

| •                                   |                                                                                                                  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Applicant:                          | KEYDIY                                                                                                           |
| Address of Applicant:               | Room 201, Building A, 5#, Chuangwei Innovation Valley, Tangtou<br>No.1 Road, Shiyan Subdistrict, Bao'an Shenzhen |
| Manufacturer/Factory:               | SHENZHEN YI CHE TECHNOLOGY CO.,LTD                                                                               |
| Address of<br>Manufacturer/Factory: | Room 201, Building A, 5#, Chuangwei Innovation Valley, Tangtou<br>No.1 Road, Shiyan Subdistrict, Bao'an Shenzhen |
| Product Name:                       | REMOTE                                                                                                           |
| Model No.:                          | TB01,TB01-3,TB01-4,TB01-5,TB01-6                                                                                 |
| Trade Mark:                         | KEYDIY                                                                                                           |
| FCC ID:                             | 2A3LS-TB01                                                                                                       |
| Applicable standards:               | FCC Part 15.231                                                                                                  |
| Test procedure                      | ANSI C63.10-2013                                                                                                 |
| Date of Test:                       | Dec.26, 2023-Feb.29, 2024                                                                                        |
| Date of report issued:              | Feb.29, 2024                                                                                                     |
| Test Result :                       | PASS*                                                                                                            |

**TEST REPORT** 

Remark:

\* In the configuration tested, the EUT complied with the standards specified above.

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver

### **Prepared By**

Shenzhen ETR Standard Technology Co., Ltd.

Address: No.103, No.10, Phase I, Zone 3, Xinxing Industrial Park, Xinhe, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Compiled by:

Reviewed by:

Smith chen

Approved by: Smith chen

Project Engineer

and

Project Manager

Authorized Signature



| Report Revision History |             |              |  |  |  |  |  |
|-------------------------|-------------|--------------|--|--|--|--|--|
| Report No.              | Description | Issue Date   |  |  |  |  |  |
| ET-23121522E            | Original    | Feb.29, 2024 |  |  |  |  |  |
|                         |             |              |  |  |  |  |  |
|                         |             |              |  |  |  |  |  |
|                         |             |              |  |  |  |  |  |



# Contents

- Page 3 of 21 -

# Page

| 1 | TEST SUMMARY                                                                                                                                                                                                   | 4     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2 | 2 GENERAL INFORMATION                                                                                                                                                                                          | 5     |
|   | <ul> <li>2.1 GENERAL DESCRIPTION OF EUT</li> <li>2.2 TEST MODE</li> <li>2.3 DESCRIPTION OF SUPPORT UNITS</li> <li>2.4 TEST FACILITY</li> <li>2.5 TEST LOCATION</li> <li>2.6 ADDITIONAL INSTRUCTIONS</li> </ul> |       |
| 3 | 3 TEST INSTRUMENTS LIST                                                                                                                                                                                        | 7     |
| 4 | TEST RESULTS AND MEASUREMENT DATA                                                                                                                                                                              | 8     |
| _ | <ul> <li>4.1 ANTENNA REQUIREMENT</li></ul>                                                                                                                                                                     | 9<br> |
| 5 | 5 TEST SETUP PHOTO                                                                                                                                                                                             | 21    |
| 6 | 6 EUT CONSTRUCTIONAL DETAILS                                                                                                                                                                                   | 21    |

# 1 Test Summary

| Test Item                                | Section in CFR 47                                          | Result | Test by |
|------------------------------------------|------------------------------------------------------------|--------|---------|
| Antenna requirement                      | 15.203<br>RSS-Gen Section 6.8                              | Pass   | /       |
| Conducted emission                       | 15.207<br>RSS-Gen Section 8.8                              | N/A    | /       |
| Transmitter field strength               | 15.231(b)<br>RSS210 Annex D                                | Pass   | Yvan    |
| Radiated emission and<br>Restricted band | 15.205 and 15.209<br>RSS-210 D&<br>RSS-Gen Clause 8.9&8.10 | Pass   | Yvan    |
| Occupied Bandwidth                       | 15.215<br>RSS-Gen 6.7                                      | Pass   | Yvan    |
| Release time                             | 15.231(a)(2)<br>RSS-210 D                                  | Pass   | Yvan    |

#### Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

#### **Measurement Uncertainty**

| Test Item                           | Uncertainty Criterion        | Measurement Uncertainty         | Notes     |
|-------------------------------------|------------------------------|---------------------------------|-----------|
| Occupied Channel Bandwidth          | ±5%                          | ±0.55%                          | (1)       |
| RF output power, conducted          | ±1.5dB                       | ±0.99dB                         | (1)       |
| Power Spectral Density, conducted   | ±3dB                         | ±0.61dB                         | (1)       |
| Unwanted Emissions, conducted       | ±3dB                         | ±0.64dB                         | (1)       |
| AC Power Line Conducted Emission    | ±6dB                         | ± 3.02 dB                       | (1)       |
| Radiated emissions Below 1GHz       | ±6dB                         | ±4.30 dB                        | (1)       |
| Radiated emissions Above 1GHz       | ±6dB                         | ±4.35 dB                        | (1)       |
| Note (1): The measurement uncertain | ty is for coverage factor of | of k=2 and a level of confidenc | e of 95%. |



# 2 General Information

# 2.1 General Description of EUT

| Product Name:          | REMOTE                                                                   |
|------------------------|--------------------------------------------------------------------------|
| Model No.:             | TB01,TB01-3,TB01-4,TB01-5,TB01-6                                         |
| Test Model:            | TB01                                                                     |
| Model of difference:   | All the model are the same circuit and RF module, except the model names |
| Sample(s) Status:      | Engineer sample                                                          |
| Hardware Version:      | N/A                                                                      |
| Software Version:      | N/A                                                                      |
| Operation Frequency:   | 433.92MHz                                                                |
| Channel numbers:       | 1                                                                        |
| Channel separation:    | N/A                                                                      |
| Modulation type:       | ASK                                                                      |
| Antenna Type:          | PCB Antenna                                                              |
| Antenna gain:          | -7.8dBi Max (Declare by applicant)                                       |
| Power supply:          | DC 3.0V                                                                  |
| Connecting I/O port(s) | Please refer to User's Manual                                            |

Note: For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual



### 2.2 Test mode

| _   |                             |             |                                                                |  |  |  |  |  |  |
|-----|-----------------------------|-------------|----------------------------------------------------------------|--|--|--|--|--|--|
|     | Test mode                   |             | Description                                                    |  |  |  |  |  |  |
|     | Mode 1                      | Keep the    | EUT in continuously transmitting mode.(TX mode)                |  |  |  |  |  |  |
| Rei | mark: For battery opera     | ated equipn | nent, the EUT was performed using a new DC 3.0V battery.       |  |  |  |  |  |  |
| 2.3 | Description of S            | upport U    | nits                                                           |  |  |  |  |  |  |
|     | None.                       |             |                                                                |  |  |  |  |  |  |
| 2.4 | Test Facility               |             |                                                                |  |  |  |  |  |  |
|     | Test laboratory:            |             | Shenzhen ETR Standard Technology Co., Ltd.                     |  |  |  |  |  |  |
|     | CNAS Registration           | Number:     | L11864                                                         |  |  |  |  |  |  |
|     | A2LA Certificate Nu         | mber:       | 6640.01                                                        |  |  |  |  |  |  |
|     | FCC Designation No          | umber:      | CN1326                                                         |  |  |  |  |  |  |
|     | FCC Test Firm Regi          | stration:   | 183064                                                         |  |  |  |  |  |  |
|     | IC Company Numbe            | er:         | 28440                                                          |  |  |  |  |  |  |
| 2.5 | Test Location               |             |                                                                |  |  |  |  |  |  |
|     | All tests were perform      | ned at:     |                                                                |  |  |  |  |  |  |
|     |                             | N           | o.103, No.10, Phase I, Zone 3, Xinxing Industrial Park, Xinhe, |  |  |  |  |  |  |
|     | Laboratory location:        | F           | uhai Street, Bao'an District, Shenzhen, Guangdong, China       |  |  |  |  |  |  |
|     | Telephone: +86 755 85259392 |             |                                                                |  |  |  |  |  |  |
|     | Fax:                        | +           | 86 755 27219460                                                |  |  |  |  |  |  |
| 2.6 | Additional Instru           | ictions     |                                                                |  |  |  |  |  |  |
|     | None.                       |             |                                                                |  |  |  |  |  |  |
|     |                             |             |                                                                |  |  |  |  |  |  |





# 3 Test Instruments list

| Item | Equipment name              | Manufacturer     | Model Serial No.   |             | Calibration date | Due date   |
|------|-----------------------------|------------------|--------------------|-------------|------------------|------------|
| 1    | EMI Test<br>Receiver        | Rohde&schwarz    | ESCI7              | 100605      | 2023.3.02        | 2024.3.01  |
| 2    | EMI Test<br>Receiver        | Rohde&schwarz    | ESCI3              | 102696      | 2023.3.02        | 2024.3.01  |
| 3    | Loop Antenna                | schwarabeck      | FMZB 1519<br>B     | FMZB 1519 B | 2022.3.11        | 2024.3.10  |
| 4    | Broadband<br>antenna        | schwarabeck      | VULB9168           | 1064        | 2022.3.11        | 2024.3.10  |
| 5    | Horn antenna                | schwarabeck      | BBHA9120D          | 9120D-1145  | 2022.3.11        | 2024.3.10  |
| 6    | amplifier                   | EMtrace          | RP01A              | 50117       | 2023.3.02        | 2024.3.01  |
| 7    | Artificial power<br>network | schwarabeck      | NSLK8127           | 8127483     | 2023.3.02        | 2024.3.01  |
| 8    | Artificial power<br>network | ETS              | 3186/2NM           | 1132        | 2023.3.02        | 2024.3.01  |
| 9    | 10dB<br>attenuator          | HUBER+SUHNE<br>R | 10dB               | /           | 2023.3.02        | 2024.3.01  |
| 10   | amplifier                   | Space-Dtronics   | EWLAN0118<br>G-P40 | 19113001    | 2023.3.02        | 2024.3.01  |
| 11   | Filter                      | Xingbo           | XBLBQ-<br>GTA19    | 210410-3-1  | 2023.3.06        | 2024.3.05  |
| 12   | Spectrum analyzer           | KEYSIGHT         | N9020A             | MY55370280  | 2023.3.02        | 2024.3.01  |
| 13   | Power detector box          | MWRFtest         | MW100-PSB          | MW201020JYT | 2022.11.18       | 2023.11.17 |

Note: the calibration interval of the above test instruments is 12 or 24 months and the calibrations are traceable to international system unit (SI).

| Software Name | Manufacturer | Model  | Version           |
|---------------|--------------|--------|-------------------|
| Conducted     | Farad        | EZ-EMC | Ver.EMC-CON 3A1.1 |
| Radiated      | Farad        | EZ-EMC | Ver.FA-03A2 RE    |





# 4 Test results and Measurement Data

### 4.1 Antenna requirement

#### Standard requirement:

#### FCC part 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### RSS-Gen 6.8:

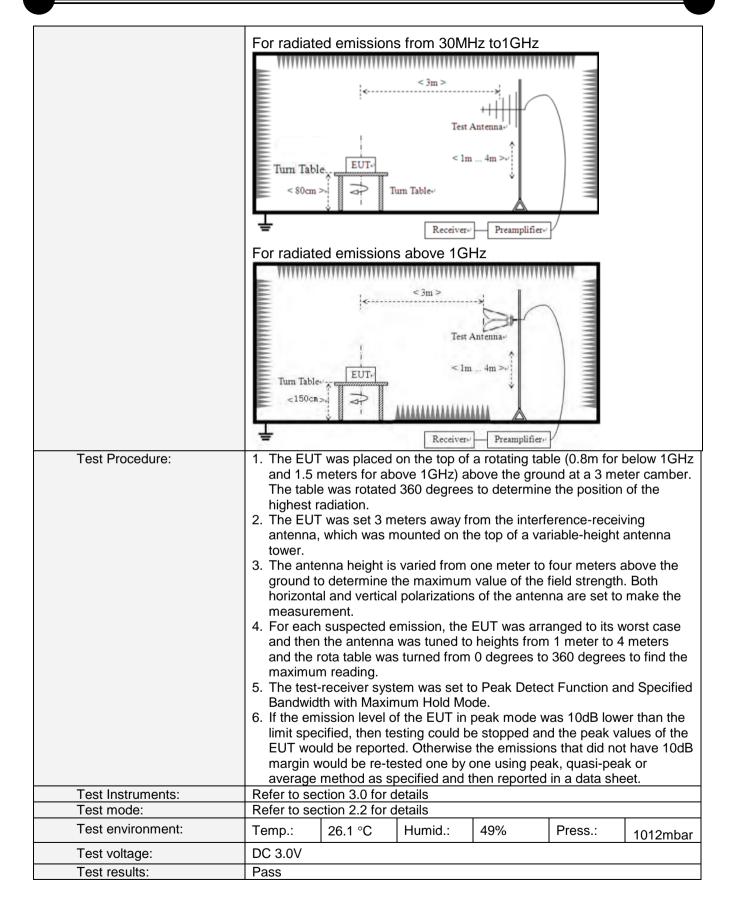
The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

#### EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is -7.8dBi, reference to the appendix II for details

### 4.2 Conducted Emissions


| Test Requirement:     | FCC Part15                                                                                                                                                                     | C Section 15.2                                                                                                                                                      | 07                                                                                                  |                                                                                                                    |                                                                                                                |                                                              |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
| Test Method:          | ANSI C63.1                                                                                                                                                                     | 0:2013                                                                                                                                                              |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |
| Test Frequency Range: | 150KHz to 3                                                                                                                                                                    | 30MHz                                                                                                                                                               |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |
| Class / Severity:     | Class B                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sweep time=auto                                                                                                                                           |                                                                                                                                                                     |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |
| Limit:                | Limit (dBuV)                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |
| Linnt.                | Frequen                                                                                                                                                                        | cy range (MHz)                                                                                                                                                      | Qu                                                                                                  | asi-peak                                                                                                           | Ave                                                                                                            | age                                                          |  |  |
|                       | C                                                                                                                                                                              | ).15-0.5                                                                                                                                                            |                                                                                                     | 6 to 56*                                                                                                           | 56 to                                                                                                          |                                                              |  |  |
|                       |                                                                                                                                                                                | 0.5-5                                                                                                                                                               |                                                                                                     | 56                                                                                                                 | 4                                                                                                              | 6                                                            |  |  |
|                       |                                                                                                                                                                                | 5                                                                                                                                                                   | 0                                                                                                   |                                                                                                                    |                                                                                                                |                                                              |  |  |
|                       | * Decreases                                                                                                                                                                    | s with the logarit                                                                                                                                                  | hm of the                                                                                           | frequency.                                                                                                         |                                                                                                                |                                                              |  |  |
| Test setup:           |                                                                                                                                                                                |                                                                                                                                                                     | Referer                                                                                             | ice Plane                                                                                                          |                                                                                                                |                                                              |  |  |
| <br>Test procedure:   | LISN AUX<br>Equipment E.U.T<br>Bocm<br>Filter AC power<br>EMI<br>Remark<br>E U T: Equipment Under Test<br>LISN. Line Impedence Stabilization Network<br>Test table height=0.8m |                                                                                                                                                                     |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |
|                       | 50ohm/5<br>2. The perip<br>LISN tha<br>terminati<br>photogra<br>3. Both side<br>interferer<br>positions                                                                        | dance stabilizat<br>0uH coupling im<br>oheral devices a<br>t provides a 50c<br>on. (Please refe<br>phs).<br>es of A.C. line an<br>of equipment a<br>g to ANSI C63.1 | npedance f<br>are also co<br>ohm/50uH<br>er to the blo<br>re checkeo<br>find the ma<br>nd all of th | for the measure<br>nnected to the<br>coupling imp<br>ock diagram of<br>for maximum<br>aximum emis<br>e interface c | uring equipme<br>e main powe<br>edance with<br>of the test se<br>m conducted<br>sion, the rela<br>ables must b | ent.<br>r through a<br>50ohm<br>tup and<br>tive<br>e changed |  |  |
| Test Instruments:     | Refer to sec                                                                                                                                                                   | ction 3.0 for deta                                                                                                                                                  | ails                                                                                                |                                                                                                                    |                                                                                                                |                                                              |  |  |
| Test mode:            | Refer to see                                                                                                                                                                   | ction 2.2 for deta                                                                                                                                                  | ails                                                                                                |                                                                                                                    |                                                                                                                |                                                              |  |  |
| Test environment:     | Temp.:                                                                                                                                                                         | / °C                                                                                                                                                                | Humid.:                                                                                             | /%                                                                                                                 | Press.:                                                                                                        | /mbar                                                        |  |  |
| Test voltage:         | /                                                                                                                                                                              | II                                                                                                                                                                  |                                                                                                     |                                                                                                                    | 1                                                                                                              |                                                              |  |  |
| Test results:         | N/A                                                                                                                                                                            |                                                                                                                                                                     |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |
|                       |                                                                                                                                                                                | by DC 3.0V Fro                                                                                                                                                      |                                                                                                     |                                                                                                                    |                                                                                                                |                                                              |  |  |



### 4.3 Radiated Emission Measurement

| 4.3 |                        |                                 |                                                                         |                |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|-----|------------------------|---------------------------------|-------------------------------------------------------------------------|----------------|-----------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | Test Requirement:      | FCC Part15 C S                  |                                                                         |                |                                         | and 15.205              | (a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|     | Test Method:           | RSS-210 D & R<br>ANSI C63.10: 2 |                                                                         |                |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     | Test site:             | Measurement D                   |                                                                         |                | en                                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     | Receiver setup:        |                                 |                                                                         | etector        | RBW                                     | VBW                     | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|     | Receiver setup.        | Frequency<br>9kHz-              |                                                                         | si-peak        |                                         | 300Hz                   | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        | 150kHz                          |                                                                         |                | 200112                                  | 300112                  | Quasi-peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        | 150kHz-                         | Oua                                                                     | si-peak        | 9kHz                                    | 10kHz                   | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        | 30MHz                           | Que                                                                     | tor pour       | 01112                                   | 1010112                 | Quadri pourt valuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|     |                        | 30MHz-                          | Qua                                                                     | si-peak        | 120KHz                                  | 300KHz                  | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        | 1GHz                            |                                                                         | •              |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        | Above 1GHz                      | F                                                                       | Peak           | 1MHz                                    | 3MHz                    | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|     |                        | Above IGHZ                      | F                                                                       | Peak           | 1MHz                                    | 10Hz                    | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|     | Limit:                 |                                 |                                                                         | Fiel           | d strength of                           | Field                   | strength of spurious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|     | (Field strength of the | Fundament                       | tal                                                                     |                | ndamental                               |                         | emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|     | fundamental signal)    | frequency (M                    |                                                                         | (mici          | rovolts/meter                           | ) (m                    | nicrovolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|     |                        | 40.66-40.7                      | <b>'</b> 0                                                              |                | 2.250                                   |                         | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|     |                        | 70-130                          |                                                                         |                | 1.250                                   |                         | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|     |                        | 130-174                         |                                                                         | 112            | 250 to 3750                             |                         | 1125 to 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|     |                        | 174-260<br>260-470              |                                                                         | 107            | 3.750                                   |                         | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|     |                        | Above 470                       |                                                                         | 137            | 750 to 12500<br>12500                   |                         | 1375 to 1250<br>1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|     | Limit:                 |                                 |                                                                         | l              | Limit (u                                | \//m)                   | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|     | (Spurious Emissions)   |                                 |                                                                         | 1117           | 2400/F(kHz                              | ,                       | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        |                                 | 0.009MHz-0.490MHz<br>0.490MHz-1.705MHz                                  |                | 2400/F(kH                               |                         | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        |                                 | 1.705MHz-30.0MHz                                                        |                | 30 @3                                   | 1                       | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        |                                 | 30MHz-88MHz                                                             |                | 100 @3m                                 |                         | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        |                                 | 88MHz-216MHz                                                            |                | 150 @                                   |                         | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        |                                 | 216MHz-960MHz                                                           |                | 200 @                                   |                         | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        |                                 | 960MHz-1GHz                                                             |                | 500 @                                   | 3m                      | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     |                        | Above 1                         | Above 1GHz                                                              |                | 500 @3m                                 |                         | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|     |                        | Above                           | IGHZ                                                                    |                | 5000 @                                  | ⊉3m                     | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|     | Limit:                 |                                 | Emissions radiated outside of the specified frequency bands, except for |                |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     | (band edge)            |                                 |                                                                         |                |                                         |                         | w the level of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|     |                        |                                 |                                                                         |                |                                         | ssion limits            | in Section 15.209,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|     | Testestus              | whichever is the                | elesse                                                                  | er attenu      | ation.                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     | Test setup:            | For radiated e                  | missi                                                                   | ons fror       | m 9kHz to 3                             | 0MHz                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        | *********                       | / * * * * * * * *                                                       | ,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | *****                   | V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|     |                        | AAA                             |                                                                         |                |                                         |                         | THE REAL PROPERTY AND ADDREAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|     |                        | A.A.A.                          |                                                                         |                | 2                                       |                         | THE REAL PROPERTY AND ADDRESS |  |
|     |                        | A A A                           | <b>&lt;</b>                                                             |                | < 3m >                                  |                         | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|     |                        | A A A                           | í                                                                       |                | ,                                       | Λ                       | TTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|     |                        | A A A                           |                                                                         |                | Test Antenna                            | 1                       | THE SECOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|     |                        | E                               | EUT                                                                     |                | <b>^</b>                                | ¥                       | TIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|     |                        | Turn Table                      |                                                                         | 1              | 1m                                      |                         | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|     |                        | < 80cm >+                       | Þ                                                                       | Turn Tab       | le⊷                                     |                         | THE REAL PROPERTY AND ADDRESS |  |
|     |                        | ý 🛙                             | '                                                                       | NN             | * A                                     | △                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        | - ÷                             |                                                                         |                | Receive                                 | <b>T</b> + <sup>1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        |                                 |                                                                         |                |                                         | _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        |                                 |                                                                         |                |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        |                                 |                                                                         |                |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        |                                 |                                                                         |                |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|     |                        |                                 |                                                                         |                |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |





#### **Measurement Data**

### 4.3.1 Field Strength of Fundamental

#### Peak value:

| Frequency<br>(MHz) | Read Level<br>(dBuV/m) | Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over Limit<br>(dB) | polarization |
|--------------------|------------------------|----------------|-------------------|-------------------|--------------------|--------------|
| 433.92             | 84.88                  | -16.01         | 68.87             | 100.83            | -31.96             | Vertical     |
| 433.92             | 84.67                  | -16.01         | 68.66             | 100.83            | -32.17             | Horizontal   |

#### Average value:

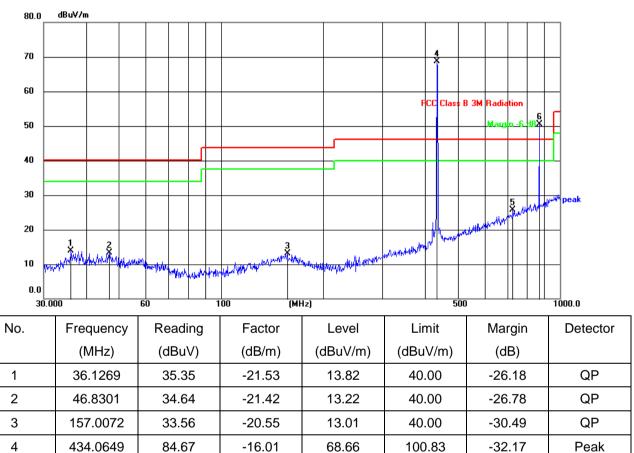
| Frequency<br>(MHz) | Peak Level<br>(dBuV/m) | DC Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over Limit<br>(dB) | polarization |
|--------------------|------------------------|-------------------|-------------------|-------------------|--------------------|--------------|
| 433.92             | 68.87                  | 0                 | 68.87             | 80.83             | -11.96             | Vertical     |
| 433.92             | 68.66                  | 0                 | 68.66             | 80.83             | -12.17             | Horizontal   |

Remark: Average=Peak+ Duty Cycle factor(DC Factor) (see 4.5 clause)

QP

Peak




#### 4.3.2 Spurious emissions and Bandedge

#### Below 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

#### Below 1GHz

#### Horizontal:



#### Average value:

5

6

726.8052

869.1301

| Frequency | Peak Level | DC Factor | Level    | Limit    | Over Limit | polarization |
|-----------|------------|-----------|----------|----------|------------|--------------|
| (MHz)     | (dBuV/m)   | (dB)      | (dBuV/m) | (dBuV/m) | (dB)       |              |
| 869.1301  | 50.52      | 0         | 50.52    | 60.83    | -10.31     | Horizontal   |

25.66

50.52

46.00

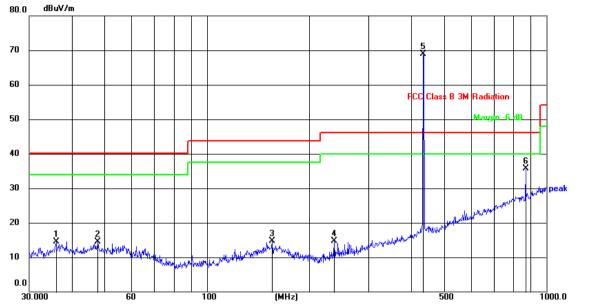
80.83

-20.34

-30.31

-8.58

-5.95


Remark: Average=Peak+ Duty Cycle factor(DC Factor)

34.24

56.47



Vertical:



| No. | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector |
|-----|-----------|---------|--------|----------|----------|--------|----------|
|     | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |          |
| 1   | 36.0007   | 36.14   | -21.55 | 14.59    | 40.00    | -25.41 | QP       |
| 2   | 47.8260   | 35.98   | -21.54 | 14.44    | 40.00    | -25.56 | QP       |
| 3   | 157.9100  | 35.29   | -20.54 | 14.75    | 43,50    | -28.75 | QP       |
| 4   | 237.4758  | 37.26   | -22.61 | 14.65    | 46.00    | -31.35 | QP       |
| 5   | 434.0649  | 84.88   | -16.01 | 68.87    | 100.83   | -31.96 | Peak     |
| 6   | 869.1301  | 41.69   | -5.95  | 35.74    | 80.83    | -45.09 | Peak     |

#### Average value:

| Frequency<br>(MHz) | Peak Level<br>(dBuV/m) | DC Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over Limit<br>(dB) | polarization |
|--------------------|------------------------|-------------------|-------------------|-------------------|--------------------|--------------|
| 869.1301           | 35.74                  | 0                 | 35.74             | 60.83             | -25.09             | vertical     |

Average=Peak+ Duty Cycle factor(DC Factor)

- Page 14 of 21

#### Above 1GHz

#### Peak value:

| No. | Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Polar      |
|-----|-----------|------------------|--------|-------------------|----------|--------|------------|
|     | (MHz)     | (dBuV)           | (dB)   | (dBuV/m)          | (dBuV/m) | (dB)   | (H/V)      |
| 1   | 1301.332  | 63.52            | -15.66 | 47.86             | 74.00    | -26.14 | Horizontal |
| 2   | 1736.483  | 63.50            | -15.90 | 47.60             | 74.00    | -26.40 | Horizontal |
| 3   | 2168.510  | 57.04            | -15.38 | 41.66             | 74.00    | -32.34 | Horizontal |
| 4   | 2603.351  | 59.41            | -13.64 | 45.77             | 74.00    | -28.23 | Horizontal |
| 1   | 1301.174  | 60.32            | -15.66 | 44.66             | 74.00    | -29.34 | Vertical   |
| 2   | 1736.273  | 53.82            | -15.90 | 37.92             | 74.00    | -36.08 | Vertical   |
| 3   | 2168.247  | 53.34            | -15.38 | 37.96             | 74.00    | -36.04 | Vertical   |
| 4   | 2608.020  | 62.16            | -13.63 | 48.53             | 74.00    | -25.47 | Vertical   |

- Page 15 of 21

#### Average value:

| No  | Frequency | Peak   | DC Factor | Result   | Limits   | Margin | Polar      |
|-----|-----------|--------|-----------|----------|----------|--------|------------|
| No. | (MHz)     | (dBuV) | (dB)      | (dBuV/m) | (dBuV/m) | (dB)   | (H/V)      |
| 1   | 1301.332  | 47.86  | 0         | 47.86    | 54.00    | -6.14  | Horizontal |
| 2   | 1736.483  | 47.60  | 0         | 47.60    | 54.00    | -6.40  | Horizontal |
| 3   | 2168.510  | 41.66  | 0         | 41.66    | 54.00    | -12.34 | Horizontal |
| 4   | 2603.351  | 45.77  | 0         | 45.77    | 54.00    | -8.23  | Horizontal |
| 1   | 1301.174  | 44.66  | 0         | 44.66    | 54.00    | -9.34  | Vertical   |
| 2   | 1736.273  | 37.92  | 0         | 37.92    | 54.00    | -16.08 | Vertical   |
| 3   | 2168.247  | 37.96  | 0         | 37.96    | 54.00    | -16.04 | Vertical   |
| 4   | 2608.020  | 48.53  | 0         | 48.53    | 54.00    | -5.47  | Vertical   |

Remark:

1. Final Level = Receiver Read level + Correction Factor(Antenna Factor + Cable Loss – Preamplifier Factor)

2. The emission levels of other frequencies are more than 20 dB below the limit and not show in test report.

3. *"\*", means this data is the too weak instrument of signal is unable to test.* 

4. Average=Peak+ Duty Cycle factor(DC Factor)



### 4.4 20dB Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.231                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:            | 20dB bandwidth of the emissions shall not exceed 0.25% of the center frequency                                                                                                                                     |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                        |  |  |  |  |  |
|                   | Ground Reference I faile                                                                                                                                                                                           |  |  |  |  |  |
| Test Procedure:   | With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band. |  |  |  |  |  |
| Test Instruments: | Refer to section 3.0 for details                                                                                                                                                                                   |  |  |  |  |  |
| Test mode:        | Refer to section 2.2 for details                                                                                                                                                                                   |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                               |  |  |  |  |  |

#### **Measurement Data**

| Center Frequency                                            | 20dB ba                      | andwidth(kHz)                                                                                 | Limit(kHz)                         | Result                        |  |
|-------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|--|
| 433.92MHz                                                   |                              | 69.06                                                                                         | 1084.8                             | Pass                          |  |
| Center Freq 433.92000                                       | D MHz Center<br>Trig: F      | INSE:PULSE SOURCE OFF ALIGN AUT<br>Freq: 433.920000 MHz<br>ree Run Avg Hold:>10/10<br>: 10 dB | Radio Std: None<br>Radio Std: None | Frequency                     |  |
| 10         dB/div         Ref         -10.00           -200 | Bm                           |                                                                                               |                                    | Center Freq<br>433.920000 MHz |  |
| Center 433.920000 MHz<br>#Res BW 10 kHz                     | #1                           | VBW 30 kHz                                                                                    | Span 100 kHz<br>Sweep   1.267 ms   | CF Step<br>10.000 kHz         |  |
| Occupied Bandwi                                             | <sub>dth</sub><br>60.205 kHz | Total Power -19                                                                               | .1 dBm                             | -<br>Freq Offset              |  |
| Transmit Freq Error<br>x dB Bandwidth                       | 5.482 kHz<br>69.06 kHz       |                                                                                               | 99.00 %<br>0.00 dB                 | 0 Hz                          |  |
| MSG                                                         |                              | STA                                                                                           | rus                                |                               |  |

## 4.5 Duty Cycle

| Test Requirement: | FCC Part15 C Section 15.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Limit:            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Procedure:   | <ol> <li>The EUT was directly connected to the spectrum analyzer and antenna<br/>output port as show in the block diagram below.</li> <li>The Duty Cycle Was Determined By The Following Equation: To<br/>Calculate The Actual Field Intensity,The Duty Cycle Correction Factor<br/>In Decibel Is Needed For Later Use And Can Be Obtained From<br/>Following Conversion<br/>Duty Cycle(%)=Total On Interval In A Complete Pulse Train/ Length Of<br/>A Complete Pulse Train * %<br/>Duty Cycle Correction Factor(dB)=20 * Log10(Duty Cycle(%)</li> </ol> |
| Test Instruments: | Refer to section 3.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test mode:        | Refer to section 2.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

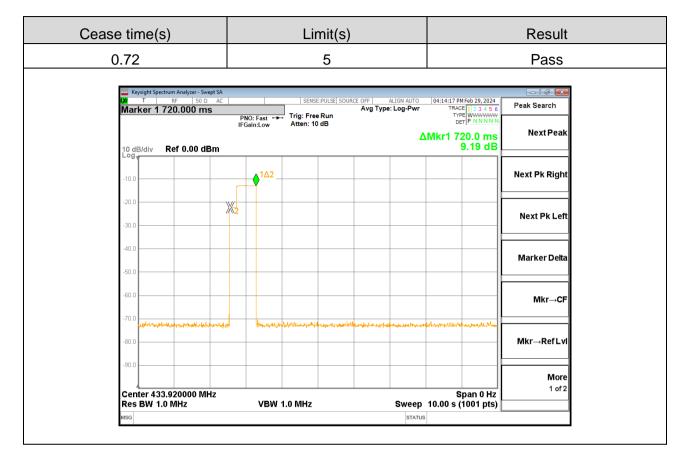
#### Test data:

The pulse train is nonperiodic with a period that exceeds 100 ms. Ton = 100(ms)Duty cycle= Ton/ 100\*100%=100/100\*100%=100%Duty Cycle Factor =  $20\log (Ton/Tp) = 20\log (100/100) = 0dB$ 



|                       | ectrum Analyzer - Swept SA |           |                         |                                              |                    |                    |                                                        | - 7 <b>-</b>       |
|-----------------------|----------------------------|-----------|-------------------------|----------------------------------------------|--------------------|--------------------|--------------------------------------------------------|--------------------|
| т                     | RF 50 Ω AC                 |           | SENSE                   | E:PULSE SOUR                                 |                    | ALIGN AUTO         | 04:56:23 PM Feb 29, 2024<br>TRACE 1 2 3 4 5 6          | Peak Search        |
| larker 1              | 720.000 ms                 | PNO: Fast | Trig: Free<br>Atten: 10 |                                              | Avg Type           | : Log-Pwr          | TYPE WWWWWW<br>DET P N N N N                           |                    |
| ) dB/div              | Ref 0.00 dBm               |           |                         |                                              |                    | 4                  | Mkr1 720.0 ms<br>8.58 dB                               | Next Pea           |
| 0.0                   |                            |           | 1∆2                     |                                              |                    |                    |                                                        | Next Pk Righ       |
| .0.0                  | ¥2                         |           |                         |                                              |                    |                    |                                                        |                    |
| 30.0                  |                            |           |                         |                                              |                    |                    |                                                        | Next Pk Lef        |
| 0.0                   |                            |           |                         |                                              |                    |                    |                                                        | Marker Delt        |
| 0.0                   |                            |           |                         |                                              |                    |                    |                                                        | Mkr→C              |
| 0.0 <b>Williegend</b> | ildungettennet-energie     |           | werennin                | annin an han han han han han han han han han | ydlaese Markarkayn | werter live Armond | h-hannan-the-the-hall-hall-hall-hall-hall-hall-hall-ha | Mkr→RefLv          |
| enter 43              | 3.920000 MHz               |           |                         |                                              |                    |                    | Span 0 Hz                                              | <b>Mor</b><br>1 of |
| es BW 1               |                            | VBW 1     | .0 MHz                  |                                              |                    | Sweep              | 3.000 s (1001 pts)                                     |                    |
| G                     |                            |           |                         |                                              |                    | STATUS             |                                                        |                    |

|              |                                                                      |               |                |                         |                             | ectrum Analyzer - Swept SA | Keysight Sp           |
|--------------|----------------------------------------------------------------------|---------------|----------------|-------------------------|-----------------------------|----------------------------|-----------------------|
| Peak Search  | 04:09:58 PM Feb 29, 2024                                             | ALIGN AUTO    | ULSE SOURCE OF | SENSE                   |                             | RF 50 Ω AC                 | T                     |
| NextPea      | TRACE 1 2 3 4 5 6<br>TYPE WWWWWW<br>DET P N N N N N<br>Mkr1 100.0 ms | Гуре: Log-Pwr | Run            | Trig: Free<br>Atten: 10 | PNO: Fast +++<br>IFGain:Low | 100.000 ms                 | Marker 1              |
|              | -0.03 dB                                                             | 4             |                |                         |                             | Ref 0.00 dBm               | 10 dB/div             |
| Next Pk Righ |                                                                      |               |                |                         |                             |                            | -10.0                 |
|              | 1Δ2                                                                  |               |                |                         |                             |                            | 20.0                  |
| Next Pk Le   |                                                                      |               |                |                         |                             |                            | -30.0                 |
| Marker Delt  |                                                                      |               |                |                         |                             |                            | 40.0                  |
|              |                                                                      |               |                |                         |                             |                            | 50.0                  |
| Mkr→C        |                                                                      |               |                |                         |                             |                            | 70.0                  |
| Mkr→RefL     |                                                                      |               |                |                         |                             |                            | 80.0                  |
| Mor          |                                                                      |               |                |                         |                             |                            | 90.0                  |
| 1 of         | Span 0 Hz<br>00.0 ms (1001 pts)                                      | Sweep 1       |                | .0 MHz                  | VBW 3.                      | 3.920000 MHz<br>.0 MHz     | Center 43<br>Res BW 3 |
|              |                                                                      | STATUS        |                |                         |                             |                            | ISG                   |




### 4.6 Release time

| Test Requirement: | FCC Part15 C Section 15.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Limit:            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Procedure:   | <ul> <li>The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. Spectrum Setting: RBW= 1MHz, VBW=3MHz, Sweep time = 10s. Note:</li> <li>(1)Refer to the plot (As Below), We find a manumotive operated transmitter shall employ a switch that will automatically deactivate the transmitteri immediately, within not more than 5 seconds of being released.</li> <li>(2)The EUT is comply with FCC PART 15 clause 15.231(a)(1). Manumotive working mode are pre-tested. and only the worst result is reported</li> </ul> |
| Test Instruments: | Refer to section 3.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test mode:        | Refer to section 2.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



Test Result:





# 5 Test Setup Photo

Reference to the **appendix I** for details.

# 6 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----