

Report No.: POCE240112006RF004

RF TEST REPORT

For

VITRINEMEDIA Enterprise

Product Name: Eco Smart Display

Test Model(s).: 0103_5_00

Report Reference No. : POCE240112006RF004

FCC ID : 2AR5X-0103500

Applicant's Name : VITRINEMEDIA Enterprise

Address : 50 route de la Reine 92100 Boulogne-Billancourt FRANCE

Testing Laboratory : Shenzhen POCE Technology Co., Ltd.

Address 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,

Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15E

Date of Receipt : January 12, 2024

Date of Test : January 12, 2024 to February 28, 2024

Data of Issue : February 28, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

V1.0

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE240112006RF004	February 28, 2024
7	~C	E 00	
	000	00	

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Bon Tang	Tomchen	Machoel Mo
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 211

CONTENTS

1 TEST SUMMARY	5
1.1 Test Standards	5
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION	6
2.2 DESCRIPTION OF DEVICE (EUT)	
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.5 EQUIPMENTS USED DURING THE TEST	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	11
3 EVALUATION RESULTS (EVALUATION)	12
3.1 ANTENNA REQUIREMENT	12
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	13
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	
4.2 Duty Cycle	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	18
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 Power spectral density	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6.1 E.U.T. Operation: 4.6.2 Test Data:	
4.7 UNDESIRABLE EMISSION LIMITS (BELOW 1GHZ)	
4.7.1 E.U.T. Operation:	
4.7.1 E.0.1. Operation	
4.8 UNDESIRABLE EMISSION LIMITS (ABOVE 1GHz)	
4.8.1 E.U.T. Operation:	
4.8.2 Test Data:	

V1.0

5 TEST SETUP PHOTOS	44
6 PHOTOS OF THE EUT	44
APPENDIX-5.2GWIFI	45
126dB and 99% Emission Bandwidth	
2. DUTY CYCLE	
3. MAXIMUM CONDUCTED OUTPUT POWER	
4. Power Spectral Density	85
5. BANDEDGE	95
6. Spurious Emission	103
7. FREQUENCY STABILITY	113
APPENDIX-5.8GWIFI	123
16DB EMISSION BANDWIDTH	124
226DB AND 99% EMISSION BANDWIDTH	
3. DUTY CYCLE	
4. MAXIMUM CONDUCTED OUTPUT POWER	163
5. Power Spectral Density	173
6. BANDEDGE	183
7. Spurious Emission	
8 FRECHENCY STARILITY	202

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result	
Antenna requirement	47 CFR Part 15E		Part 15.203	Pass	
Conducted Emission at AC power line	47 CFR Part 15E	ANSI C63.10-2013 section 6.2	47 CFR Part 15.207(a)	Pass	
Duty Cycle	47 CFR Part 15E	ANSI C63.10-2013 section 12.2 (b)		Pass	
Maximum conducted output power	47 CFR Part 15E	ANSI C63.10-2013, section 12.3	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass	
Power spectral density	47 CFR Part 15E	ANSI C63.10-2013, section 12.5	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass	
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	ANSI C63.10-2013, section 6.9 & 12.4 KDB 789033 D02, Clause C.2	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass	
Band edge emissions (Radiated)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass	
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.5	47 CFR Part 15.407(b)(9)	Pass	
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass	

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : VITRINEMEDIA Enterprise

Address : 50 route de la Reine 92100 Boulogne-Billancourt FRANCE

Manufacturer : Huizhou Vitrinemedia Optolectronic Technology Co., Ltd.

Address : Building #4, Desheng Industrial Park, Changbu Village, Xinxu Town, Huiyang

District, Huizhou City, China

2.2 Description of Device (EUT)

Boodinption of Both	
Product Name:	Eco Smart Display
Model/Type reference:	0103_5_00
Series Model:	0103_3_00,0103_4_00, 0103_6_00, 0103_7_00, 0103_8_00, 0103_4_01, 0103_5_01,0103_6_01, 0103_7_01,
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	Vitrinemedia
Power Supply:	AC120V60Hz
Operation Frequency:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz;
P	802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz;
Number of Channels:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 4; U-NII Band 3: 5;
	802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 2; U-NII Band 3: 2;
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna Type:	External
Antenna Gain:	2dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 211

Operation Frequency each of channel

Report No.: POCE240112006RF004

	Operation Frequency each of channel						
Band 1							
802.11a/8	302.11n20	802.1	1n40	802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	39	5190MHz	42	5210MHz		
40	5200MHz	45	5230MHz				
44	5220MHz			E			
48	5240MHz		00				
	V -		1				
		Band 4					
802.11a/8	302.11n20	802.1	1n40	802	2.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz	CE		-(- E		
165	5825MHz	0		00			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Ва	nd 1			
2.11n20	802.	11n40	802.11ac		
Frequency	Channel	Frequency	Channel	Frequency	
5180MHz	The lowest channel	5190MHz	The middle channel	5210MHz	
5200MHz	The highest channel	5230MHz			
5240MHz			E		
	Ва	nd 4			
2.11n20	802.11n40		802.11ac		
Frequency	Channel	Frequency	Channel	Frequency	
5745MHz	The lowest channel	5755MHz	The middle channel	5775MHz	
5785MHz	The highest channel	5795MHz	000		
5825MHz					
	Frequency 5180MHz 5200MHz 5240MHz 2.11n20 Frequency 5745MHz 5785MHz	2.11n20 Frequency 5180MHz The lowest channel 5200MHz The highest channel 5240MHz Ba 2.11n20 Frequency Channel 5745MHz The lowest channel 5785MHz The highest channel The lowest channel The lowest channel	Frequency Channel Frequency 5180MHz The lowest channel 5200MHz The highest channel 5240MHz Band 4 2.11n20 802.11n40 Frequency Channel Frequency 5745MHz The lowest channel 5785MHz The highest channel 5795MHz	Prequency Channel Frequency Channel 5180MHz The lowest channel 5200MHz The highest channel 5240MHz Band 4 P.11n20 802.11n40 802 Frequency Channel Frequency Channel 5745MHz The lowest channel 5785MHz The highest channel 5795MHz The highest channel 5795MHz The highest channel	

2.3 Description of Test Modes

No	Title	Description
TM1	802.11a mode	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМ3	802.11ac mode	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	802.11ax mode	Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Remark:On	ly the data of the worst mo	ode would be recorded in this report.

2.4 Description of Support Units

2.5 Equipments Used During The Test

The EUT was tes	ted as an independe	ent device.					
2.5 Equipments Us	pC	OCL					
Conducted Emission	Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
loop antenna	EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18		
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2023-12-12	2024-12-11		
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	/		
Cable	SCHWARZ BECK	1	OCE	2023-12-27	2024-12-26		
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11		
50ΩCoaxial Switch	Anritsu	MP59B	M20531	1	/		
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12		
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11		

V1.0

Maximum conducted output power						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RF Test Software	TACHOY	RTS-01	V2.0.0.0	/	40	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10	
DC power	HP	66311B	38444359	1	1	
Power Meter	Keysight	E4416A	MY5303506	2022-12-10	2023-12-09	
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	CE	1	
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12	
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08	
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08	
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11	

V1.0

Undesirable emission	limits (below 1GH	z)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	60
Positioning Controller	1	MF-7802	1	1	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	1	/	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	100	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-02-19	2025-02-18
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-02-19	2025-02-18
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty				
Conducted Disturbance (0.15~30MHz)	±3.41dB	200			
Duty cycle	±3.1%	1			
RF conducted power	±0.733dB				
RF power density	±0.234%				
Occupied Bandwidth	±3.63%				
Radiated Emission (Above 1GHz)	±5.46dB				
Radiated Emission (Below 1GHz)	±5.79dB				

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.					
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China					
Phone Number:	+86-13267178997					
Fax Number:	86-755-29113252					
FCC Registration Number:	0032847402					
Designation Number:	CN1342					
Test Firm Registration Number:	778666					
A2LA Certificate Number:	6270.01					

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 211

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

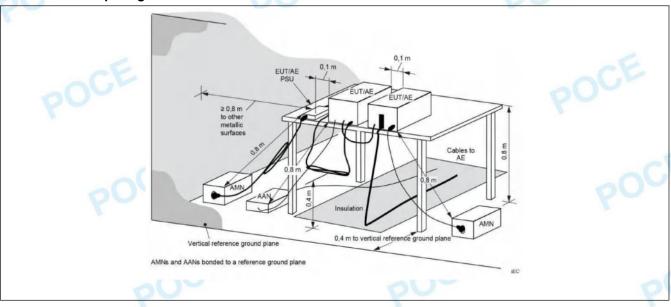
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 211

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

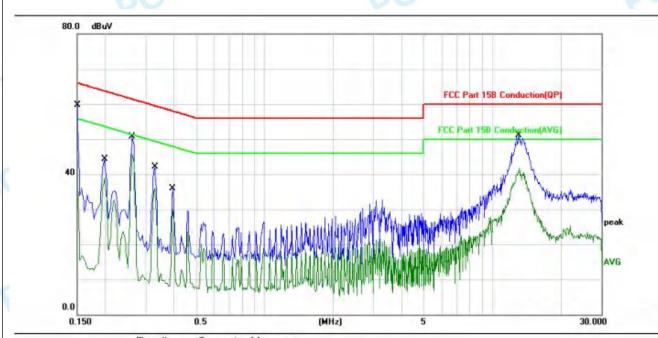
Test Requirement:	47 CFR Part 15.207(a)	PU		PO
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of t	he frequency.		
Test Method:	ANSI C63.10-2013 section 6.2			

4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature: 23.9 °C Humidity: 49.1 % Atmospheric Pressure: 101 kPa							101 kPa
Pretest mode:	Pretest mode: TM1,TM2,TM3,TM4						
Final test mode: TM1							-CE

4.1.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 211

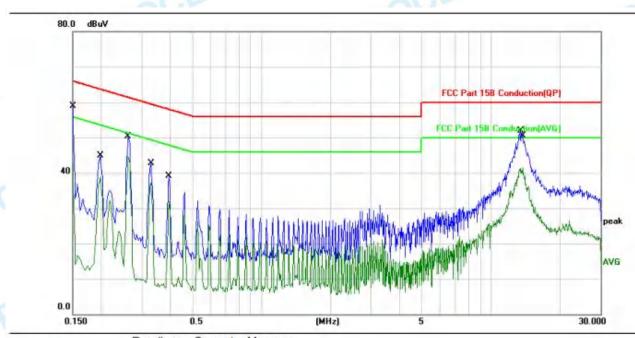


4.1.3 Test Data:

TM1 / Line: Line / Band: 5150-5250 MHz / BW: 20 / CH: L

V1.0

Power:AC120V60Hz



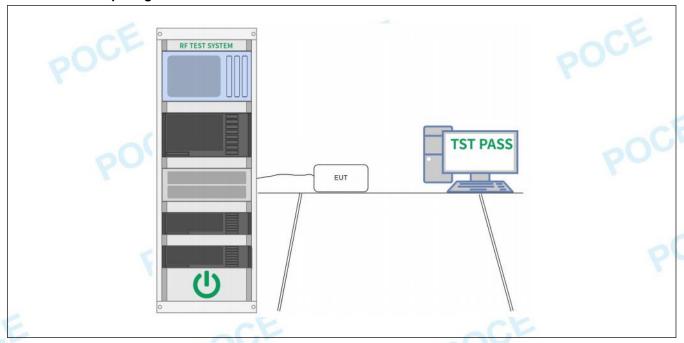
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	49.57	10.05	59.62	65.99	-6.37	QP	
2		0.1500	33.77	10.05	43.82	55.99	-12.17	AVG	
3		0.1980	34.31	10.03	44.34	63.69	-19.35	QP	
4		0.1980	28.77	10.03	38.80	53.69	-14.89	AVG	
5		0.2620	40.67	10.02	50.69	61.36	-10.67	QP	
6	*	0.2620	35.73	10.02	45.75	51.36	-5.61	AVG	
7		0.3300	32.01	10.01	42.02	59.45	-17.43	QP	
8		0.3300	26.05	10.01	36.06	49.45	-13.39	AVG	
9		0.3940	25.92	10.00	35.92	57.98	-22.06	QP	
10		0.3940	20.08	10.00	30.08	47.98	-17.90	AVG	
11		13.0060	40.77	10.43	51.20	60.00	-8.80	QP	
12		13.0700	31.21	10.43	41.64	50.00	-8.36	AVG	

TM1 / Line: Neutral / Band: 5150-5250 MHz / BW: 20 / CH: L

Power:AC120V60Hz

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1500	48.77	10.05	58.82	65.99	-7.17	QP	
	0.1500	32.64	10.05	42.69	55.99	-13.30	AVG	
	0.1980	34.88	10.03	44.91	63.69	-18.78	QP	
	0.1980	28.92	10.03	38.95	53.69	-14.74	AVG	
	0.2620	40.37	10.02	50.39	61.36	-10.97	QP	
*	0.2620	34.62	10.02	44.64	51.36	-6.72	AVG	
	0.3300	32.62	10.01	42.63	59.45	-16.82	QP	
	0.3300	27.28	10.01	37.29	49.45	-12.16	AVG	
	0.3940	29.11	10.00	39.11	57.98	-18.87	QP	
	0.3940	21.98	10.00	31.98	47.98	-16.00	AVG	
	13.5300	41.40	10.44	51.84	60.00	-8.16	QP	
	13.7260	31.08	10.44	41.52	50.00	-8.48	AVG	
		MHz 0.1500 0.1500 0.1980 0.1980 0.2620 * 0.2620 0.3300 0.3300 0.3940 13.5300	Mk. Freq. Level MHz dBuV 0.1500 48.77 0.1500 32.64 0.1980 34.88 0.1980 28.92 0.2620 40.37 * 0.2620 34.62 0.3300 32.62 0.3300 27.28 0.3940 29.11 0.3940 21.98 13.5300 41.40	Mk. Freq. Level Factor MHz dBuV dB 0.1500 48.77 10.05 0.1500 32.64 10.05 0.1980 34.88 10.03 0.1980 28.92 10.03 0.2620 40.37 10.02 * 0.2620 34.62 10.02 0.3300 32.62 10.01 0.3940 29.11 10.00 0.3940 21.98 10.00 13.5300 41.40 10.44	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1500 48.77 10.05 58.82 0.1500 32.64 10.05 42.69 0.1980 34.88 10.03 44.91 0.1980 28.92 10.03 38.95 0.2620 40.37 10.02 50.39 * 0.2620 34.62 10.02 44.64 0.3300 32.62 10.01 42.63 0.3300 27.28 10.01 37.29 0.3940 29.11 10.00 39.11 0.3940 21.98 10.00 31.98 13.5300 41.40 10.44 51.84	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV d	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.1500 48.77 10.05 58.82 65.99 -7.17 0.1500 32.64 10.05 42.69 55.99 -13.30 0.1980 34.88 10.03 44.91 63.69 -18.78 0.1980 28.92 10.03 38.95 53.69 -14.74 0.2620 40.37 10.02 50.39 61.36 -10.97 * 0.2620 34.62 10.02 44.64 51.36 -6.72 0.3300 32.62 10.01 42.63 59.45 -16.82 0.3940 29.11 10.00 39.11 57.98 -18.87 0.3940 21.98 10.00 31.98 47.98 -16.00 13.5300 41.40 10.44 51.84 60.00 -8.16	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.1500 48.77 10.05 58.82 65.99 -7.17 QP 0.1500 32.64 10.05 42.69 55.99 -13.30 AVG 0.1980 34.88 10.03 44.91 63.69 -18.78 QP 0.1980 28.92 10.03 38.95 53.69 -14.74 AVG 0.2620 40.37 10.02 50.39 61.36 -10.97 QP * 0.2620 34.62 10.02 44.64 51.36 -6.72 AVG 0.3300 32.62 10.01 42.63 59.45 -16.82 QP 0.3940 29.11 10.00 39.11 57.98 -18.87 QP 0.3940 21.98 10.00 31.98 47.98 -16.00 AVG 13.5300 41.40

4.2 Duty Cycle


V1.0

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

4.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.9 °C		Humidity:	49.1 %	Atmospheric Pressure:	101 kPa	
Pretest mode: TM1, TM2, TM3, TM4							
Final test mode: TM1, TM2, TM3, TM4							

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 211

POLICE CONTRACTOR OF THE POLICE CONTRACTOR OF

4.3 Maximum conducted output power

	<u> </u>		
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	POCE	PO
			_

Test Limit:

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

Report No.: POCE240112006RF004

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.

For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

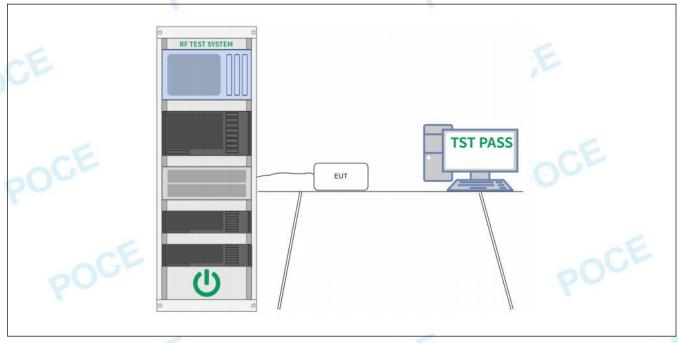
For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.



Test Method:	ANSI C63.10-2013, section 12.3
Procedure:	Refer to ANSI C63.10-2013 section 12.3

4.3.1 E.U.T. Operation:

Operating Environment:									
Temperature:	23.9 °C		Humidity:	49.1 %	P	Atmospheric Pressure:	101 kPa		
Pretest mode: TM1, TM2, TM3, TM4									
Final test mode: TM1, TM2, TM3, TM4						OCE			

4.3.2 Test Setup Diagram:

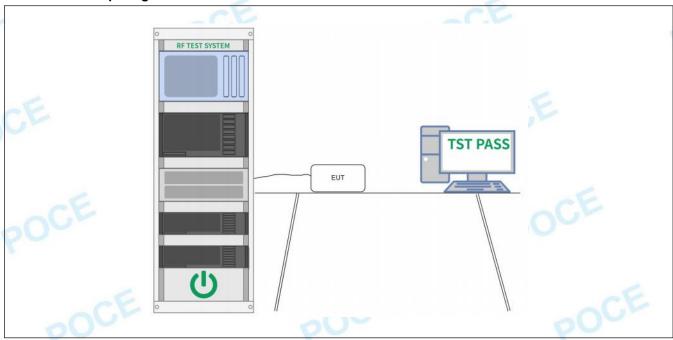
4.3.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 211

Report No.: POCE240112006RF004

4.4 Power spectral of	density
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
CE	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
POCE	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
POCE	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
POC	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
P	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.
CE	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.5
Procedure:	Refer to ANSI C63.10-2013, section 12.5



4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.9 °C	CA	Humidity:	49.1 %	Atmospheric Pressure:	101 kPa	20	
Pretest mode: TM1, TM2, TM3, TM4					P			
Final test mode: TM1, TM2, TM3, TM4								

Report No.: POCE240112006RF004

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

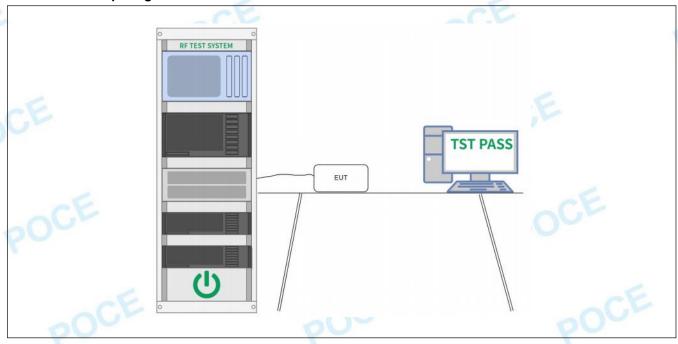
Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 211

POCK Integrange

Report No.: POCE240112006RF004

4.5 Emission bandwidth and occupied bandwidth


Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak.
CE	d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurementas needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth:
POCE	 a) The instrument center frequency is set to the nominal EUT channel center frequency. Thefrequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise
CE	specified by theapplicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
POO	 d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until
POC	the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The
	recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is
P	the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
E	6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold.
OCE	e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.5.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.9 °C	CA	Humidity:	49.1 %	Atmospheric Pressure:	101 kPa		
Pretest mode: TM1, TM2, TM3, TM4						4-		
Final test mode: TM1, TM2, TM3, TM4								

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 22 of 211

Report No.: POCE240112006RF004

4.6 Band edge emissions (Radiated)

T.O Balla Ca	ige cimissions (itadiate									
Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)								
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.									
	MHz	MHz	MHz	GHz						
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
	6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
	6.31175-6.31225	123-138	2200-2300	14.47-14.5						
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
	8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
	12.57675-12.57725	322-335.4	3600-4400	(2)						
	13.36-13.41									

Test Limit:

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

Test Method:

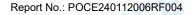
ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6

Procedure:

Above 1GHz

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

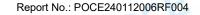
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 211



Report No.: POCE240112006RF004

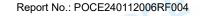
4.6.1 E.U.T. Operation:

Operating Environment:									A
Temperature:	23.9 °C		Humidity:	49.1 %		Atmospheric Pressure:	101 kPa	F	~
Pretest mode: TM1, TM2, TM3, TM4									
Final test mode: TM1									

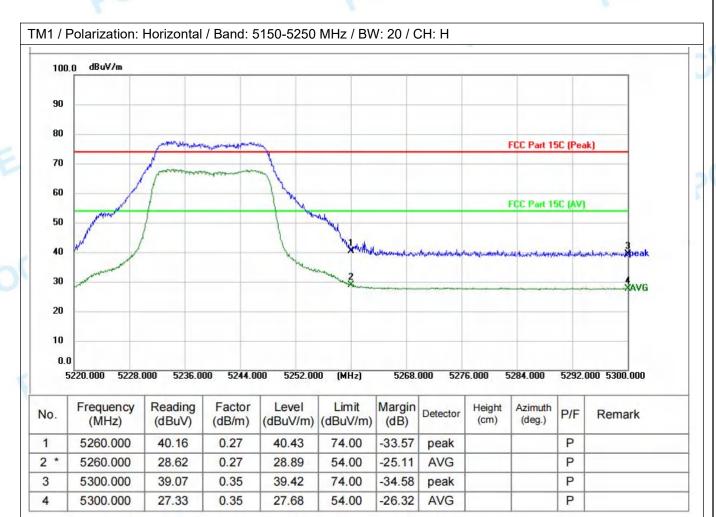


4.6.2 Test Data:

TM1 is worse case and only reported


TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: L dBuV/m 100.0 90 80 70 60 50 40 30 20 10 0.0 5190.000 5200.000 5100.000 5110.000 5120.000 5130.000 5140.000 (MHz) 5160.000 5170.000 5180.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5100.000	38.37	-0.04	38.33	74.00	-35.67	peak			Р	
2	5100.000	27.21	-0.04	27.17	54.00	-26.83	AVG			Р	
3	5160.000	39.64	0.07	39.71	74.00	-34.29	peak			Р	
4 *	5160.000	28.20	0.07	28.27	54.00	-25.73	AVG			Р	



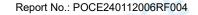
5300.000

4

27.07

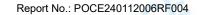
0.56

27.63

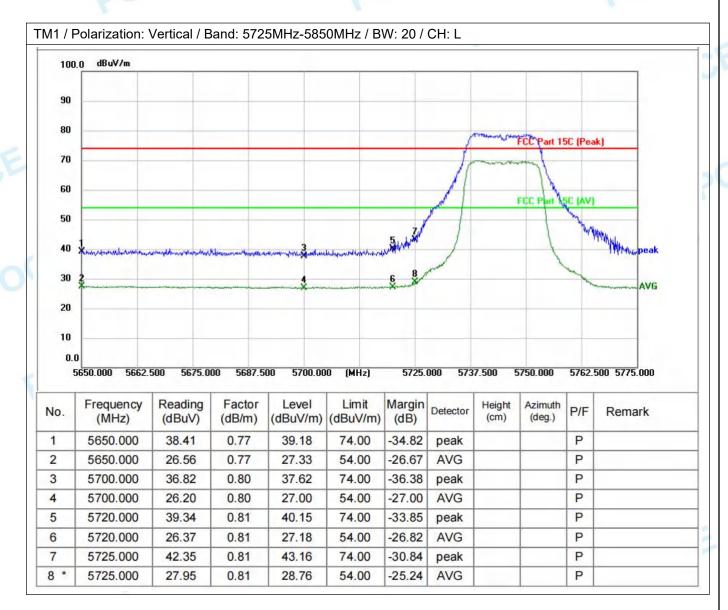

54.00

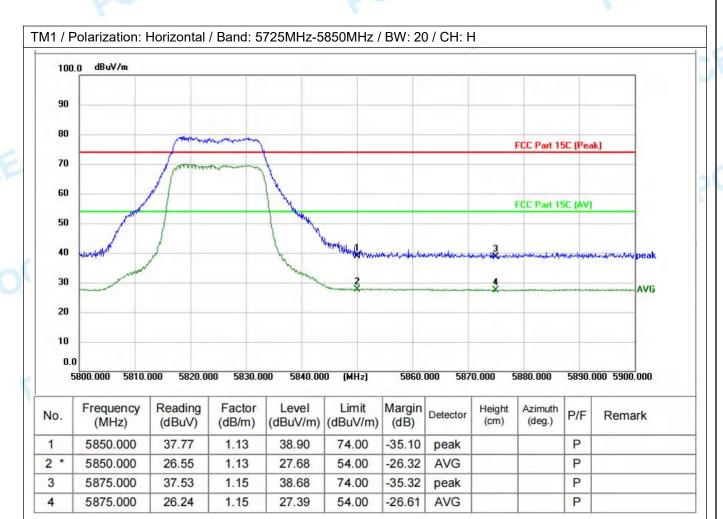
-26.37

AVG


Report No.: POCE240112006RF004

TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: H dBuV/m 100.0 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 40 30 AVG 20 10 0.0 5220.000 5228.000 5236.000 5244.000 5252.000 5276.000 5284.000 5292.000 5300.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F Remark No. (cm) (deg.) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (MHz) 5260,000 45.12 0.53 45.65 74.00 -28.35 P 1 peak 2 5260.000 30.03 0.53 30.56 54.00 -23.44 **AVG** P P 3 5300.000 0.56 38.98 74.00 38.42 -35.02 peak P





Report No.: POCE240112006RF004

TM1 / Polarization: Vertical / Band:5725MHz-5850MHz / BW: 20 / CH: H dBuV/m 100.0 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 40 30 AVG 20 10 5800.000 5810.000 5820.000 5830.000 5840.000 5860.000 5870.000 5880.000 5890.000 5900.000 Reading Frequency Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 1 5850.000 39.03 0.91 39.94 74.00 -34.06 peak P 2 5850.000 26.84 0.91 27.75 54.00 -26.25**AVG** P 5875.000 37.82 0.92 38.74 74.00 peak P 3 -35.26 P 4 5875.000 26.36 0.92 27.28 54.00 -26.72 **AVG**

Po

Report No.: POCE240112006RF004

Test Requirement:	47 CFR Part 15.407(b)(9)							
Test Limit:	set forth in § 15.209. Except as provided else	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2013, sect	. , , , ,						

Report No.: POCE240112006RF004

Procedure:

Below 1GHz:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using quasi-peak method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

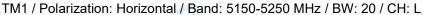
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 35 of 211

Remark:

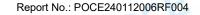
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: POCE240112006RF004

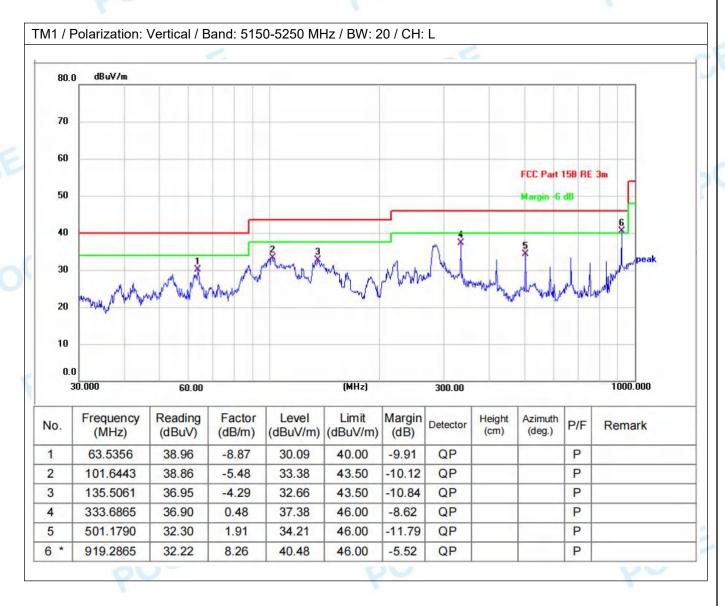

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.9 °C		Humidity:	49.1 %	Atmospheric Pressure:	101 kPa	
Pretest mode: TM1, TM2, TM3, TM4							
Final test mode:		TM1		OC.E		OCE	


Report No.: POCE240112006RF004

4.7.2 Test Data:



V1.0

4.8 Undesirable emission limits (above 1GHz)

Test	47 CFR Part 15.407(b)(1)
Requirement:	47 CFR Part 15.407(b)(4)
-	47 CFR Part 15 407(b)(10)

Test Limit: For transmitters of

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

Report No.: POCE240112006RF004

For transmitters operating solely in the 5.725-5.850 GHz band:

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

illieally to a level of 27 di	oni/ivii iz at tile band edge.		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 39 of 211

Report No : POCF240112006RF004

Test Limit:

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

Test Method:

ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7

Procedure:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 40 of 211

4.8.1 E.U.T. Operation:

Operating Enviro	onment:						
Temperature:	23.9 °C	CA	Humidity:	49.1 %	Atmospheric Pressure:	101 kPa	00
Pretest mode:	PU	TM1,	TM2, TM3,	TM4	PO		F
Final test mode:		TM1			•		

Report No.: POCE240112006RF004

4.8.2 Test Data:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9366.000	26.35	8.07	34.42	54.00	-19.58	AVG	149		Р	
2	9377.750	37.94	8.07	46.01	74.00	-27.99	peak	149		Р	
3	10693.750	37.76	9.15	46.91	74.00	-27.09	peak	149		Р	
4 *	10705.500	25.80	9.15	34.95	54.00	-19.05	AVG	149		Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9342.500	38.50	7.84	46.34	74.00	-27.66	peak	149		Р	
2	9366.000	26.65	7.85	34.50	54.00	-19.50	AVG	149		Р	
3 *	11951.000	25.92	10.24	36.16	54.00	-17.84	AVG	149		Р	
4	12056.750	38.59	10.41	49.00	74.00	-25.00	peak	149		Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	8661.000	37.46	7.05	44.51	74.00	-29.49	peak	149		Р	
2	8990.000	25.37	7.58	32.95	54.00	-21.05	AVG	149		Р	
3	11798.250	38.11	10.05	48.16	74.00	-25.84	peak	149		Р	
4 *	11986.250	25.80	10.29	36.09	54.00	-17.91	AVG	149		Р	

M1 / F	Polarization: \	/ertical / B	and: 515	0-5250 MH		0 / CH:	М				1
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level	Limit (dBuV/m)	Margin		Height (cm)	Azimuth (deg.)	P/F	Remark
1	9366.000	38.08	8.07	46.15	74.00	-27.85	peak	149		Р	
2	9377.750	26.32	8.07	34.39	54.00	-19.61	AVG	149		Р	
3	11751.250	38.23	9.83	48.06	74.00	-25.94	peak	149		Р	
4 *	11951.000	26.41	9.97	36.38	54.00	-17.62	AVG	149		Р	

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 211

Report No.: POCE240112006RF004

TM1 / Polarization:	Horizontal / Ban	d: 5150-5250 N	//Hz / BW: 20 / CH: H
1	-	T T	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9366.000	26.23	8.07	34.30	54.00	-19.70	AVG	149		Р	
2	9377.750	37.76	8.07	45.83	74.00	-28.17	peak	149		Р	
3 *	11974.500	26.16	9.99	36.15	54.00	-17.85	AVG	149		Р	
4	11998.000	38.43	10.01	48.44	74.00	-25.56	peak	149		Р	

TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9354.250	26.39	7.84	34.23	54.00	-19.77	AVG	149		Р	
2	9401.250	38.54	7.88	46.42	74.00	-27.58	peak	149		Р	
3	12444.500	37.48	11.07	48.55	74.00	-25.45	peak	149		Р	
4 *	12444.500	25.26	11.07	36.33	54.00	-17.67	AVG	149		Р	

TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9354.250	37.91	8.06	45.97	74.00	-28.03	peak	149		Р	
2	9366.000	26.32	8.07	34.39	54.00	-19.61	AVG	149		Р	
3	12397.500	37.30	10.82	48.12	74.00	-25.88	peak	149		Р	
4 *	12421.000	25.67	10.87	36.54	54.00	-17.46	AVG	149		Р	

TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9354.250	26.48	7.84	34.32	54.00	-19.68	AVG	149		Р	
2	9401.250	39.39	7.88	47.27	74.00	-26.73	peak	149		Р	
3	11739.500	38.22	9.98	48.20	74.00	-25.80	peak	149		Р	
4 *	11962.750	26.13	10.26	36.39	54.00	-17.61	AVG	149		Р	

TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9354.250	38.32	7.84	46.16	74.00	-27.84	peak	149		Р	
2	9366.000	26.49	7.85	34.34	54.00	-19.66	AVG	149		Р	
3	11281.250	38.80	9.39	48.19	74.00	-25.81	peak	149		Р	
4 *	11516.250	25.83	9.69	35.52	54.00	-18.48	AVG	149		Р	

Report No.: POCE240112006RF004

M1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: M											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9366.000	26.27	8.07	34.34	54.00	-19.66	AVG	149		Р	
2	9589.250	38.25	8.09	46.34	74.00	-27.66	peak	149		Р	
3	11974.500	38.04	9.99	48.03	74.00	-25.97	peak	149		Р	
4 *	11974.500	26.24	9.99	36.23	54.00	-17.77	AVG	149		Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9377.750	38.06	8.07	46.13	74.00	-27.87	peak	149		Р	
2	9377.750	26.33	8.07	34.40	54.00	-19.60	AVG	149		Р	
3	11716.000	38.55	9.82	48.37	74.00	-25.63	peak	149		Р	
4 *	11974.500	26.21	9.99	36.20	54.00	-17.80	AVG	149		Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9342.500	37.90	7.84	45.74	74.00	-28.26	peak	149		Р	
2	9366.000	26.35	7.85	34.20	54.00	-19.80	AVG	149		Р	
3 *	11951.000	25.99	10.24	36.23	54.00	-17.77	AVG	149		Р	
4	11962.750	37.97	10.26	48.23	74.00	-25.77	peak	149		Р	

FUCE Instances

Report No.: POCE240112006RF004

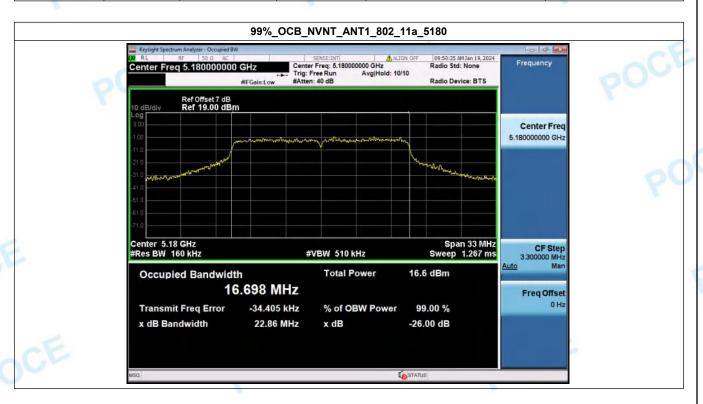
5 TEST SETUP PHOTOS

Please refer to Setup Photo file

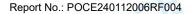
6 PHOTOS OF THE EUT

Please refer to external photos file and internal photos file

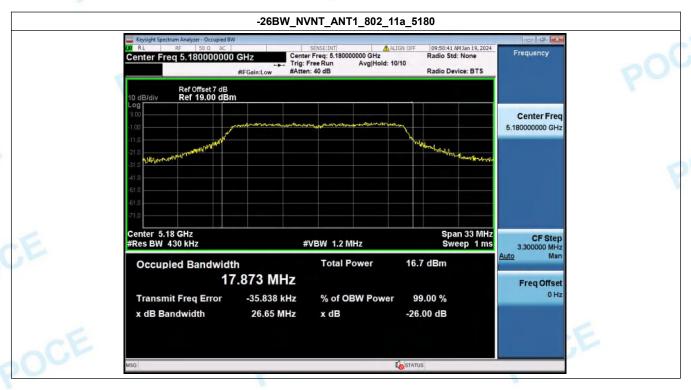
Appendix-5.2GWIFI

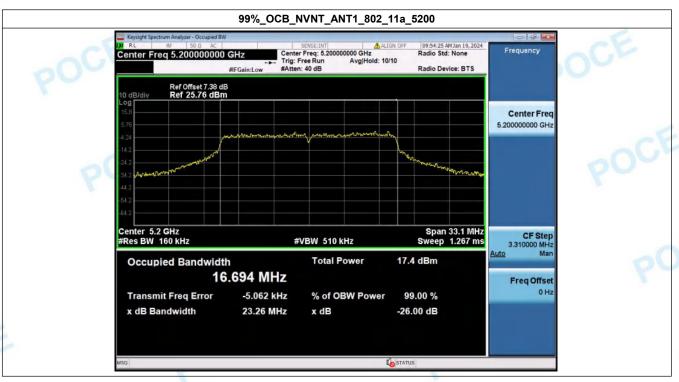


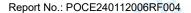
Eco Smart Display--0103_5_00--FCC ID FCC_5.2G_WIFI (Part15.407) Test Data

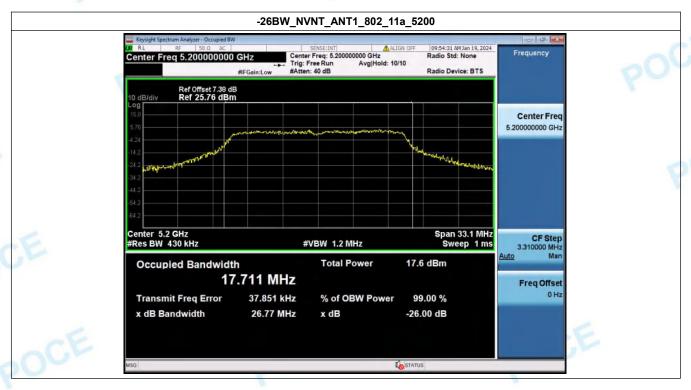

1. -26dB and 99% Emission Bandwidth

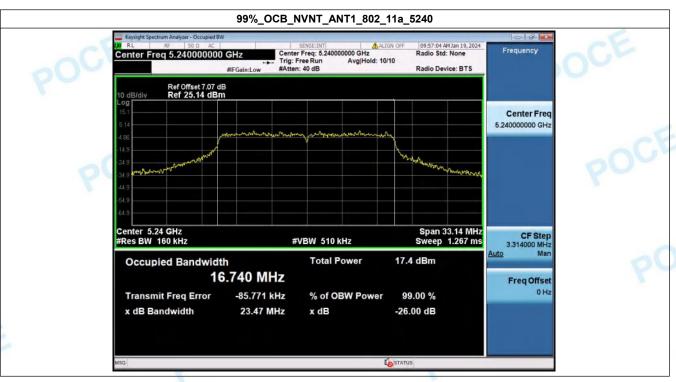
V1.0

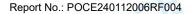

Condition	Antenna	Modulation	Frequency(MHz)	-26dB_Emission_Bandwidth(MHz)	Occupied Bandwidth(MHz)
NVNT	ANT1	802.11a	5180.00	26.65	16.70
NVNT	ANT1	802.11a	5200.00	26.77	16.69
NVNT	ANT1	802.11a	5240.00	27.62	16.74
NVNT	ANT1	802.11n(HT20)	5180.00	29.70	18.06
NVNT	ANT1	802.11n(HT20)	5200.00	27.37	17.98
NVNT	ANT1	802.11n(HT20)	5240.00	28.22	17.98
NVNT	ANT1	802.11ac(VHT20)	5180.00	29.77	18.01
NVNT	ANT1	802.11ac(VHT20)	5200.00	28.53	17.98
NVNT	ANT1	802.11ac(VHT20)	5240.00	31.29	17.99
NVNT	ANT1	802.11ax(HE20)	5180.00	26.48	19.19
NVNT	ANT1	802.11ax(HE20)	5200.00	26.75	19.15
NVNT	ANT1	802.11ax(HE20)	5240.00	26.97	19.21
NVNT	ANT1	802.11n(HT40)	5190.00	50.57	36.60
NVNT	ANT1	802.11n(HT40)	5230.00	51.64	36.55
NVNT	ANT1	802.11ac(VHT40)	5190.00	49.78	36.55
NVNT	ANT1	802.11ac(VHT40)	5230.00	51.26	36.53
NVNT	ANT1	802.11ax(HE40)	5190.00	49.83	38.01
NVNT	ANT1	802.11ax(HE40)	5230.00	48.45	38.02

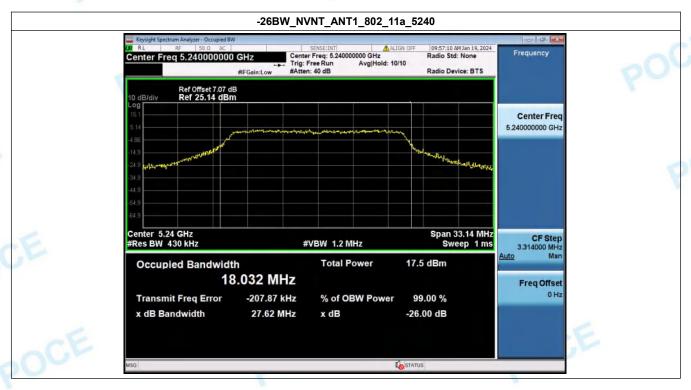


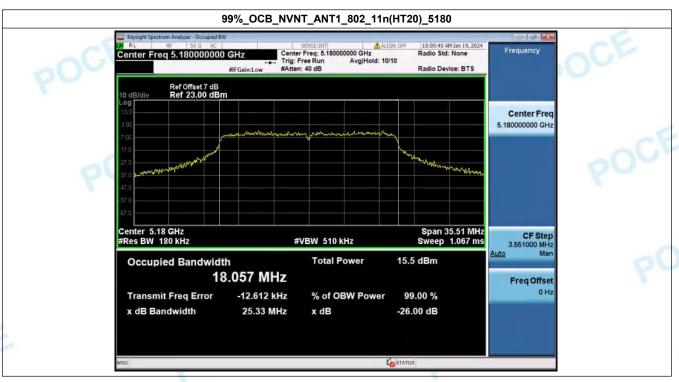

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 211

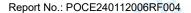


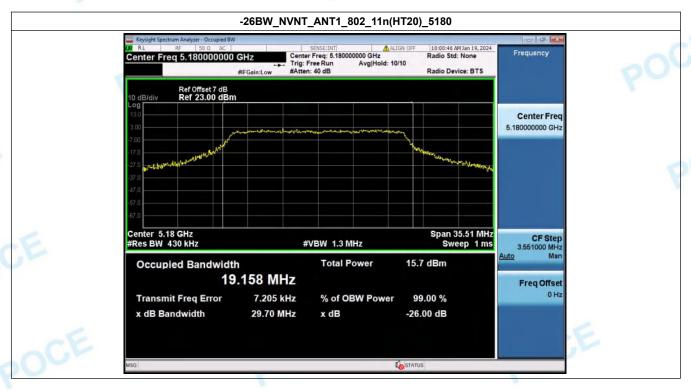


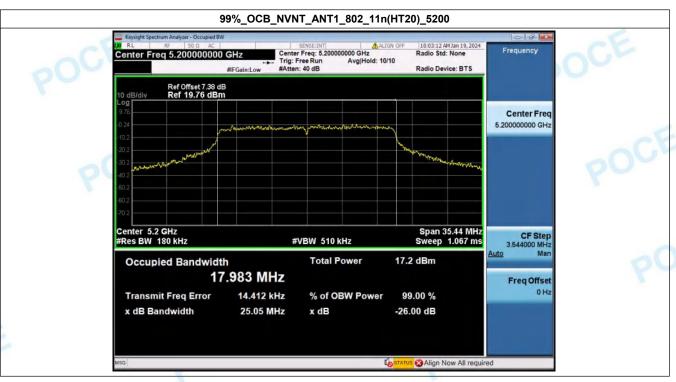


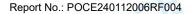


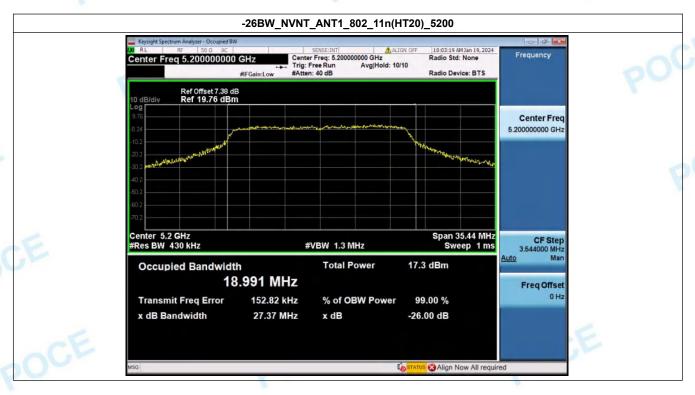


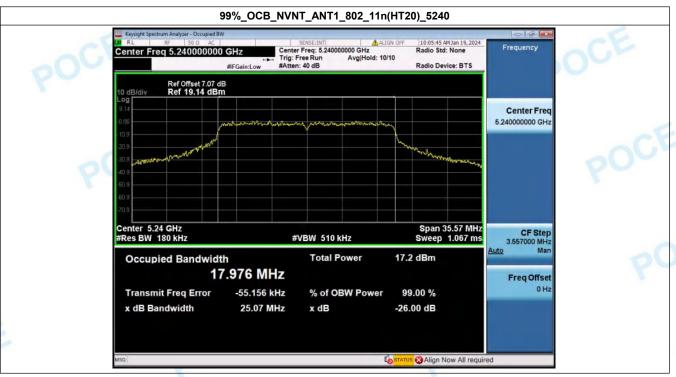

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 48 of 211

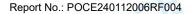


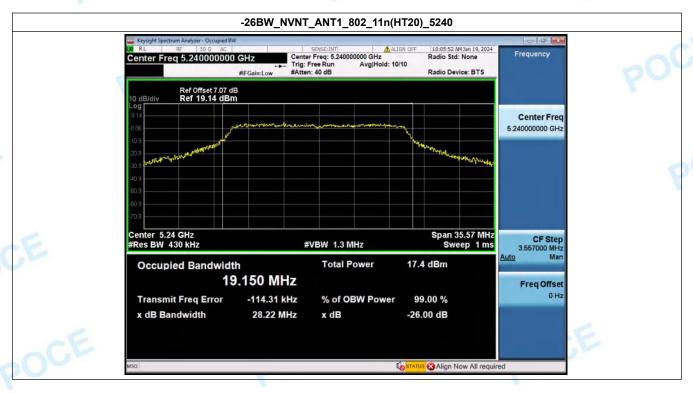


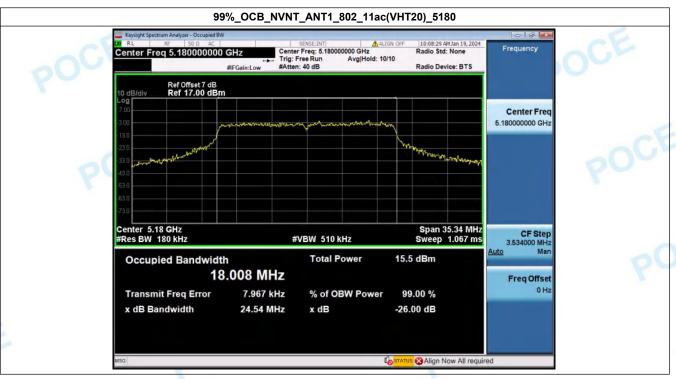


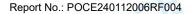


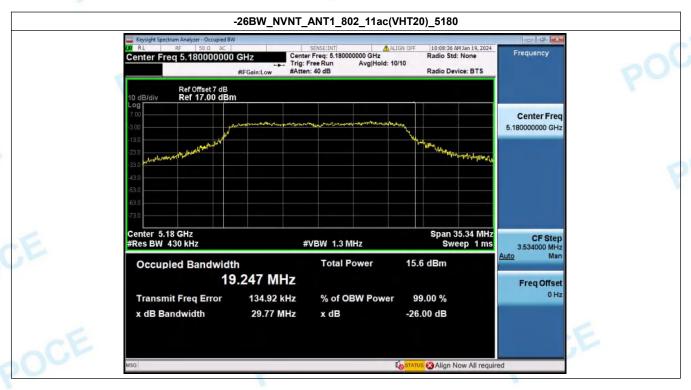


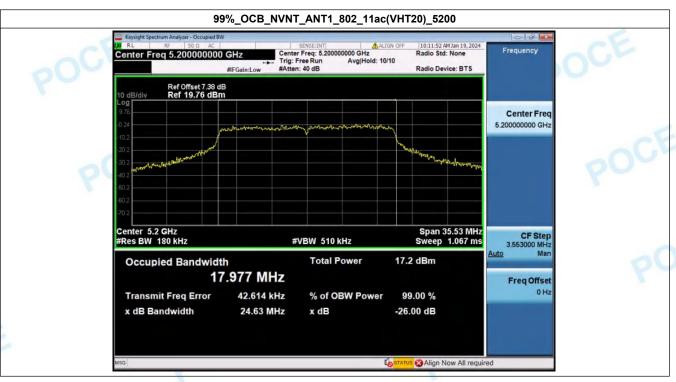

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 50 of 211



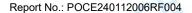


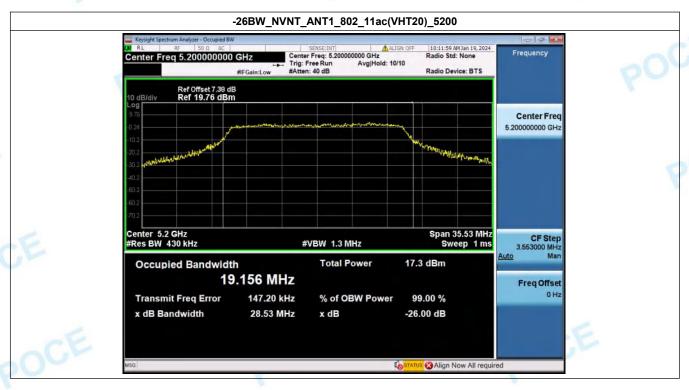


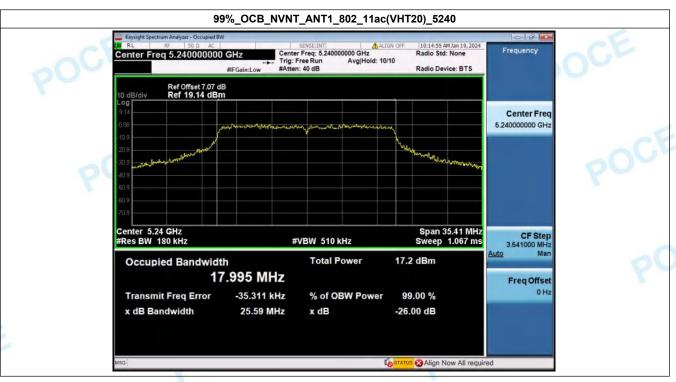




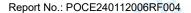
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 211

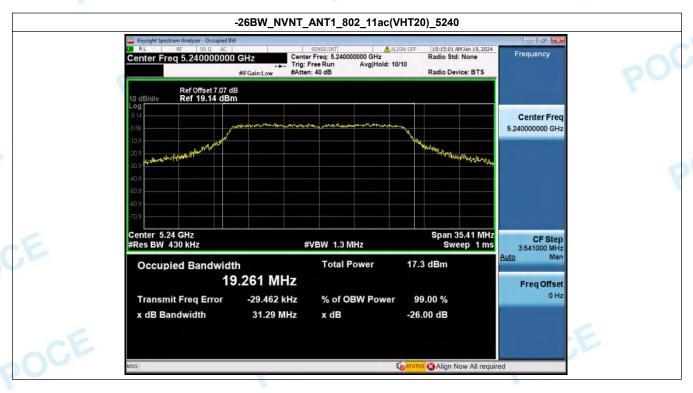


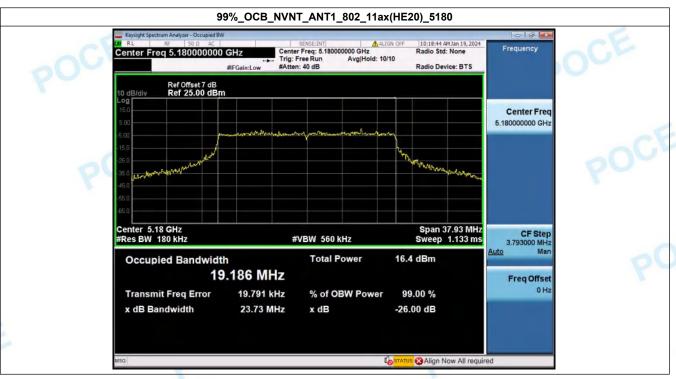




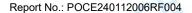
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 211

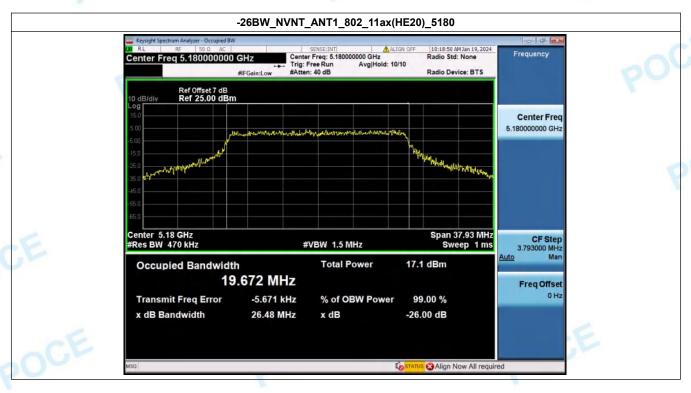


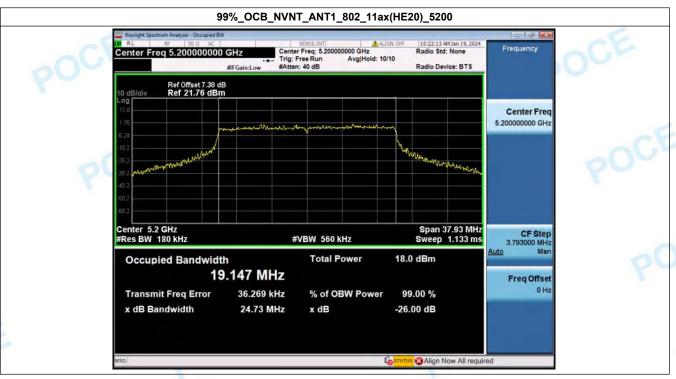




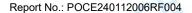
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 211

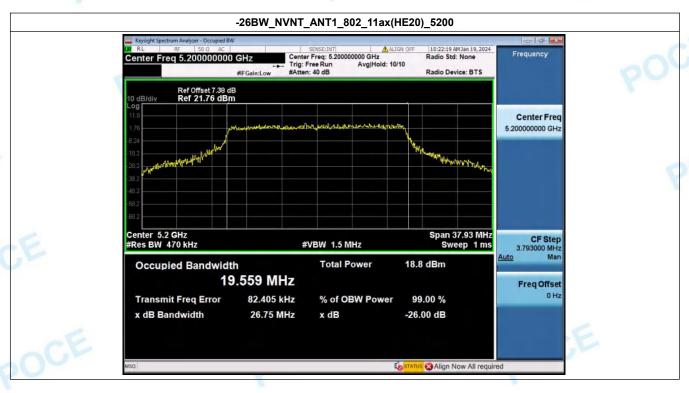


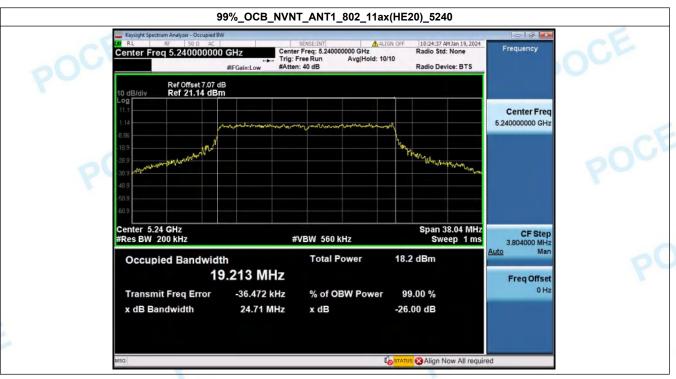




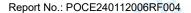
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 55 of 211

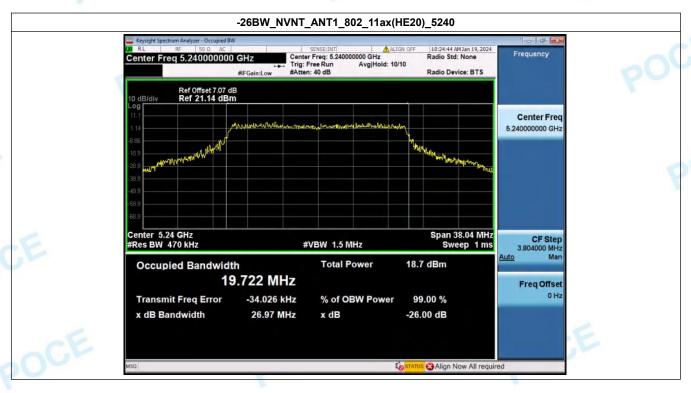


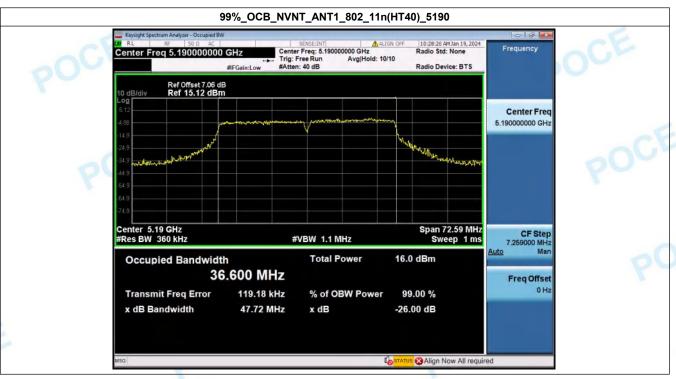




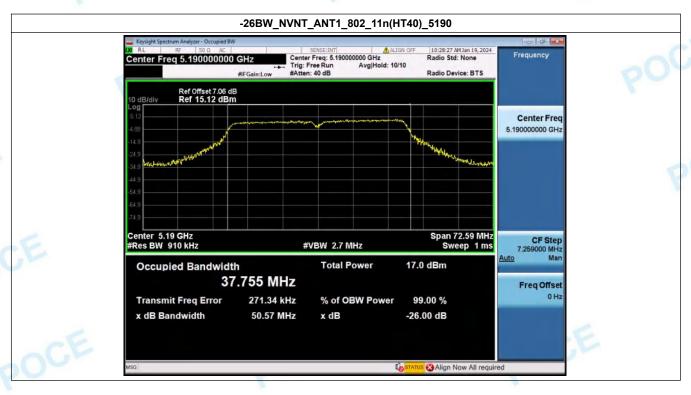
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 211

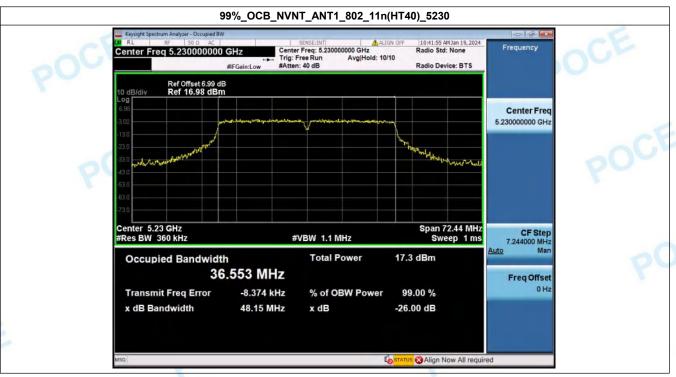


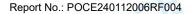




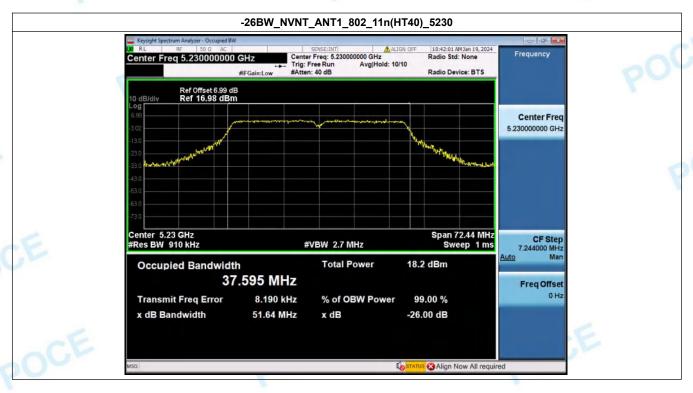
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 211

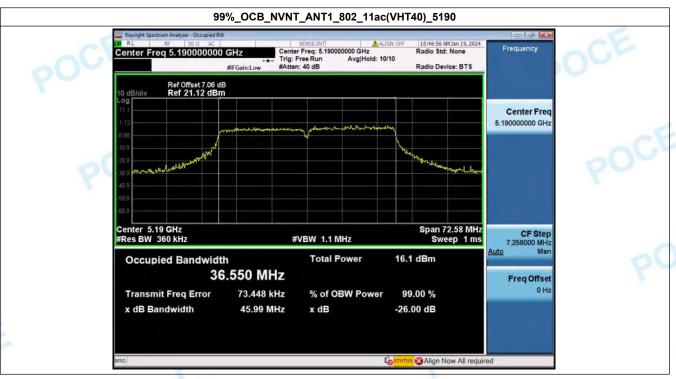


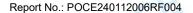


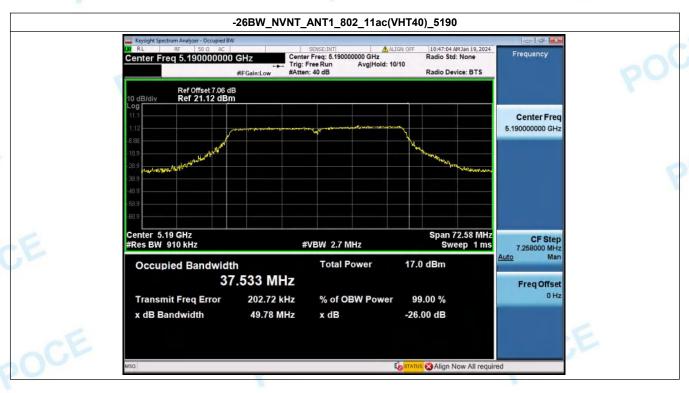


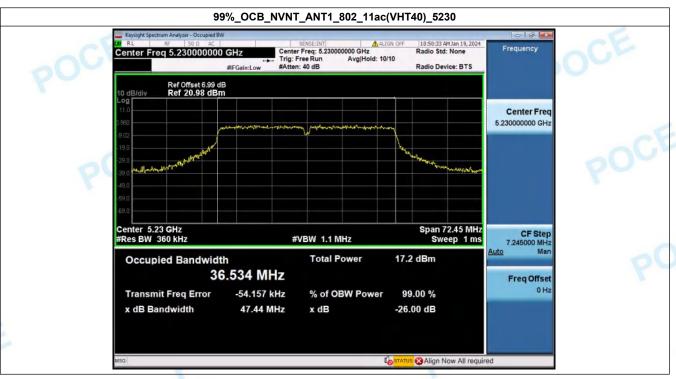
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 211



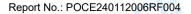


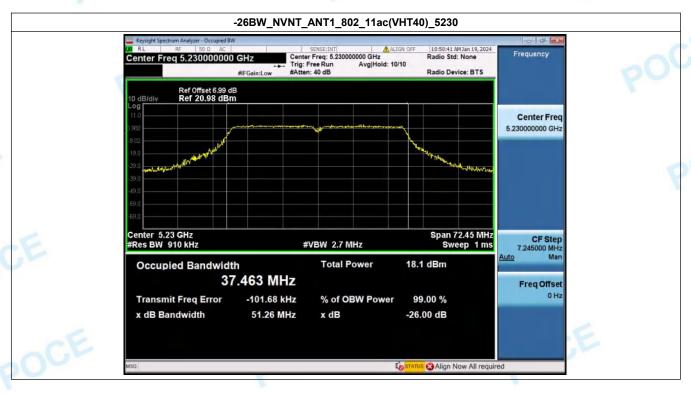


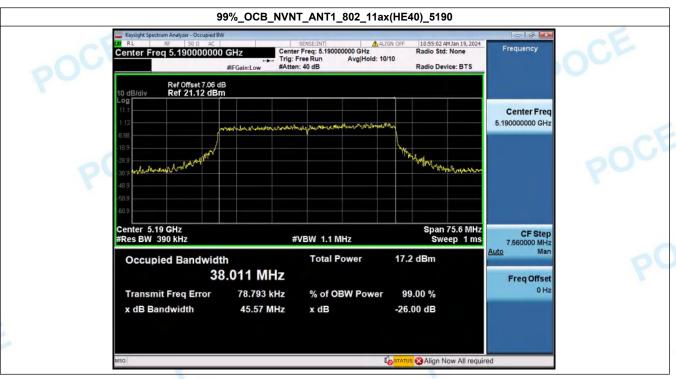




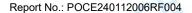
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 211

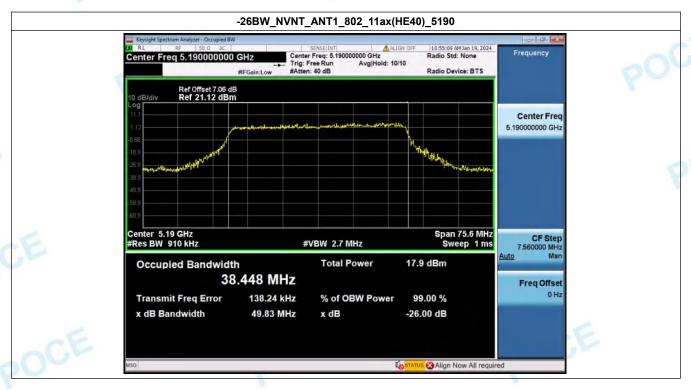


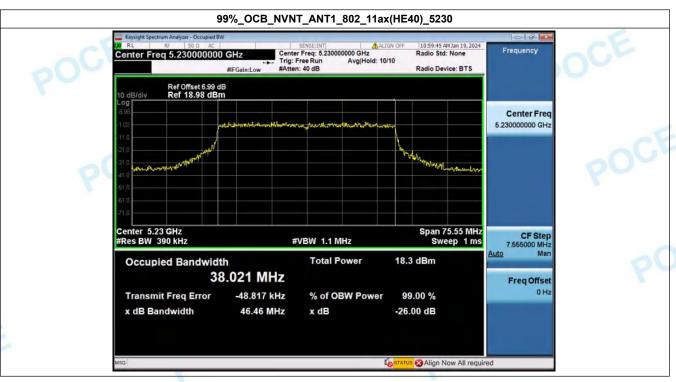




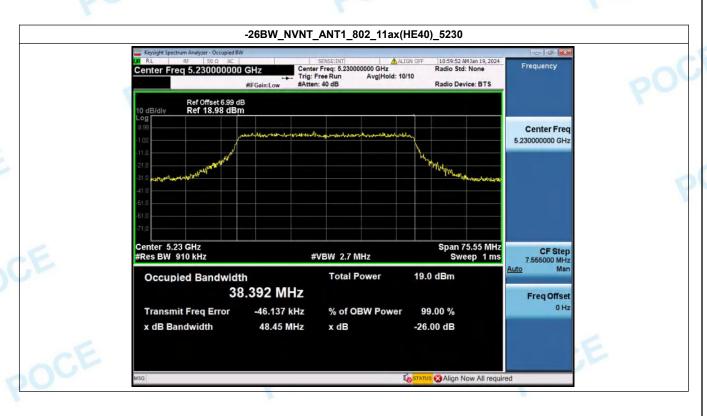
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 211

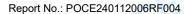




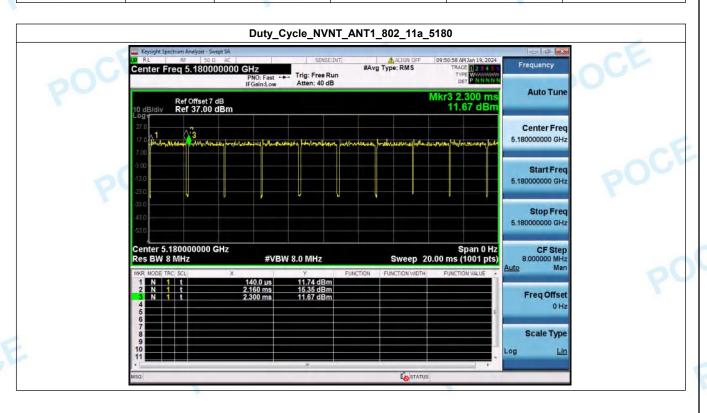


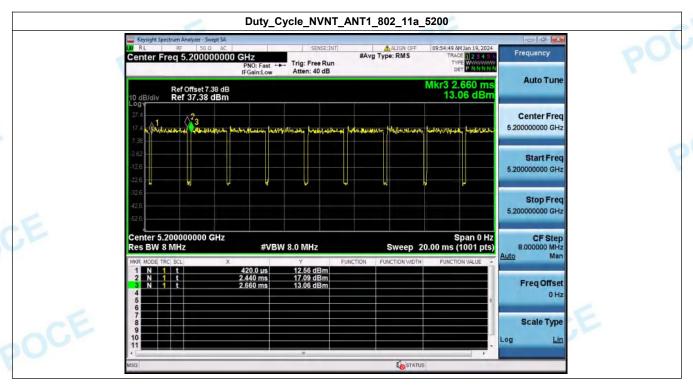
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 211

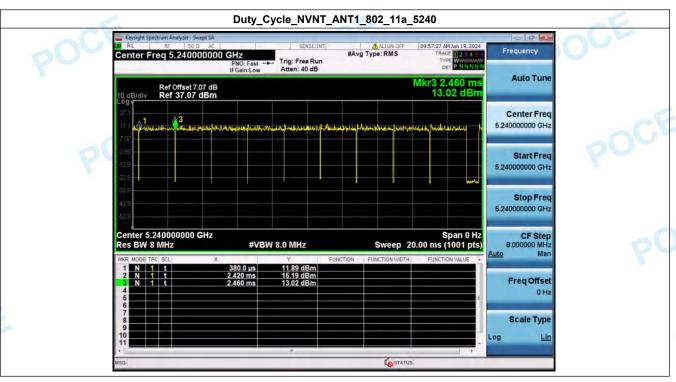




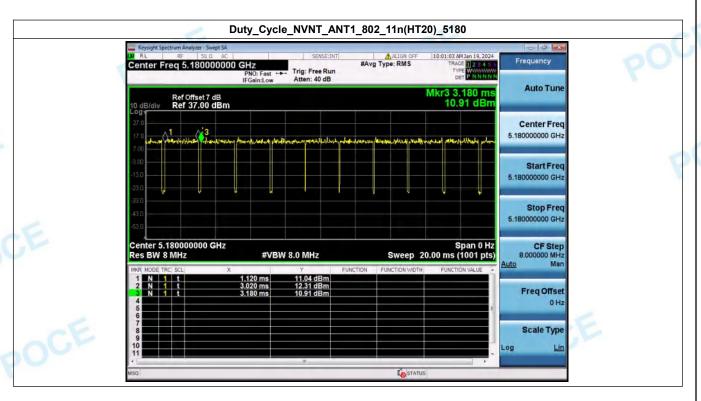
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 63 of 211

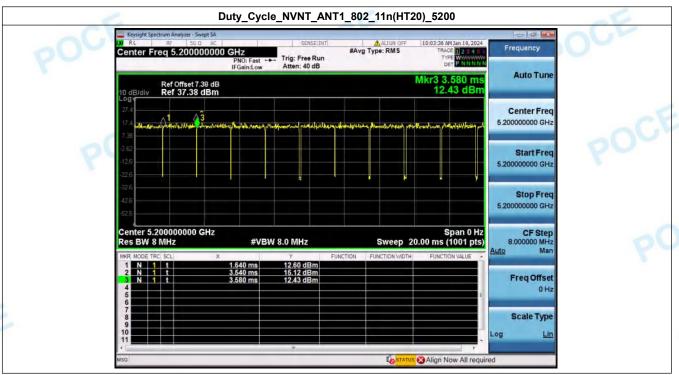


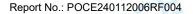


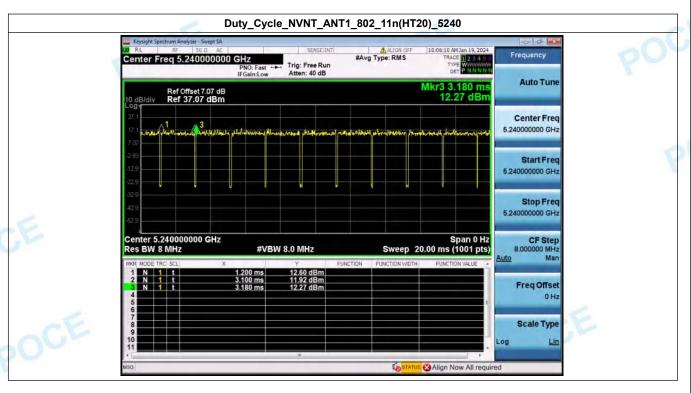

2. Duty Cycle

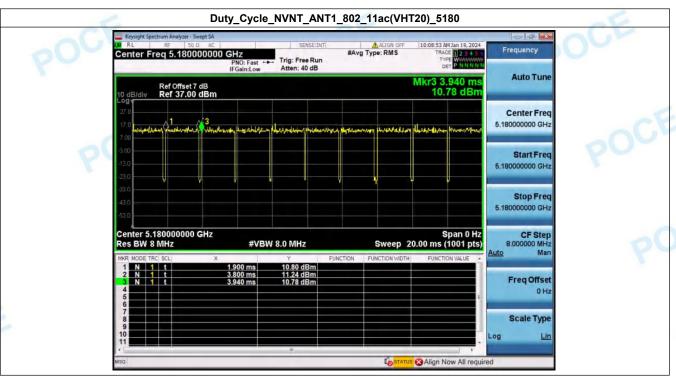
Condition	Antenna	Modulation	Frequency (MHz)	Duty cycle(%)	Duty_factor
NVNT	ANT1	802.11a	5180.00	93.52	0.29
NVNT	ANT1	802.11a	5200.00	90.18	0.45
NVNT	ANT1	802.11a	5240.00	98.08	0.00
NVNT	ANT1	802.11n(HT20)	5180.00	92.23	0.35
NVNT	ANT1	802.11n(HT20)	5200.00	97.94	0.09
NVNT	ANT1	802.11n(HT20)	5240.00	95.96	0.18
NVNT	ANT1	802.11ac(VHT20)	5180.00	93.14	0.31
NVNT	ANT1	802.11ac(VHT20)	5200.00	95.96	0.18
NVNT	ANT1	802.11ac(VHT20)	5240.00	95.96	0.18
NVNT	ANT1	802.11ax(HE20)	5180.00	91.25	0.40
NVNT	ANT1	802.11ax(HE20)	5200.00	90.12	0.45
NVNT	ANT1	802.11ax(HE20)	5240.00	90.00	0.46
NVNT	ANT1	802.11n(HT40)	5190.00	93.88	0.27
NVNT	ANT1	802.11n(HT40)	5230.00	85.45	0.68
NVNT	ANT1	802.11ac(VHT40)	5190.00	83.64	0.78
NVNT	ANT1	802.11ac(VHT40)	5230.00	90.38	0.44
NVNT	ANT1	802.11ax(HE40)	5190.00	82.22	0.85
NVNT	ANT1	802.11ax(HE40)	5230.00	79.17	1.01

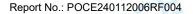


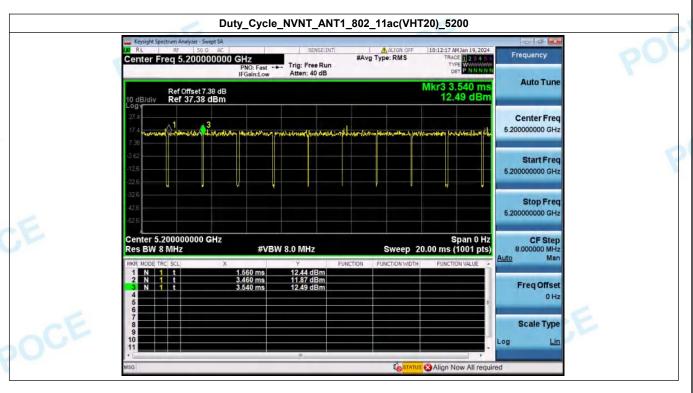


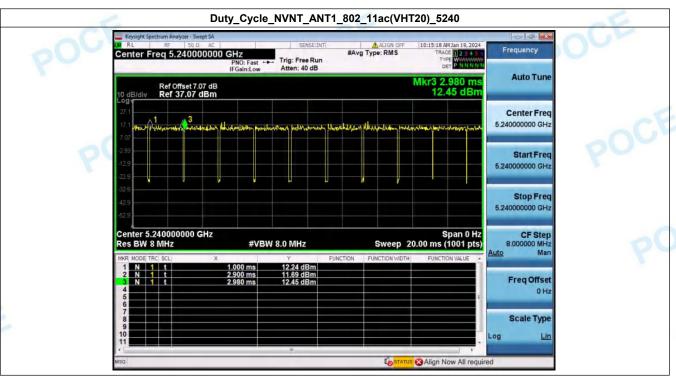




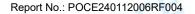


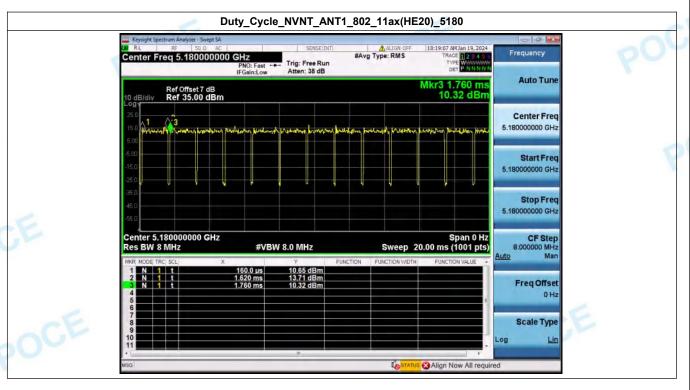


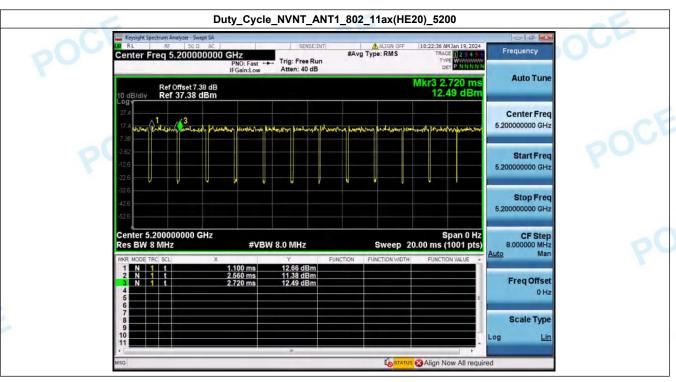




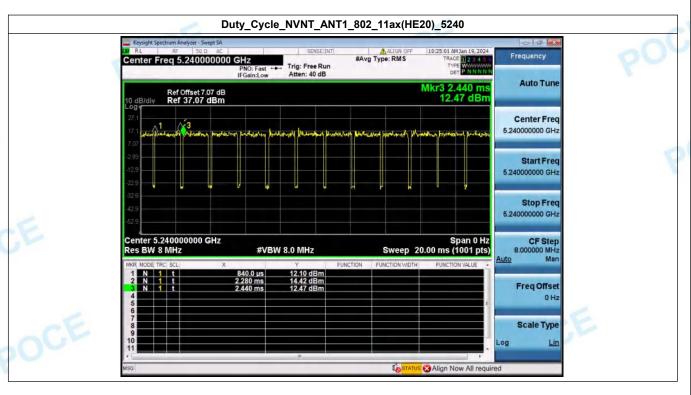
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 68 of 211

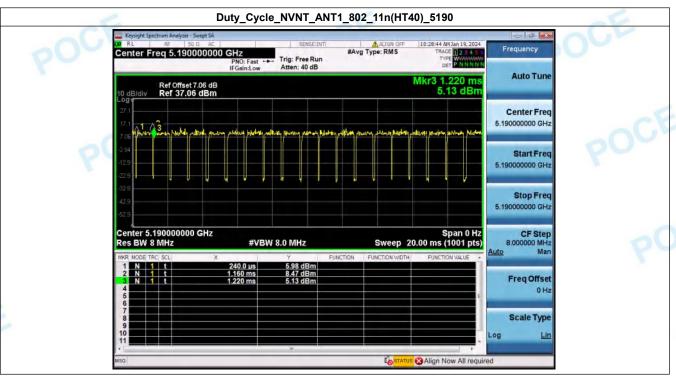


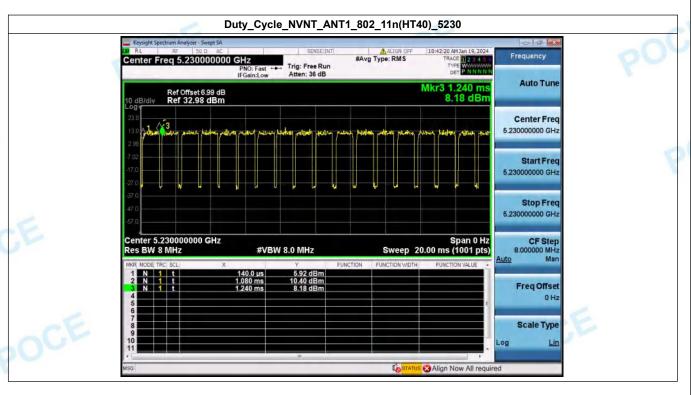


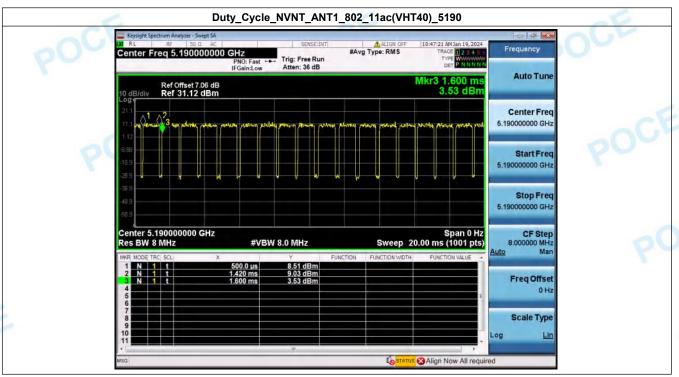


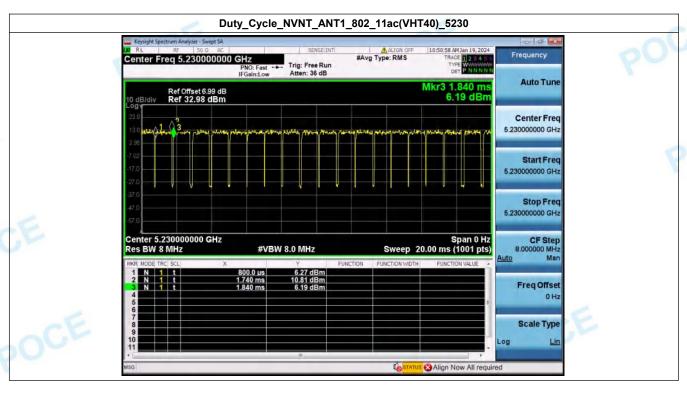
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 69 of 211

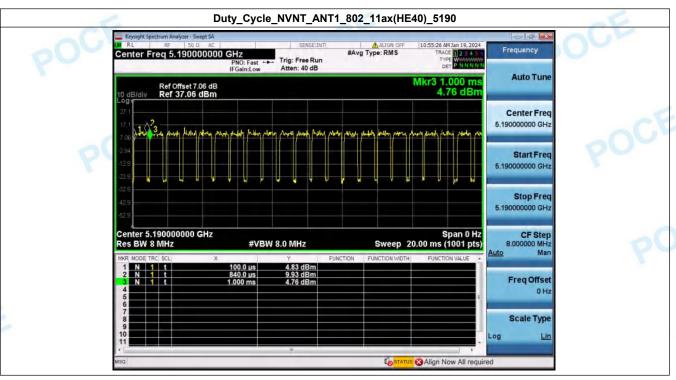


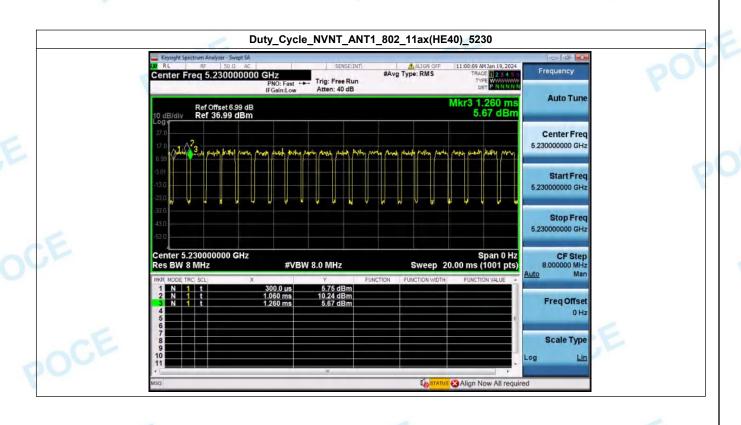


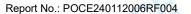


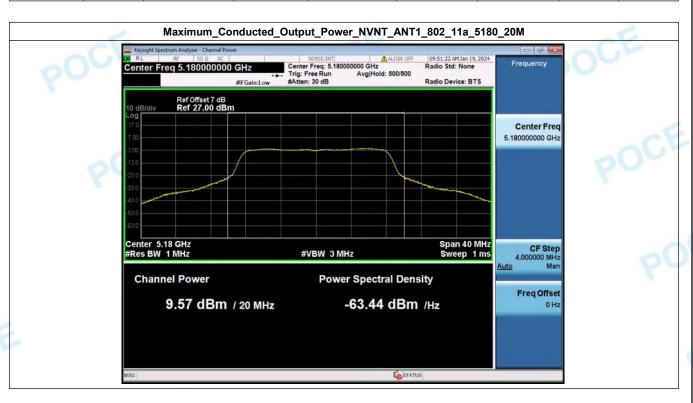


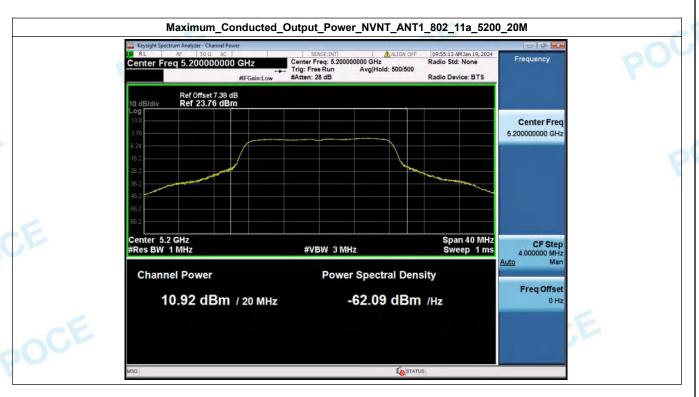


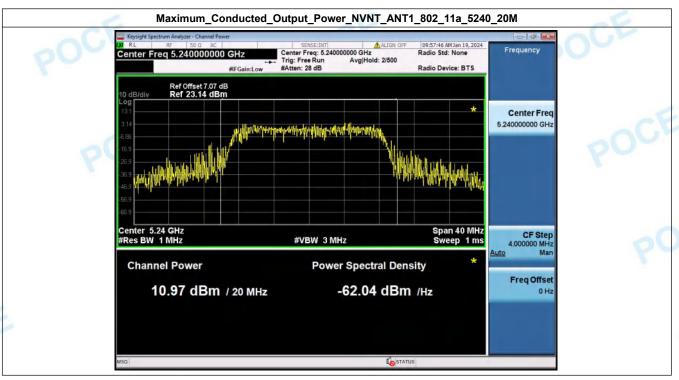


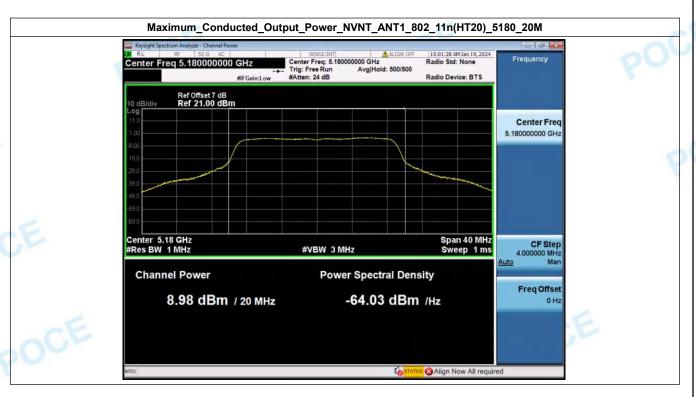


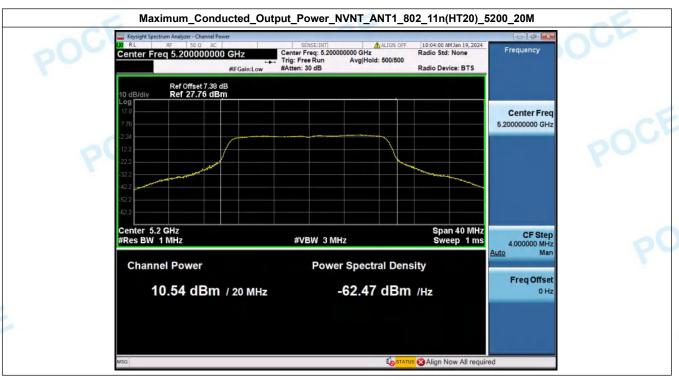


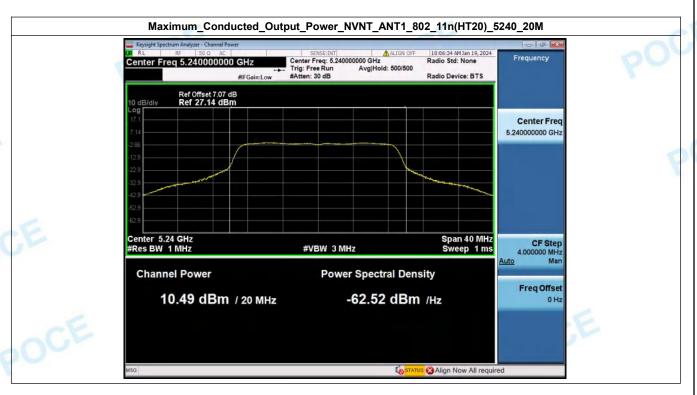


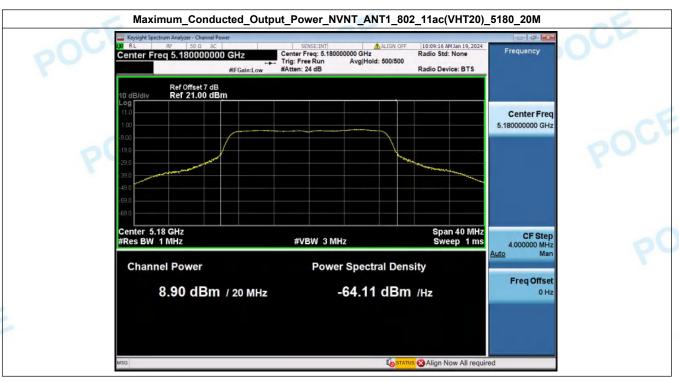

3. Maximum Conducted Output Power

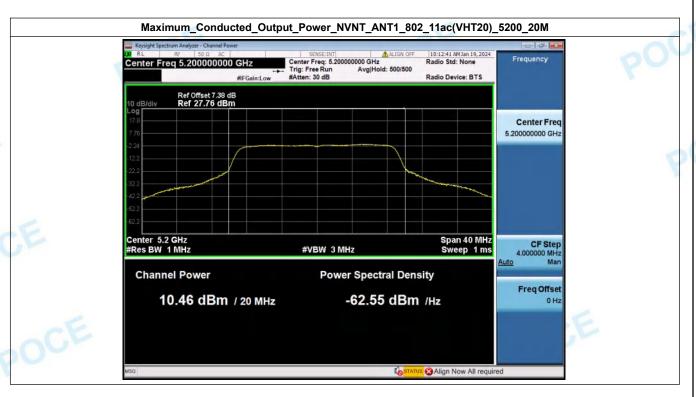

Condition	Antenna	Modulation	Frequency (MHz)	Conducted Power(dBm)	Duty factor(dB)	Total Power(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	9.57	0.29	9.86	24	Pass
NVNT	ANT1	802.11a	5200.00	10.92	0.45	11.37	24	Pass
NVNT	ANT1	802.11a	5240.00	10.97	0.00	10.97	24	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	8.98	0.35	9.33	24	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	10.54	0.09	10.63	24	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	10.49	0.18	10.67	24	Pass
NVNT	ANT1	802.11ac(VHT20)	5180.00	8.90	0.31	9.21	24	Pass
NVNT	ANT1	802.11ac(VHT20)	5200.00	10.46	0.18	10.64	24	Pass
NVNT	ANT1	802.11ac(VHT20)	5240.00	10.37	0.18	10.55	24	Pass
NVNT	ANT1	802.11ax(HE20)	5180.00	8.93	0.40	9.33	24	Pass
NVNT	ANT1	802.11ax(HE20)	5200.00	10.61	0.45	11.06	24	Pass
NVNT	ANT1	802.11ax(HE20)	5240.00	10.41	0.46	10.87	24	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	9.17	0.27	9.44	24	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	10.39	0.68	11.07	24	Pass
NVNT	ANT1	802.11ac(VHT40)	5190.00	9.07	0.78	9.85	24	Pass
NVNT	ANT1	802.11ac(VHT40)	5230.00	10.53	0.44	10.97	24	Pass
NVNT	ANT1	802.11ax(HE40)	5190.00	9.09	0.85	9.94	24	Pass
NVNT	ANT1	802.11ax(HE40)	5230.00	10.03	1.01	11.04	24	Pass

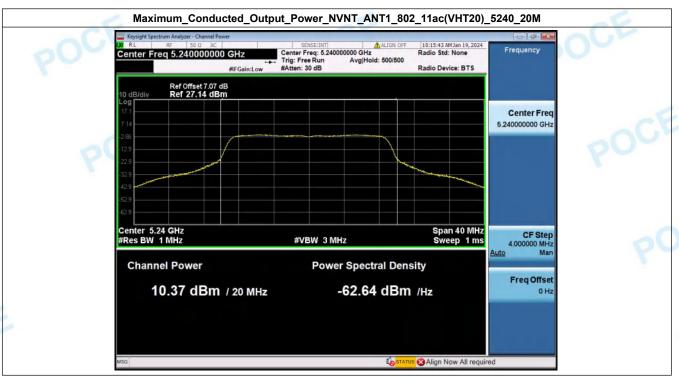

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 75 of 211

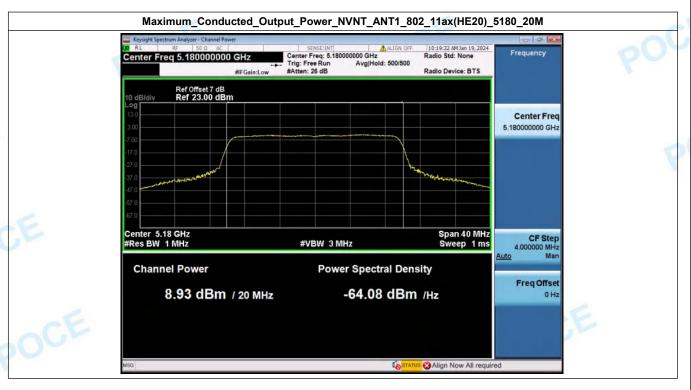


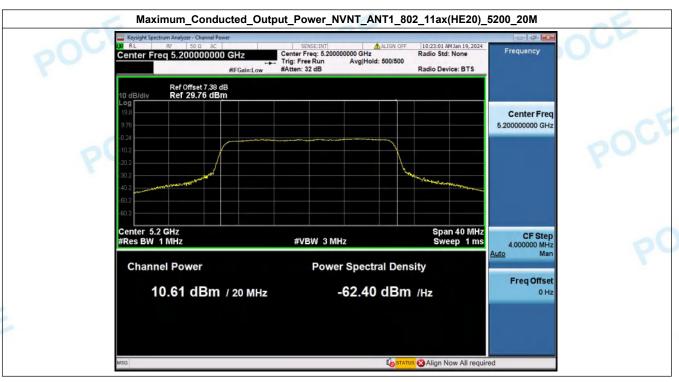


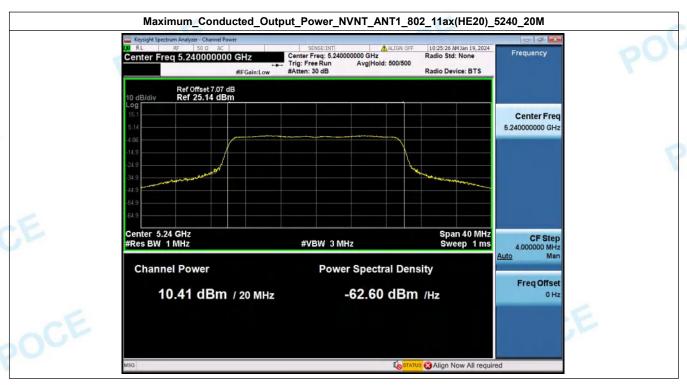


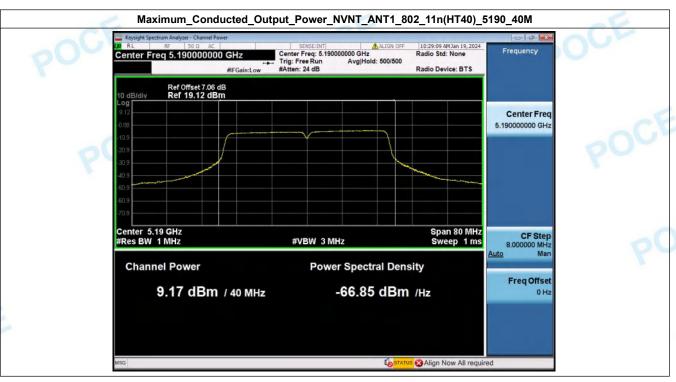


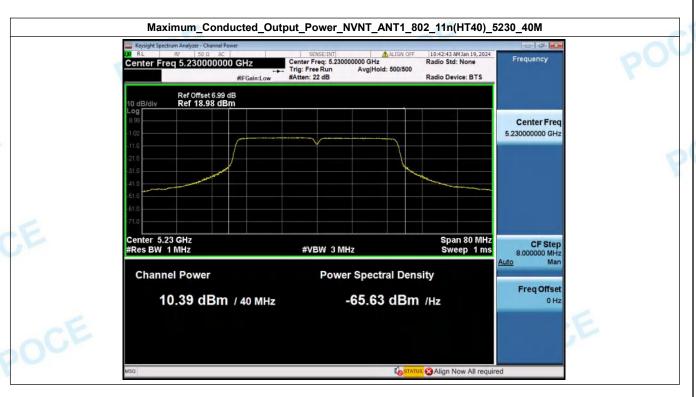


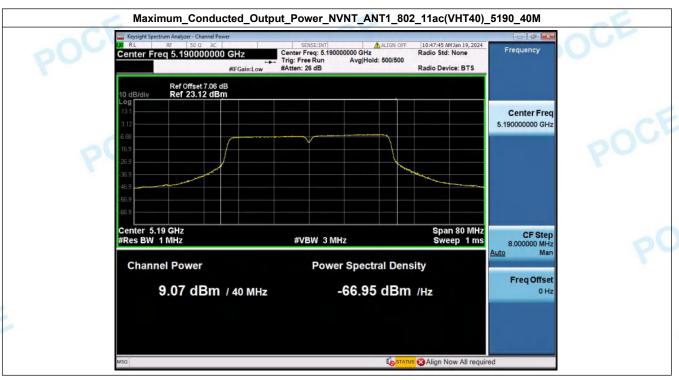


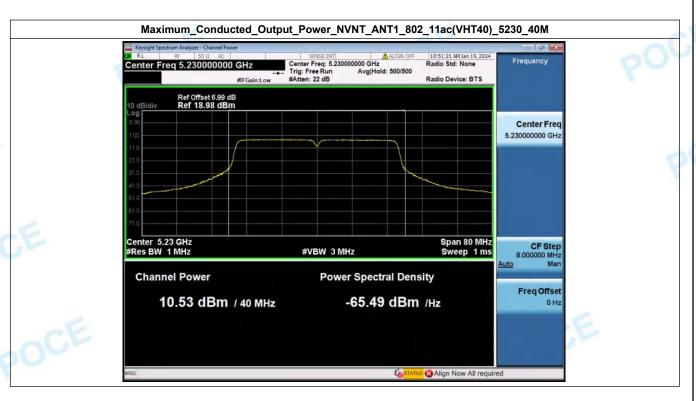


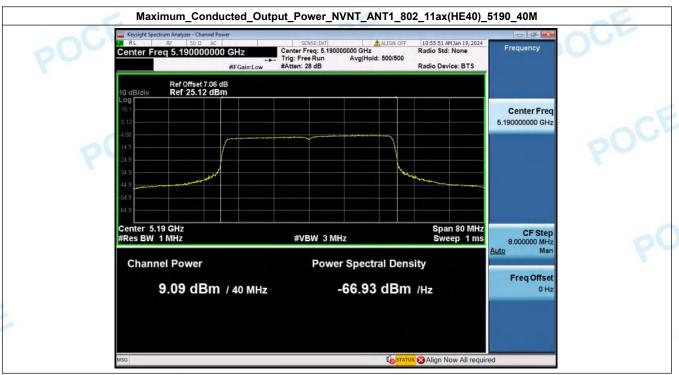


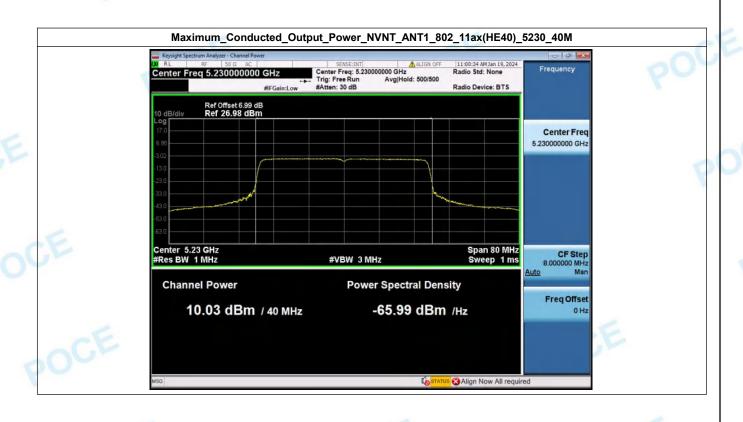


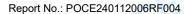




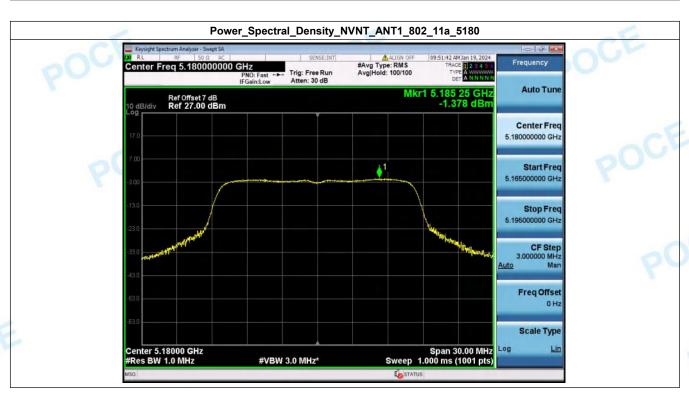


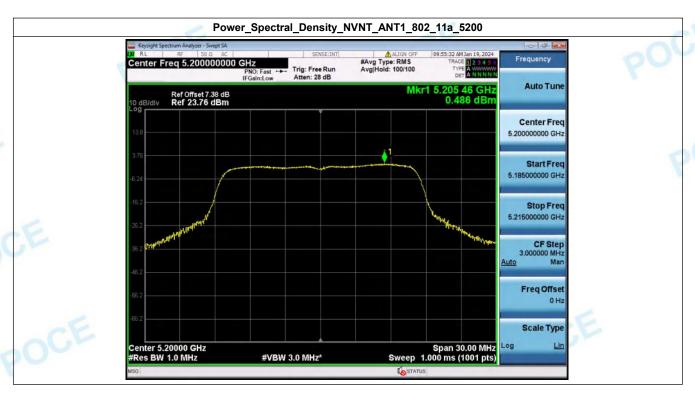


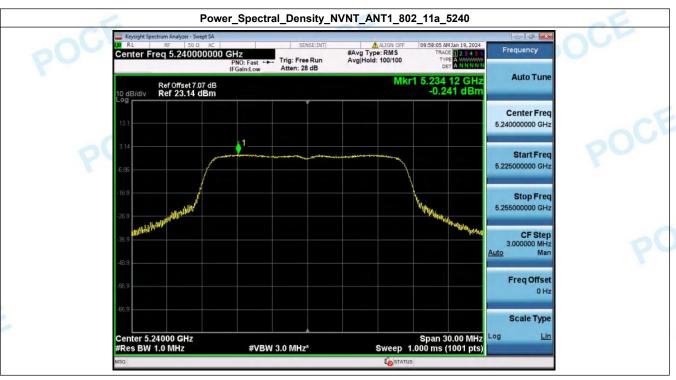




H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 83 of 211






4. Power Spectral Density

Condition	Antenna	Modulation	Frequency (MHz)	PSD(dBm/MHz)	Duty factor(dB)	Total PSD(dBm/MHz)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	-1.38	0.29	-1.09	11	Pass
NVNT	ANT1	802.11a	5200.00	0.49	0.45	0.94	11	Pass
NVNT	ANT1	802.11a	5240.00	-0.24	0.00	-0.24	11	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	-2.15	0.35	-1.80	11	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	-0.32	0.09	-0.23	11	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	-0.49	0.18	-0.31	11	Pass
NVNT	ANT1	802.11ac(VHT20)	5180.00	-2.06	0.31	-1.75	11	Pass
NVNT	ANT1	802.11ac(VHT20)	5200.00	-0.38	0.18	-0.20	11	Pass
NVNT	ANT1	802.11ac(VHT20)	5240.00	-0.66	0.18	-0.48	11	Pass
NVNT	ANT1	802.11ax(HE20)	5180.00	-2.36	0.40	-1.96	11	Pass
NVNT	ANT1	802.11ax(HE20)	5200.00	-0.72	0.45	-0.27	11	Pass
NVNT	ANT1	802.11ax(HE20)	5240.00	-1.06	0.46	-0.60	11	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	-4.78	0.27	-4.51	11	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	-4.20	0.68	-3.52	11	Pass
NVNT	ANT1	802.11ac(VHT40)	5190.00	-4.39	0.78	-3.61	11	Pass
NVNT	ANT1	802.11ac(VHT40)	5230.00	-4.11	0.44	-3.67	11	Pass
NVNT	ANT1	802.11ax(HE40)	5190.00	-4.91	0.85	-4.06	11	Pass
NVNT	ANT1	802.11ax(HE40)	5230.00	-4.53	1.01	-3.52	11	Pass

