	R	√3	1	1	2.02	2.02
Other probe and data acquisition errors	2.4	N	1	1	1	2.40	2.40
RF ambient and noise	1.8	N	1	1	1	1.80	1.80
Probe positioning errors	0.008	N	1	0.5	0.5	0.00	0.00
Data processing errors	4.0	N	1	1	1	4.00	4.00
		Phantom and	Device En	rors			
Measurement of phantom conductivity (σ)	2.5	N	1	0.78	0.71	1.95	1.78
Temperature effects (medium)	5.4	R	√3	0.78	0.71	2.40	2.20
Shell permittivity	14.0	R	√3	0.5	0.5	4.00	4.00
Distance between the radiating element of the DUT and the phantom medium	2.0	N	1	2	2	4.00	4.00
Repeatability of positioning the DUT or source against the phantom	1.0	N	1	1	1	1.00	1.00
Device holder effects	3.0	N	1	1	1	3.0	3.0
Effect of operating mode on probe sensitivity	2.4	R	√3	1	1	1.39	1.39
Time-average SAR	1.7	R	√3	1	1	0.98	0.98
Variation in SAR due to drift in output of DUT	2.6	N	1	1	1	2.60	2.60
Validation antenna uncertainty (validation measurement only)	0.0	N	1	1	1	0.00	0.00
Uncertainty in accepted power	0.0	N	1	1	1	0.00	0.00

Report No. 20250117G01476X-W1

(validation measurement only)							
		Correction to the	ne SAR re	sults			
Phantom deviation from target (ϵ $^{\prime}$, σ)	1.9	N	1	1	0.84	1.9	1.6
SAR scaling	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Combined uncertainty						12.07%	11.92%
Coverage Factor for 95 %						K=2	K=2
	Extende	d uncertainty				24.14%	23.84%

Frequency range: 150MHz-7500MHz

12. System Check Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi
			Measui	rement System				
1	- Probe Calibration	В	5.8	N	1	1	5.8	∞
2	- Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞
4	- Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞
5	- Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	∞
6	- System Detection Limits	В	1	R	$\sqrt{3}$	1	0.58	∞
7	Modulation response	В	0	N	1	1	0.00	
8	- Readout Electronics	В	0.5	N	1	1	0.50	∞
9	- Response Time	В	0.00	R	$\sqrt{3}$	1	0.00	∞
10	- Integration Time	В	1.4	R	$\sqrt{3}$	1	0.81	∞
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞
12	- Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞
13	- Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	∞
14	- Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	∞
			Uncertain	nties of the DUT			•	

						toport rto.		
15	Deviation of experimental source from numberical source	A	4	N	1	1	4.00	5
16	Input Power and SAR drift measurement	A	5	R	$\sqrt{3}$	1	2.89	5
17	Dipole Axis to Liquid Distance	В	2	R	$\sqrt{3}$	1	1.2	∞
			Phantom and T	issue Paramete	rs			
18	- Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target – tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
21	- Liquid Conductivity – measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	- Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
23	- Liquid Permittivity – measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Co	ombined Standard Uncertainty			RSS			10.15	
	Expanded uncertainty (Confidence interval of 95 %)			K=2			20.29	

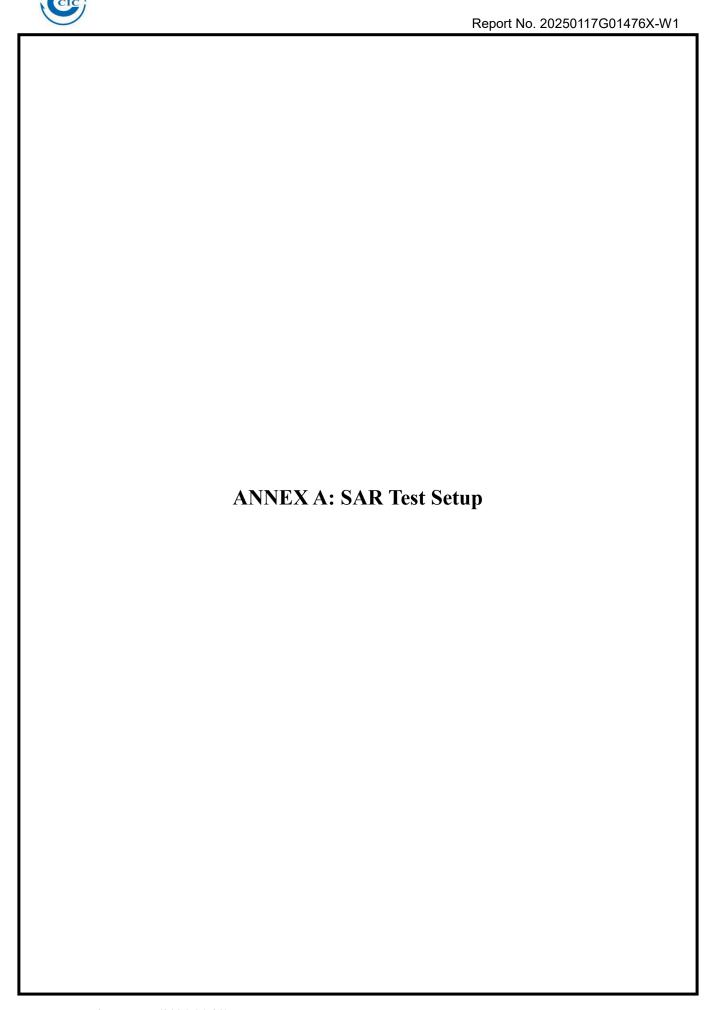


Photo 1: Measurement System SATIMO

Photo 2: Liquid deep(15cm)

Photo 3: top 0mm

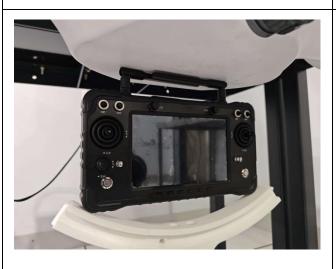


Photo 4: Back 0mm



Photo 5: Bottom 0mm

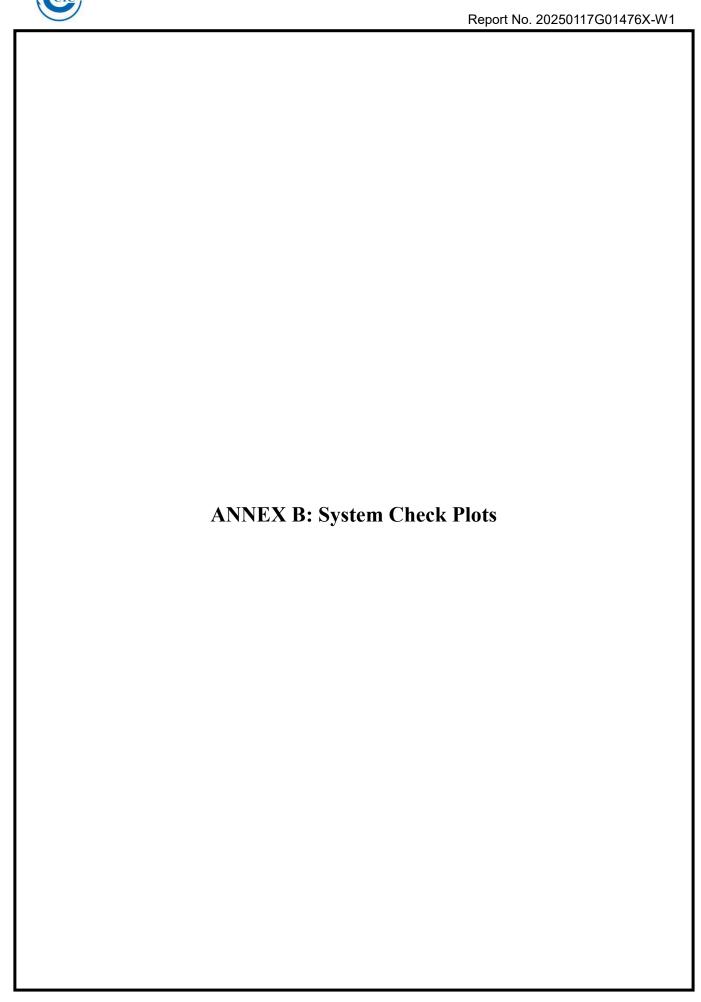


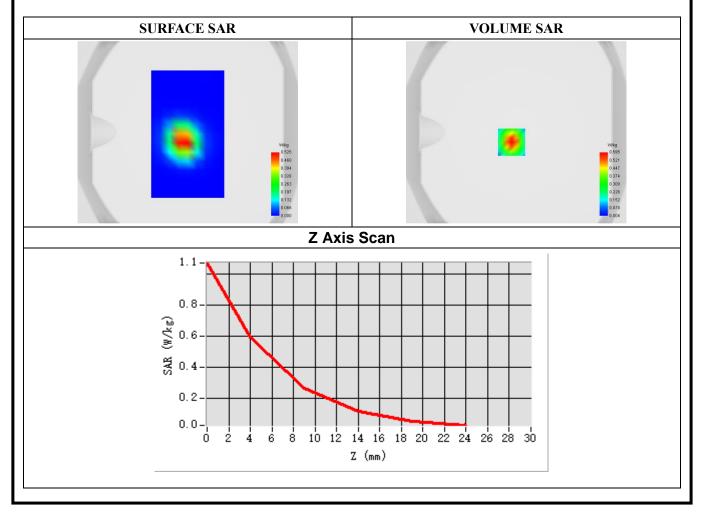
Photo 6: Front 0mm

System Performance Check (2450MHz)

Type: Validation measurement
Date of measurement: 01/20/2025

A. Experimental conditions.

E-Field Probe	SATIMO 3723-EPGO-433
Area Scan	dx=8mm dy=8mm
Zoom Scan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Dipole
Band	2450MHz
Channels	Middle
Signal	CW(Crest factor: 1.0)


B. SAR Measurement Results

Frequency (MHz)	2450
Relative permittivity (real part)	39.65
Conductivity (S/m)	1.84
Variation (%)	0.18

 $Maximum\ location:\ X=5.00,\ Y=-11.00$

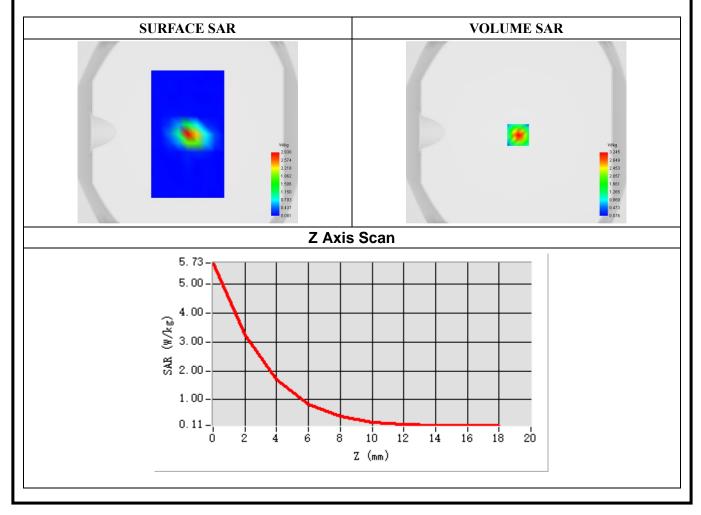
SAR Peak: 1.07 W/kg

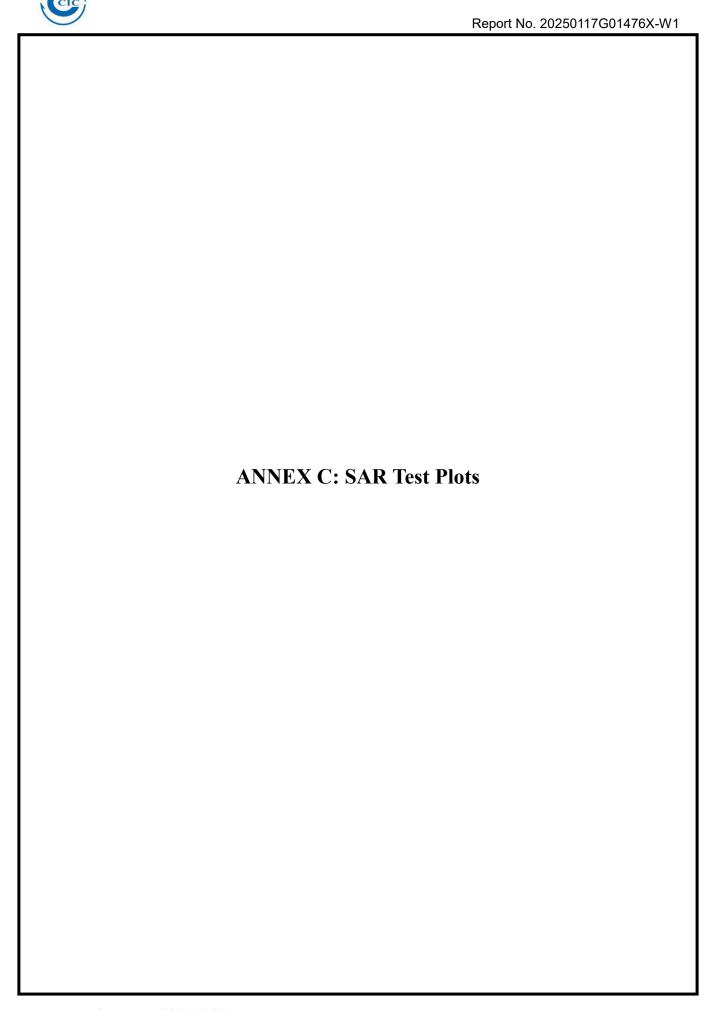
SAR 10g (W/Kg)	0.241164
SAR 1g (W/Kg)	0.536817

System Performance Check (5800MHz)

Type: Validation measurement
Date of measurement: 01/21/2025

A. Experimental conditions.


E-Field Probe	SATIMO 3723-EPGO-433
Area Scan	dx=8mm dy=8mm
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Dipole
Band	5800MHz
Channels	Middle
Signal	CW(Crest factor: 1.0)


B. SAR Measurement Results

Frequency (MHz)	5800
Relative permittivity (real part)	34.14
Conductivity (S/m)	5.25
Variation (%)	0.04

Maximum location: X=2.00, Y=-3.00 SAR Peak: 5.73 W/kg

SAR 10g (W/Kg)	0.587261
SAR 1g (W/Kg)	1.719569

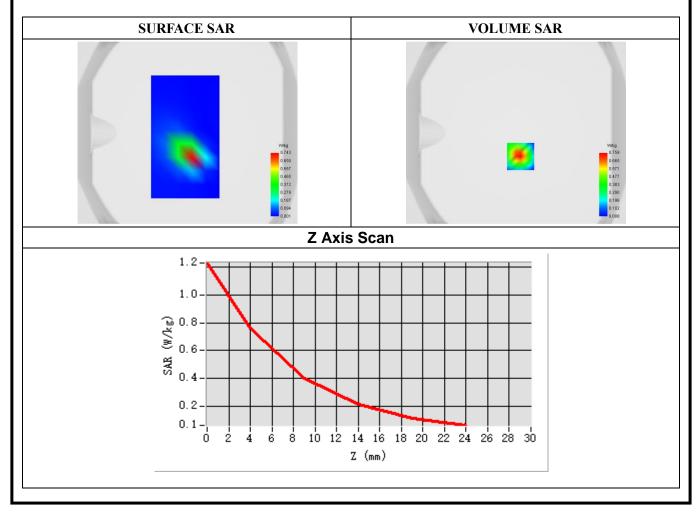
Testing result (2.4G SRD,0mm), Plot 1

Type: phone measurement

Date of measurement: 01/20/2025

A. Experimental conditions.

E-Field Probe	SATIMO 3223-EPGO-422
Area Scan	dx=12mm dy=12mm
Zoom Scan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	falt- plane
Device Position	Body
Band	2.4G SRD
Channels	low
Signal	(Crest factor: 1.0)


B. SAR Measurement Results

Frequency (MHz)	2412.0
Relative permittivity (real part)	40.58
Conductivity (S/m)	1.79
Variation (%)	-0.85

Maximum location: X=5.00, Y=-26.00

SAR Peak: 1.21 W/kg

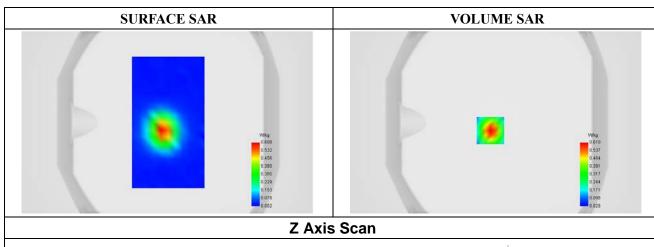
SAR 10g (W/Kg)	0.317380
SAR 1g (W/Kg)	0.674979

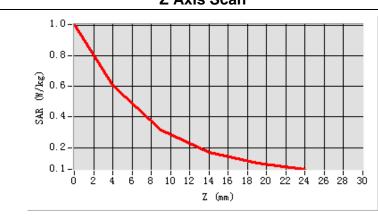
Testing result (2.4G WIFI N20,bottom,0mm), Plot 2

Date of measurement: 01/20/2025

A. Experimental conditions.

E-Field Probe	SATIMO 3223-EPGO-422
Area Scan	dx=12mm dy=12mm
Zoom Scan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	flat plane
Device Position	Body
Band	2.4G WIFI
Channels	High
Signal	(Crest factor: 1.0)


B. SAR Measurement Results


Frequency (MHz)	2462.0
Relative permittivity (real part)	40.58
Conductivity (S/m)	1.79
Variation (%)	-0.23

Maximum location: X=-7.00, Y=-9.00

SAR Peak: 1.14 W/kg

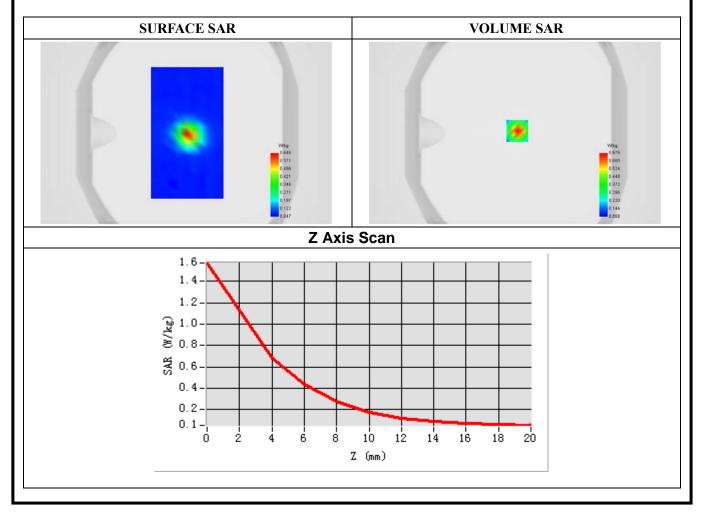
SAR 10g (W/Kg)	0.261930
SAR 1g (W/Kg)	0.551104

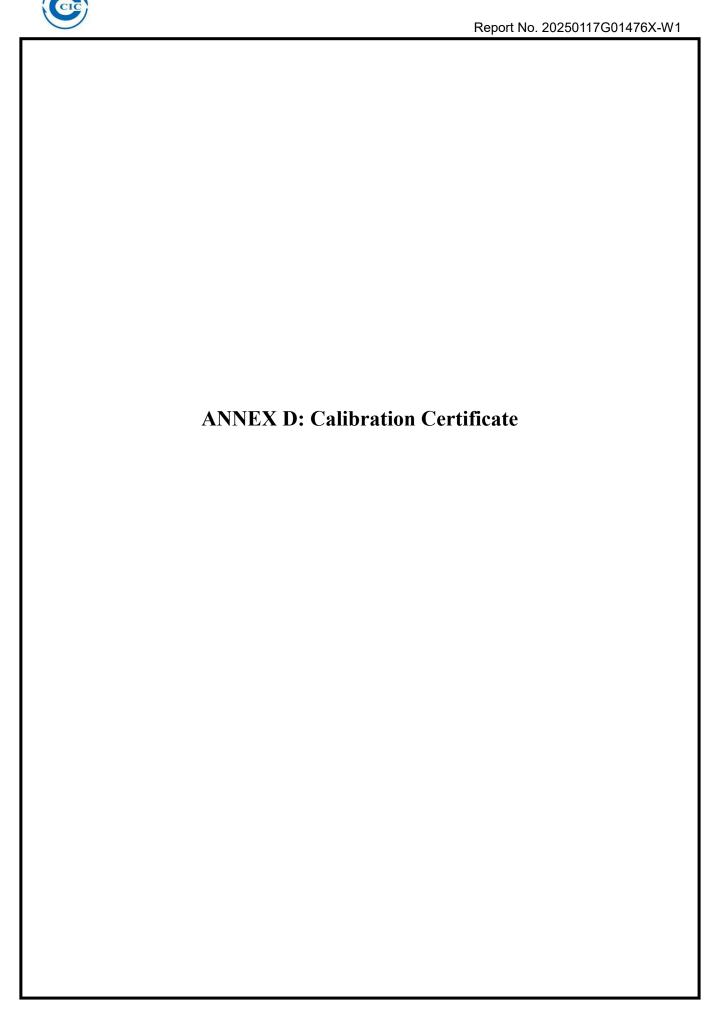
Testing result (5.8G wifi n40, bottom, 0mm), Plot 3

Type: phone measurement

Date of measurement: 01/21/2025

A. Experimental conditions.


E-Field Probe	SATIMO 3723-EPGO-433	
Area Scan	dx=10mm dy=10mm	
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm	
Phantom	Flat plane	
Device Position	Body	
Band	WIFI 802.11n40	
Channels	High	
Signal	CW(Crest factor: 1.0)	


B. SAR Measurement Results

Frequency (MHz)	5795
Relative permittivity (real part)	34.11
Conductivity (S/m)	5.26
Variation (%)	3.11

Maximum location: X=0.00, Y=1.00 SAR Peak: 1.63 W/kg

SAR 10g (W/Kg)	0.226810
SAR 1g (W/Kg)	0.636468

EPGO 433 Probe Calibration Report

COMOSAR E-Field Probe Calibration Report

Ref: ACR.108.10.24.BES.A

CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 3723-EPGO-433

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 04/17/2024

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

Ref: ACR. 108.10.24.BES.A

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	4/17/2024	3
Checked & approved by:	Jérôme Luc	Technical Manager	4/17/2024	JE
Authorized by:	Yann Toutain	Laboratory Director	4/18/2024	Yann TOUTAAN

Signature Yann numérique de Yann Toutain ID Date: 2024.04.18 Yann 09:37:52 +02'00'

	Customer Name
	CCIC SOUTHERN
Distribution :	TESTING CO.,
	LTD

Issue	Name	Date	Modifications
A	Cyrille ONNEE	4/17/2024	Initial release

Page: 2/10

Ref: ACR. 108.10.24.BES.A

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3		surement Method4	
	3.1	Sensitivity	4
	3.2	Linearity	
	3.3	Isotropy	
	3.4	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Calil	oration Results 6	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Veri	fication Results8	
7	List	of Equipment9	

Page: 3/10

Ref: ACR. 108.10.24.BES.A

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	3723-EPGO-433	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-7.5GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.174 MΩ	
	Dipole 2: R2=0.169 MΩ	
	Dipole 3: R3=0.187 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/10

 ${\it Template_ACR.DDD.N.YYMVGB.JSSUE_COMOSAR\ Probe\ vL}$

Ref: ACR.108.10.24.BES.A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm steo}$ along lines that are approximately normal to the surface:

SAR uncertainty [%] =
$$\delta$$
SAR be $\frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/(\delta \rho)}\right)}{\delta/2}$ for $\left(d_{be} + d_{step}\right) < 10 \text{ mm}$

where

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

 d_{be} is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 $\Delta_{ ext{step}}$ is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%).

Page: 5/10

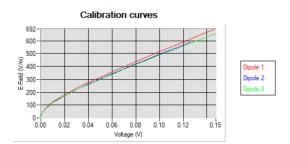
Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vL

Ref: ACR.108.10.24.BES.A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition	
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} (1 + \frac{V_{i}}{DCP_{i}})}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe

Normi=dipole sensitivity given below for the 3 channels of the probe

Page: 6/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL

Ref: ACR.108.10.24.BES.A

Normx dipole	Normy dipole	Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
0.72	0.80	0.79

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
108	106	114

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$

where

 σ =the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid

dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4PW}{ab\delta}e^{\frac{-2z}{\delta}}$$

where

a=the larger cross-sectional of the waveguide

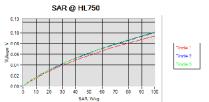
b=the smaller cross-sectional of the waveguide

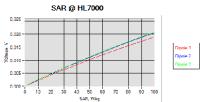
 δ =the skin depth for the liquid in the waveguide

Pw=the power delivered to the liquid

Page: 7/10

${\it Template_ACR.DDD.N.YY.MVGB.JSSUE_COMOSAR\ Probe\ vL}$




Ref: ACR.108.10.24.BES.A

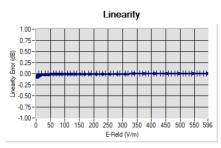
The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

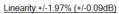
<u>Liquid</u>	Frequency (MHz*)	<u>Con∨F</u>
HL750	750	1.97
HL850	835	1.72
HL900	900	1.88
HL1500	1500	2.04
HL1800	1800	2.20
HL1900	1900	2.41
HL2000	2000	2.44
HL2300	2300	2.53
HL2450	2450	2.62
HL2600	2600	2.44
HL3300	3300	2.35
HL3500	3500	1.99
HL3700	3700	2.17
HL3900	3900	2.35
HL4200	4200	2.47
HL4600	4600	2.46
HL5250	5250	1.57
HL5600	5600	2.06
HL5750	5750	1.29
HL6500	6500	2.20
HL7000	7000	2.19

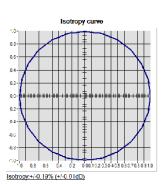
(*) Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz

6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is ± -0.2 dB for linearity and ± -0.15 dB for axial isotropy.


Page: 8/10


${\it Template_ACR.DDD.N.YY.MVGB.JSSUE_COMOSAR\ Probe\ vL}$



Ref: ACR.108.10.24.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Multimeter	Keithley 2000	4013982	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2026	
USB Sensor	Keysight U2000A	SN: MY62340002	10/2022	10/2025	

Page: 9/10

Ref: ACR.108.10.24.BES.A

Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025	
Coaxial cell	MVG		Validated. No cal required.	Validated. No cal required.	
Wa∨eguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.	
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.	
Wa∨eguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.	
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.	
Wa∨eguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.	
Wa∨eguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.	
Wa∨eguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

Page: 10/10

SID2450 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref: ACR.144.13.23.BES.A

CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD,

XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ SERIAL NO.: SN 09/13 DIP2G450-220

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 05/24/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

Ref: ACR.144.13.23.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	5/24/2023	JES
Checked & approved by:	Jérôme Luc	Technical Manager	5/24/2023	JES
Authorized by:	Yann Toutain	Laboratory Director	5/24/2023	Yann TOUTAAN

Yann Signature numérique de Yann Toutain ID Date: 2023.05.24 15:56:02 +02'00'

	Customer Name
	CCIC SOUTHERN
Distribution:	TESTING CO.,
	LTD

Issue	Name	Date	Modifications
A	Jérôme Luc	5/24/2023	Initial release

Page: 2/8

Ref: ACR.144.13.23.BES.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test	
3	Prod	uct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	
	4.3	SAR Requirements	
5	Mea	surement Uncertainty 5	
	5.1	Mechanical dimensions_	5
	5.2	S11 Parameter	5
	5.3	SAR	
6	Cali	oration Results	
	6.1	Mechanical Dimensions	6
	6.2	S11 parameter	
	6.3	SAR	
7	List	of Equipment 8	

Page: 3/8

Ref: ACR.144.13.23.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 09/13 DIP2G450-220	
Product Condition (new / used)	Used	

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/8

Ref: ACR.144.13.23.BES.A

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is ± -0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is ± -0.44 mm with respect to measurement conditions.

5.2 <u>S11 PARAMETER</u>

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is ± -0.08 with respect to measurement conditions.

5.3 <u>SAR</u>

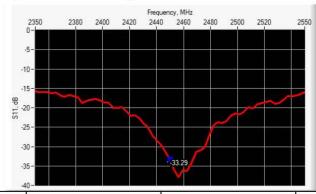
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is \pm 19% with respect to measurement conditions.

Page: 5/8

Template ACR.DDD.N.YY.MVGBJSSUE SAR Reference Dipole vL

Ref: ACR 144.13.23.BES.A


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
5-20X 1-20X	51.50 +/- 2%	50	30.40 +/- 2%		3.60 +/- 2%

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2450	-33.29	-20	$52.1\Omega + 0.8i\Omega$

6.3 <u>SAR</u>

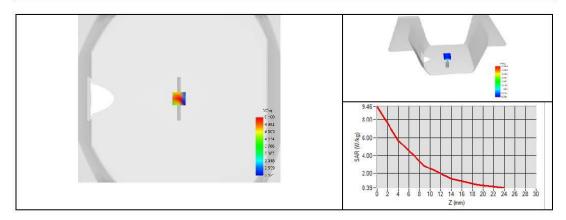
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 6/8

Template ACR.DDD.N.YY.MVGBJSSUE SAR Reference Dipole vL



Ref: ACR.144.13.23.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 40.7 sigma: 1.94
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency		1g SAR (W/kg)	10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2450 MHz	5.17	51.74	52.40	2.38	23.75	24.00

Page: 7/8

Ref: ACR.144.13.23.BES.A

7 LIST OF EQUIPMENT

6	Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.				
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024				
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023				
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025				
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027				
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025				
Reference Probe	MVG	SN 41/18 EPGO333	09/2022	09/2023				
Multimeter	Keithley 2000	4013982	02/2023	02/2026				
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025				
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	NI-USB 5680	170100013	06/2021	06/2024				
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025				
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024				

Page: 8/8

SID5G Dipole Calibration Report

SAR Reference Waveguide Calibration Report

Ref: ACR.145.20.23.BES.A

CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICTSHENZHEN, GUANGDONG, CHINAMVG COMOSAR REFERENCE WAVEGUIDE

FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 15/15 WGA39

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 05/25/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/9

Ref: ACR.145.20.23.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	5/25/2023	JES
Checked & approved by:	Jérôme Luc	Technical Manager	5/25/2023	J=5
Authorized by:	Yann Toutain	Laboratory Director	5/25/2023	Yann TOUTAAN

Yann Toutain ID

Signature numérique de Yann Toutain ID Date: 2023.05.25 16:30:59 +02'00'

·	Customer Name
	CCIC SOUTHERN
Distribution :	TESTING CO.,
	LTD

Issue	Name	Date	Modifications
A	Jérôme Luc	5/25/2023	Initial release
NS			
88 W			

Page: 2/9

Ref: ACR.145.20.23.BES.A

TABLE OF CONTENTS

1	Intro	duction 4	
2	Devi	ce Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Mechanical Requirements	4
	4.2	S11 parameter Requirements	4
	4.3	SAR Requirements	5
5	Mea	surement Uncertainty	
	5.1	Mechanical dimensions_	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Calil	pration Results	
	6.1	Mechanical Dimensions	5
	6.2	S11 parameter	6
	6.3	SAR	6
7	List	of Equipment9	

Page: 3/9

Ref: ACR 145.20.23.BES.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 15/15 WGA39
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

4 MEASUREMENT METHOD

4.1 <u>MECHANICAL REQUIREMENTS</u>

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 <u>S11 PARAMETER REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a S11 of -8 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

Page: 4/9

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vL

Ref: ACR.145.20.23.BES.A

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 <u>MECHANICAL DIMENSIONS</u>

The estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is ± 0.20 mm with respect to measurement conditions.

5.2 <u>S11 PARAMETER</u>

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is ± -0.08 with respect to measurement conditions.

5.3 SAR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is \pm 19% with respect to measurement conditions.

6 CALIBRATION RESULTS

6.1 <u>MECHANICAL DIMENSIONS</u>

Frequency	L (I	mm)	W (mm)	L _f (mm)	W _f ((mm)
(MHz)	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	40.39 ± 0.13	353	20.19 ± 0.13	950	81.03 ± 0.13	8.58	61.98 ± 0.13	•

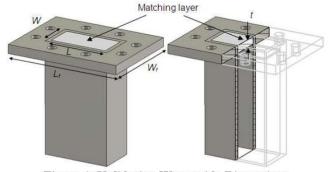
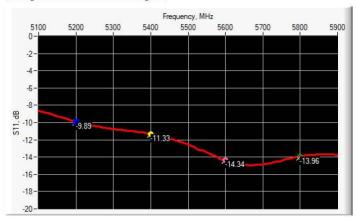


Figure 1: Validation Waveguide Dimensions

Page: 5/9

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vL



Ref: ACR 145.20.23.BES.A

6.2 S11 PARAMETER

6.2.1 S11 parameter In Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
5200	-9.89	-8	26.75 Ω - 8.37 jΩ
5400	-11.33	-8	$58.18 \Omega + 29.31 j\Omega$
5600	-14.34	-8	48.03 Ω - 19.07 jΩ
5800	-13.96	-8	$37.90 \Omega + 13.07 j\Omega$

6.3 <u>SAR</u>

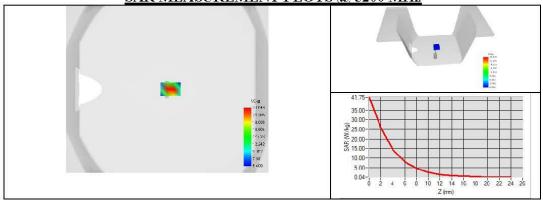
The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

6.3.1 SAR With Head Liquid

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Page: 6/9

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vL

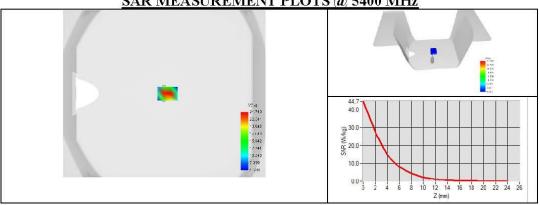


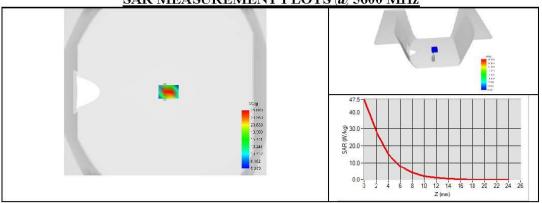
Ref: ACR.145.20.23.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values 5200 MHz: eps':34.01 sigma: 4.86 Head Liquid Values 5400 MHz: eps':33.40 sigma: 5.09 Head Liquid Values 5600 MHz: eps':32.71 sigma: 5.32 Head Liquid Values 5800 MHz: eps':32.12 sigma: 5.57
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

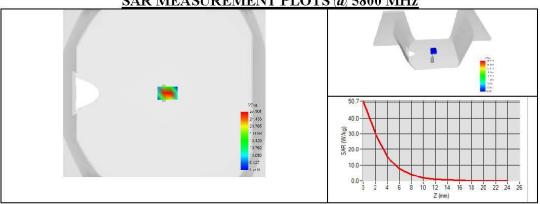
Frequency (MHz)	1 g SAR (W/kg)			10 g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
5200	15.30	152.95	159.00	5.37	53.70	56.90
5400	15.99	159.94	166.40	5.57	55.71	58.43
5600	16.66	166.59	173.80	5.77	57.66	59.97
5800	17.47	174.67	181.20	6.00	59.99	61.50

SAR MEASUREMENT PLOTS @ 5200 MHz


Page: 7/9



Ref: ACR.145.20.23.BES.A



SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 8/9

Ref: ACR.145.20.23.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet									
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date					
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.					
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.					
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024					
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023					
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025					
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027					
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025					
Reference Probe	MVG	SN 41/18 EPGO333	09/2022	09/2023					
Multimeter	Keithley 2000	4013982	02/2023	02/2026					
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025					
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.					
Power Meter	NI-USB 5680	170100013	06/2021	06/2024					
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025					
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.					
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024					

Page: 9/9

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vL

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

-End of the Report-