TEST REPORT

FCC ID	2BE6N-T350S			
Test Report No:	TCT241108E047	$\langle \mathcal{C} \rangle$		
Date of issue:	Nov. 25, 2024			
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB		
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an Distric 518103, People's Republic of Ch	y, Renshan Industrial 2 t, Shenzhen, Guangdo hina	Zone, ng,	
Applicant's name: :		$\langle \mathcal{O} \rangle$		
Address:	21642 GOLDEN POPPY COUR United States	T, WALNUT, California	a 91749,	
Manufacturer's name:	GIRAFIT INC			
Address:	21642 GOLDEN POPPY COUR United States	T, WALNUT, California	a 91749,	
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020			
Product Name::	T350S Outdoor Pan-Tilt Camera	1		
Trade Mark :	N/A (C)			
Model/Type reference :	GRF-T350SW, GRF-T350S, T35	50S, T350SW		
Rating(s):	Adapter Information: MODEL: BS05A-0501000US Input: AC 100-240V, 50/60Hz, 0 Output: DC 5V, 1000mA	.25A Max.		
Date of receipt of test item	Nov. 08, 2024	Ś		
Date (s) of performance of test:	Nov. 08, 2024 ~ Nov. 25, 2024			
Tested by (+signature) :	Onnado YE	Onnado Mangers		
Check by (+signature) :	Beryl ZHAO	Boyl 2 TCT		
Approved by (+signature):	Tomsin	Tomster		
General disclaimer: This report shall not be repr TONGCE TESTING LAB. TH TESTING LAB personnel on test results in the report only	oduced except in full, without the nis document may be altered or r ly, and shall be noted in the revis apply to the tested sample.	e written approval of S revised by SHENZHEN sion section of the docu	HENZHEN I TONGCE ument. The	

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1.	General Product Information	3
	1.1. EUT description	3
	1.2. Model(s) list	3
	1.3. Operation Frequency	4
2.	Test Result Summary	5
3.	General Information	6
	3.1. Test environment and mode	6
	3.2. Description of Support Units	6
4.	Facilities and Accreditations	7
	4.1. Facilities	7
	4.2. Location	7
	4.3. Measurement Uncertainty	
5.	Test Results and Measurement Data	
	5.1. Antenna requirement	8
	5.2. Conducted Emission	9
	5.3. Conducted Output Power	13
	5.4. Emission Bandwidth	14
	5.5. Power Spectral Density	15
	5.6. Conducted Band Edge and Spurious Emission Measurement	16
	5.7. Radiated Spurious Emission Measurement	18
Α	ppendix A: Test Result of Conducted Test	
Α	Appendix B: Photographs of Test Setup	
A	Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	T350S Outdoor Pan-Tilt Camera		
Model/Type reference:	GRF-T350SW		
Sample Number:	TCT241108E047-0101		
Bluetooth Version:	V5.4	$\langle \mathcal{C} \rangle$	
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz		
Data Rate:	LE 1M PHY, LE 2M PHY		
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	FPC Antenna		
Antenna Gain:	1.99dBi		5
Rating(s):	Adapter Information: MODEL: BS05A-0501000US Input: AC 100-240V, 50/60Hz, 0.25 Output: DC 5V, 1000mA	A Max.	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

		N	lodel No.			Test	ed with
		GR	F-T350SW				\boxtimes
els		GRF-T350	S, T350S, T	[350SW		S	
350SW is tea out, only diff at the remain	sted model, c ferent on the ning models.	other models model name	are derivative s, image pixe	e models. Th I or color. Sc	e models are the test data	identical in o of GRF-T35	circuit and
	els 50SW is te but, only dif t the remain	els 50SW is tested model, cout, only different on the t the remaining models.	GR els GRF-T350 50SW is tested model, other models out, only different on the model name t the remaining models.	GRF-T350SW els GRF-T350S, T350S, T 50SW is tested model, other models are derivative out, only different on the model names, image pixe t the remaining models.	GRF-T350SW els GRF-T350S, T350S, T350SW 50SW is tested model, other models are derivative models. Th out, only different on the model names, image pixel or color. So t the remaining models.	GRF-T350SW els GRF-T350S, T350S, T350SW 50SW is tested model, other models are derivative models. The models are but, only different on the model names, image pixel or color. So the test data t the remaining models.	GRF-T350SW els GRF-T350S, T350S, T350SW 50SW is tested model, other models are derivative models. The models are identical in cout, only different on the model names, image pixel or color. So the test data of GRF-T35 the remaining models.

Report No.: TCT241108E047

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT241108E047

1.3. Operation Frequency

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
	2404MHz	<u> </u>	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Ch	Remark: Channel 0, 19 & 39 have been tested.						

Page 4 of 57

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	23.2 °C	24.6 °C
Humidity:	52 % RH	53 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	putty	
Power Level:	5F	
Test Mode:		

Engineer mode:

Keep the EUT in continuous transmitting by select channel and modulations

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
				1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz	3	$(c^{(n)})$	
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto	
Limits:	Frequency range (MHz) 0.15-0.5	Limit (Quasi-peak 66 to 56*	dBuV) Average 56 to 46*	
	0.5-5 5-30	56 60	46 50	
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ner Test table height=0.8m	N BOCM LISN Filter EMI Receiver	r AC power	
Test Mode:	Transmitting Mode		<u>e</u>	
Test Procedure:	 The E.U.T is connect impedance stabilized provides a 500hm/5 measuring equipmer The peripheral device power through a LIS coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2020 or 	cted to an adapte ation network OuH coupling im nt. es are also conne SN that provides with 50ohm tern diagram of the line are checke ice. In order to fil positions of equ must be chang on conducted mea	er through a line (L.I.S.N.). This apedance for the ected to the main a 500hm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all of ged according to asurement.	

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025	
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025	
Attenuator	N/A	10dB	164080	Jun. 26, 2025	
Line-5	тст	CE-05	/	Jun. 26, 2025	
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1 60	

Page 10 of 57

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.2.3. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

Note:

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

Limit (dB μ V) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Freq.	Level	Factor	ment	Limit	Over		
MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
0.1940	37.74	9.63	47.37	63.86	-16.49	QP	
0.1940	12.27	9.63	21.90	53.86	-31.96	AVG	
0.3459	31.86	9.99	41.85	59.06	-17.21	QP	
0.3459	13.80	9.99	23.79	49.06	-25.27	AVG	
0.9979	25.11	10.70	35.81	56.00	-20.19	QP	
0.9979	4.01	10.70	14.71	46.00	-31.29	AVG	
1.8060	19.34	9.77	29.11	56.00	-26.89	QP	
1.8060	3.79	9.77	13.56	46.00	-32.44	AVG	
15.7940	19.13	10.24	29.37	60.00	-30.63	QP	
15.7940	-1.32	10.24	8.92	50.00	-41.08	AVG	
26.6100	16.38	10.63	27.01	60.00	-32.99	QP	
26.6100	-0.34	10.63	10.29	50.00	-39.71	AVG	
	Freq. MHz 0.1940 0.3459 0.3459 0.9979 1.8060 1.8060 15.7940 15.7940 26.6100	Freq.LevelMHzdBuV0.194037.740.194012.270.345931.860.345913.800.997925.110.99794.011.806019.341.80603.7915.794019.1315.7940-1.3226.610016.3826.6100-0.34	Freq.LevelFactorMHzdBuVdB0.194037.749.630.194012.279.630.345931.869.990.345913.809.990.997925.1110.700.99794.0110.701.806019.349.771.80603.799.7715.794019.1310.2415.7940-1.3210.2426.610016.3810.6326.6100-0.3410.63	Freq.LevelFactormentMHzdBuVdBdBuV0.194037.749.6347.370.194012.279.6321.900.345931.869.9941.850.345913.809.9923.790.997925.1110.7035.810.99794.0110.7014.711.806019.349.7729.111.80603.799.7713.5615.794019.1310.2429.3715.7940-1.3210.248.9226.610016.3810.6327.0126.6100-0.3410.6310.29	Freq.LevelFactormentLimitMHzdBuVdBdBuVdBuV0.194037.749.6347.3763.860.194012.279.6321.9053.860.345931.869.9941.8559.060.345913.809.9923.7949.060.997925.1110.7035.8156.000.99794.0110.7014.7146.001.806019.349.7729.1156.0015.794019.1310.2429.3760.0015.7940-1.3210.248.9250.0026.610016.3810.6327.0160.00	Freq.LevelFactormentLimitOverMHzdBuVdBdBuVdBuVdB0.194037.749.6347.3763.86-16.490.194012.279.6321.9053.86-31.960.345931.869.9941.8559.06-17.210.345913.809.9923.7949.06-25.270.997925.1110.7035.8156.00-20.190.99794.0110.7014.7146.00-31.291.806019.349.7729.1156.00-26.891.80603.799.7713.5646.00-32.4415.794019.1310.2429.3760.00-30.6315.7940-1.3210.248.9250.00-41.0826.610016.3810.6327.0160.00-32.9926.6100-0.3410.6310.2950.00-39.71	Freq.LevelFactormeasure mentLimitOverMHzdBuVdBdBuVdBdBuVdBDetector0.194037.749.6347.3763.86-16.49QP0.194012.279.6321.9053.86-31.96AVG0.345931.869.9941.8559.06-17.21QP0.345913.809.9923.7949.06-25.27AVG0.997925.1110.7035.8156.00-20.19QP0.99794.0110.7014.7146.00-31.29AVG1.806019.349.7729.1156.00-26.89QP1.80603.799.7713.5646.00-32.44AVG15.794019.1310.2429.3760.00-30.63QP15.7940-1.3210.248.9250.00-41.08AVG26.610016.3810.6327.0160.00-32.99QP26.6100-0.3410.6310.2950.00-39.71AVG

Note1:

TCT通测检测 TESTING CENTRE TECHNOLOGY

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	KDB 558074 D01 v05r02						
Limit:	30dBm						
Test Setup:	Spectrum Analyzer EUT						
Test Mode:	Refer to item 3.1						
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 						
Test Result:	PASS						

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	1

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/
				Page 17 of 57

5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10	ANSI C63.10:2020						
Frequency Range:	9 kHz to 25 GHz							
Measurement Distance:	3 m	X	9		K.)		
Antenna Polarization:	Horizontal &	Vertical						
Operation mode:	Refer to item	n 3.1	((
. <u>.</u>	Frequency	Detector	PBW/	VBW		Pomark		
	9kHz-150kHz	Ouasi-nea	k 200Hz	1kHz	Ouas	si-neak Valu		
Receiver Setup:	150kHz- 30MHz	Quasi-pea	k 9kHz	30kHz	Quas	si-peak Valu		
	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quas	si-peak Valu		
		Peak	1MHz	3MHz	P	eak Value		
	Above 1GHz	Peak	1MHz	10Hz	Ave	erage Value		
	Frequen	псу	Field Stre (microvolts	ength /meter)	Me Dista	asurement nce (meters		
	0.009-0.490		2400/F(I	KHz)		300		
	0.490-1.705		24000/F((KHz)	30			
	1.705-30		30		30			
Limit:	30-88		100		3			
	88-216		150		3			
	216-960		200		3			
	Above 9	60	500			3		
	Frequency Above 1GH	Add Strength rovolts/meter)Measurement Distance (meters)500350003			Detector Average Peak			
Гest setup:	For radiated	emission stance = 3m Turn table Groun	s below 30	OMHz	Comput			

▶ ● ■ 通测检测	IJ					
TESTING CENTRE TECHNOLO	GY Report No.: TCT241108E047					
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 					
	 4. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement 					
	For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.					
Test mode:	Refer to section 3.1 for details					
Test results:	PASS					

5.7.2. Test Instruments

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Radiated Emission Test Site (966)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025		
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025		
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025		
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025		
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025		
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025		
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025		
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025		
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025		
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025		
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025		
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025		
Coaxial cable	SKET	RE-04-M	R	Jun. 26, 2025		
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025		
Antenna Mast	Keleto	RE-AM	1			
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2			

Page 21 of 57

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site 3m Anechoic Chamber2

Polarization: Horizontal

remperature

Temperature: 24.6(C) Humidity: 53 %

Limit: F	CC Part 15C R	E 3m							
No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	32.0667	34.89	-19.39	15.50	40.00	-24.50	QP	Ρ	
2	88.6524	38.18	-22.23	15.95	43.50	-27.55	QP	Ρ	
3	153.7385	35.05	-17.03	18.02	43.50	-25.48	QP	Ρ	
4	300.3672	35.68	-17.76	17.92	46.00	-28.08	QP	Ρ	
5 *	451.1350	42.36	-13.50	28.86	46.00	-17.14	QP	Ρ	
6	750.1083	35.88	-7.61	28.27	46.00	-17.73	QP	Ρ	

Page 22 of 57

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	43.9658	43.57	-18.60	24.97	40.00	-15.03	QP	Ρ	
2	98.4866	48.90	-21.41	27.49	43.50	-16.01	QP	Ρ	
3	199.9856	48.30	-21.32	26.98	43.50	-16.52	QP	Ρ	
4	291.0360	46.86	-17.51	29.35	46.00	-16.65	QP	Ρ	
5	490.7447	40.77	-12.34	28.43	46.00	-17.57	QP	Ρ	
6	750.1083	36.26	-7.61	28.65	46.00	-17.35	QP	Ρ	

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

3. Freq. = Emission frequency in MHz Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dBμV/m) = Limit stated in standard Margin (dB) = Measurement (dBμV/m) – Limits (dBμV/m)
* is meaning the worst frequency has been tested in the test frequency range

Page 23 of 57

TCT 通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT241108E047 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 120.0 dBuV/m FCC part 15.247 bandedge(peak) 110 100 FCC part 15.247 bandedge(AV) 90 80 70 60 50 ***yypea**k 40 when 1.00 mon 30 20.0 (MHz) 2310.000 2320.00 2330.00 2340.00 2350.00 2370.00 2380.00 2390.00 2400.00 2410.00 Site: 3m Anechoic Chamber Temperature: 24(°℃) Humidity: 52 % Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power:AC 120 V/60 Hz Reading Factor Limit Margin Frequency Level P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 2390.000 56.13 -17.10 39.03 74.00 -34.97 Ρ peak

Page 24 of 57

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24(°C) Humidity: 52 % Power:AC 120 V/60 Hz Limit: FCC part 15.247 bandedge(peak) Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB)

Note: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

AV limit

(dBµV/m)

54

54

Margin

(dB)

-7.30

-10.05

Peak limit

(dBµV/m)

74

74

Low char	nnel: 2402	MHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	56.13		-9.51	46.62		74	54	-7.38
7206	Н	46.54		-1.41	45.13		74	54	-8.87
	Н								
4804	V	56.91		-9.51	47.40	X	74	54	-6.60
7206	ΟV	46.18		-1.41	44.77	<u> </u>	74	54	-9.23
	V								

Above 1GHz

Middle channel: 2440 MHz

High channel: 2480 MHz

Frequency Ant. Pol.

(MHz)

CT 通测检测 TESTING CENTRE TECHNOLOGY

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	56.49		-9.36	47.13		74	54	-6.87
7320	Н	46.76		-1.15	45.61		74	54	-8.39
	H				/				
ļ			K.)					
4880	V	55.02		-9.36	45.66		74	54	-8.34
7320	V	45.75		-1.15	44.60		74	54	-9.40
	V								

Correction

Factor

(dB/m)

-9.20

-0.96

4960 H 55.90 --- 7440 H 44.91 --- --- H --- ---

H/V

Peak

reading

(dBµV)

AV

reading

(dBµV)

	Н		 		 		
4960	V	54.93	 -9.20	45.73	 74	54	-8.27
7440	V	45.54	 -0.96	44.58	 74	54	-9.42
	V		 				

Emission Level

AV

(dBµV/m)

<u>.</u>...

Peak

(dBµV/m)

46.70

43.95

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Condition	Mode	Frequency (MHz)	Duty Cycle	Correction Fac	ctor
	BLE 1M	2402	85.59	0.68	
NVNT	BLE 1M	2440	85.40	0.69	
 NVNT	BLE 2M	2402	43.60	3.61	
NVNT NVNT	BLE 2M BLE 2M	2440 2480	43.43 43.60	3.62	
				Pa	ige 29 of 57

Test Graphs
Duty Cycle NVNT BLE 1M 2402MHz

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr

Keysight Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz

Report No.: TCT241108E047

Page 30 of 57

06:38:21 PM Nov 14, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P NNNN

Duty Cycle NVNT BLE 1M 2480MHz

Trig: Free Run #Atten: 30 dB

PNO: Fast +++

Avg Type: Log-Pwr

Keysight S

1₃

Center Freg 2.480000000 GHz

Ref Offset 3.41 dB Ref 20.00 dBm

KI RL

Report No.: TCT241108E047

06:33:41 PM Nov 14, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N

TYP DE

Mkr1 2.400 ms 0.28 dBm

Page 31 of 57

Page 32 of 57

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT 🔇	BLE 1M	2402	0.27	30	Pass
NVNT	BLE 1M	2440	0.54	30	Pass
NVNT	BLE 1M	2480	0.74	30	Pass
NVNT	BLE 2M	2402	0.32	30	Pass
NVNT	BLE 2M	2440	0.62	30	Pass
NVNT	BLE 2M	2480	0.79	30	Pass

Maximum Conducted Output Power

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 33 of 57

Center 2.402000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz STATUS Power NVNT BLE 1M 2440MHz Keysight Spectrum Analyzer - Swept SA Avg Type: Log-Pwr Avg|Hold: 300/300 Center Freq 2.440000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Ref Offset 3.32 dB Ref 20.00 dBm 10 dB/div Ø

TCT通测检测 TCT通测检测

Center 2.440000 GHz #Res BW 2.0 MHz

Keysight Spectrum Analyzer - Swept SA 06:38:34 PM Nov 14, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN SENSE:INT Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 400/400 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 844 GHz 0.266 dBm Ref Offset 3.19 dB Ref 20.00 dBm 10 dB/div Log V Span 6.000 MHz #Sweep 10.00 ms (1001 pts) 06:36:23 PM Nov 14, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N Mkr1 2.439 820 GHz 0.536 dBm

Test Graphs Power NVNT BLE 1M 2402MHz

Page 34 of 57

	IFGain:Low #Atten: 30 dB	M	r1 2 479 868 GHz
Ref Offset 3.41 dB 10 dB/div Ref 20.00 dBm			0.744 dBm
10.0	<u> </u>		
0.00			
-10.0			
-20.0			
-30.0			
-40.0			
.50.0			
-60.0			
-70.0			
#Res BW 2.0 MHz	#VBW 6.0 MHz	#Sweep	Span 6.000 WHZ 10.00 ms (1001 pts)
MSG		STATUS	
Po	ower NVNT BLE 2N	/ 2402MHz	
Keysight Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO	06:41:26 PM Nov 14, 2024
Contor Frog 2 40200000 CHz		Ava Type: Log-Pwr	TRACE 1 2 2 4 5 6
Center Freq 2.402000000 GHz	PNO: Fast ++ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 300/300	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN
Center Freq 2.402000000 GHz Ref Offset 3.19 dB	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 300/300	TRACE 1 2 3 4 5 6 TYPE MWWWW DET PNNNNN
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm	PNO: Fast	Avg Type: Log-Pwr Avg Hold: 300/300	r1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm	PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 300/300	r1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz	PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 300/300	r1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm	PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE [] 2 3 4 5 6 TYPE MAWNIN PET PINININ IT 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz	PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 300/300	r1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 2 3 4 5 6 TYPE MAXWAW PET PINININ IT 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz	PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 300/300	r1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm 10 dB/div Ref 20.00 dBm -0 0 -0 0	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 23.4.5.6 TYPE MAXWAW PET PINNNN IT1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz	PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 300/300	rr4ce 2 3 4 5 6 rype MWHWW per P NNNN rr1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm 10 dB/div Ref 20.00 dBm 10 dB/div 10 dB/div 10 dB/div Ref 20.00 dBm 10 dB/div 10 dB/d	PNO: Fast → Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	r1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm	PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 2 3 4 5 6 TYPE 1 3 4 5 6 TYPE NINNN r1 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm 10.0 -0.0	PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 23 4 5 0 TYPE DET NINNIN IT1 2.401 580 GHz 0.317 dBm
Ref Offset 3.19 dB 10 dB/div Ref 20.00 dBm	PNO: Fast \rightarrow Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 2 3 4 5 6 TYPE MAXMANN PET PINININ IT 2.401 580 GHz 0.317 dBm
Center Freq 2.402000000 GHz	PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 23 4 5 0 TYPE PINNNN IT 2.401 580 GHz 0.317 dBm
Center Freq 2.40200000 GHz Ref Offset 3.19 dB Ref 20.00 dBm Ref 20.00 dBm 0.00	PNO: Fast Trig: Free Run HGGain:Low Trig: Free Run HAtten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 2 3 4 5 6 TYPE MAXHAM r1 2.401 580 GHz 0.317 dBm Span 6.000 MHz 1.000 ms (1001 pts)
Center Freq 2.40200000 GHz Ref Offset 3.19 dB Ref 20.00 dBm 10.0 10.	PNO: Fast Trig: Free Run HGGin:Low Trig: Free Run HAtten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 2 3 4 5 6 TYPE MARKAN r1 2.401 580 GHz 0.317 dBm 0.317 dBm 0.317 dBm Span 6.000 MHz 0.000 mHz 1.000 ms (1001 pts) 0.001 pts)
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm 10.0 10.0 .000	PNO: Fast Frig: Free Run HGGain:Low Trig: Free Run HAtten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 2 3 4 5 6 TYPE PUNNINN r1 2.401 580 GHz 0.317 dBm 0.317 dBm 0.317 dBm Span 6.000 MHz 1.000 ms (1001 pts)
Center Freq 2.402000000 GHz Ref Offset 3.19 dB Ref 20.00 dBm 10.0 10	PNO: Fast Trig: Free Run IFGain:Low Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr Avg Hoid: 300/300	TRACE 2 3 4 5 6 TYPE INNEW CET PINNEW TI 2.401 580 GHz 0.317 dBm

Power NVNT BLE 1M 2480MHz

 Keysight Spectrum Analyzer - Swept SA

 Κ
 S0 Ω
 AC

 Center Freq 2.480000000 GHz

Report No.: TCT241108E047

Page 35 of 57

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT241108E047

Page 36 of 57

	-6dB Bandwidth												
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict								
NVNT	BLE 1M	2402	0.656	0.5	Pass								
NVNT	BLE 1M	2440	0.663	0.5	Pass								
NVNT	BLE 1M	2480	0.654	0.5	Pass								
NVNT	BLE 2M	2402	1.237	0.5	Pass								
NVNT	BLE 2M	2440	1.162	0.5	Pass								
NVNT	BLE 2M	2480	1 175	0.5	Pass								

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 39 of 57

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 40 of 57

	Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict	
	NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	2402 2440 2480	-15.98 -15.71 -15.42	8 8 8	Pass Pass Pass	
	NVNT NVNT NVNT	BLE 2M BLE 2M BLE 2M	2402 2440 2480	-19.26 -18.94 -18.82	8 8 8	Pass Pass Pass	
Hot	line: 400-6611-	140 Tel: 86	-755-27673339	Fax: 86-755-27	673332 http://	Page 41	of 57

Maximum Power Spectral Density Level

TCT通测检测 TCT通测检测

06:34:27 PM Nov 14, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 100/100 Center Freg 2.480000000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low **н**н Mkr1 2.479 888 8 GHz -15.421 dBm Ref Offset 3.41 dB Ref 20.00 dBm 10 dB/div www.hum www many MANN ŵ WYW WW m Center 2.4800000 GHz #Res BW 3.0 kHz Span 1.000 MHz Sweep 106.0 ms (10001 pts) #VBW 10 kHz STATUS PSD NVNT BLE 2M 2402MHz Keysight Spectrum Analyzer - Swept SA U RL 06:42:15 PM Nov 14, 2 RACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Center Freq 2.402000000 GHz Avg Type: Log-Pw Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low ----Mkr1 2.402 023 8 GHz -19.262 dBm Ref Offset 3.19 dB Ref 20.00 dBm 10 dB/div Log **∮**¹ Marahamana million montan month Mona . L. Law Nor Center 2.402000 GHz #Res BW 3.0 kHz Span 2.000 MHz Sweep 211.3 ms (10001 pts) #VBW 10 kHz STATUS

PSD NVNT BLE 1M 2480MHz

TCT通测检测 TCT通测检测

Keysight Spe

0 RL

Report No.: TCT241108E047

Page 43 of 57

Ref Offset 3.32 dB Ref 20.00 dBm 10 dB/div Loa **∮**¹ Manulan MAR MARINE 1. Warmer Ward Winth Merry Center 2.440000 GHz #Res BW 3.0 kHz Span 2.000 MHz Sweep 211.3 ms (10001 pts) #VBW 10 kHz STATUS PSD NVNT BLE 2M 2480MHz Keysight Spectrum Analyzer - Swept SA U RL 06:48:29 PM Nov 14, 2 RACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Center Freq 2.480000000 GHz Avg Type: Log-Pw Avg|Hold: 150/150 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low ----Mkr1 2.480 025 8 GHz -18.823 dBm Ref Offset 3.41 dB Ref 20.00 dBm 10 dB/div Log **♦**¹ white white the second white montine Aa A. Antren while while Center 2.480000 GHz #Res BW 3.0 kHz Span 2.000 MHz Sweep 211.3 ms (10001 pts) #VBW 10 kHz STATUS

Report No.: TCT241108E047

PSD NVNT BLE 2M 2440MHz 06:45:25 PM Nov 14, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low **н**н Mkr1 2.440 024 4 GHz -18.940 dBm

Page 44 of 57

TCT通测检测 TCT通测检测

🔤 Keysight Spe

Center Freg 2.440000000 GHz

0 RL

		_	Band	Edge				
Condition	Mode	Frequency	/ (MHz)	Max Va	lue (dBc)	Limit (dBc)	Verdict
NVNT NVNT NVNT NVNT	BLE 1M BLE 1M BLE 2M BLE 2M	2402 2480 2402 2402 2480	2) 2)	-5 -48 -50 -49	8.66 0.66 9.85	-20 -20 -20 -20	0 0 0 0	Pass Pass Pass Pass

TCT通测检测 TESTING CENTRE TECHNOLOGY

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT241108E047

Page 47 of 57

Report No.: TCT2

Report No.: TCT241108E047

Page 48 of 57

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT241108E047

Page 49 of 57

Report	No.:	TCT241	108E047
nepon		101241	1002041

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	BLE 1M	2402	-41.68	-20	Pass		
NVNT	BLE 1M	2440	-40.81	-20	Pass		
NVNT	BLE 1M	2480	-41.92	-20	Pass		
NVNT	BLE 2M	2402	-40.51	-20	Pass		
NVNT	BLE 2M	2440	-40.81	-20	Pass		
NVNT	BLE 2M	2480	-41.12	-20	Pass		
	5						

Conducted RF Spurious Emission

Page 50 of 57

Fax: 86-755-27673332 Hotline: 400-6611-140 Tel: 86-755-27673339 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Tx. Spurious NVNT BLE 1M 2440MHz Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight S

KI RL

STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

Tx. Spurious NVNT BLE 2M 2440MHz Ref

нн

TCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight S KI RL

Center Freg 2.440000000 GHz

Report No.: TCT241108E047

06:45:44 PM Nov 14, 2024

Page 55 of 57

06:50:15 PM Nov 14, 2 U RL Avg Type: Log-Pw Avg|Hold: 10/10 Center Freg 13.265000000 GHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast ↔→→ IFGain:Low Mkr1 2.480 2 GHz -2.574 dBm Ref Offset 3.41 dB Ref 20.00 dBm 10 dB/div Log **r** \Diamond^2 **\$** -⊖<mark>4</mark> Δ \Diamond Start 0.03 GHz #Res BW 100 kHz Stop 26.50 GHz Sweep 2.530 s (30001 pts) #VBW 300 kHz FUNCTION WIDTH TION
 MODE
 TRC
 Sol

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f

 N
 1
 f
 2.480 2 GHz 20.425 1 GHz 4.958 7 GHz 7.306 6 GHz 9.913 9 GHz -2.574 dBm -41.422 dBm -54.468 dBm -55.546 dBm -49.115 dBm 456780 STATUS

