

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

# **FCC/ISED** Test Report

Client:

Ainstein Al Inc.

EUT:

2029 Becker Drive Bioscience & Technology Business Center, Lawrence, KS 66047 USA

Product:

UAC Radar Altimeter US-D1

Test Report No.:

Approved By:

Nic Johnson, NCE

R20190604-21-E2A

EMC Test Engineer, iNARTE Certified EMC Engineer #EMC-041453-E

Date:

22 January 2021

Total Pages:

28



The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

| ncee. | Report Number: | R20190604-21-E2 | Rev | А |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Ainstein Al     |     |   |

# **Revision Page**

| Rev. No. | Date      | Description                                              |
|----------|-----------|----------------------------------------------------------|
| Original | 1/8/2021  | Approved by – NJohnson                                   |
| _        |           | Prepared by KVepuri                                      |
| А        | 1/22/2021 | Updated field strength data table at the top of Page 10. |
|          |           | Moved test equipment list to Annex C -NJ                 |



Prepared for: Ainstein AI

# **Table of Contents**

| 1 Summary of Test Results                       | 3  |
|-------------------------------------------------|----|
| 1.1 Emissions Test Results                      | 3  |
| 2 EUT Description                               | 4  |
| 2.1 Equipment under Test (EUT)                  | 4  |
| 2.2 Laboratory Description                      |    |
| 2.3 EUT Setup                                   |    |
| 3 Test Results                                  | 5  |
| 3.1 Radiated Emissions, Fundamental & Harmonics | 5  |
| 3.2 Band-Edges and Occupied Bandwidth           | 16 |
| Annex A - Sample Calculation                    | 24 |
| Annex B – Measurement Uncertainty               | 26 |
| Annex C – Test Equipment                        | 27 |
| REPORT END.                                     | 28 |

# **1** Summary of Test Results

### 1.1 Emissions Test Results

The EUT has been tested according to the following specifications:

(1) US Code of Federal Regulations, Title 47, Part 15.249

Testing was performance in accordance with the methods published in ANSI C63.10-2013

| Emissions Tests                                                 | Test Method and Limits | Result   |
|-----------------------------------------------------------------|------------------------|----------|
| Fundamental, Harmonic,<br>Spurious Emissions, and<br>Band Edges | FCC Part 15.249        | Complies |

#### **Table 1 - Emissions Test Results**



Prepared for: Ainstein AI

# 2 EUT Description

# 2.1 Equipment under Test (EUT)

 Table 2 - Equipment under Test (EUT)

| EUT            | UAC Radar Altimeter US-D1                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| EUT Received   | 11/19/2020                                                                                                                       |
| EUT Tested     | 11/20/2020 - 1/7/2021                                                                                                            |
| Serial No.     | LAG2020080601 (Low channel)<br>LAG2020080624 (Mid channel)<br>LAG2020080619 (High channel)<br>LAG2020080618 (Rx mode/sweep mode) |
| Operating Band | 24 GHz - 24.25 GHz                                                                                                               |
| Device Type    | Low-power transmitter                                                                                                            |

## 2.2 Laboratory Description

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01 FCC Accredited Test Site Designation No: US1060 Industry Canada Test Site Registration No: 4294A-1 NCC CAB Identification No: US0177 Environmental conditions varied slightly throughout the tests: Relative humidity of  $32 \pm 4\%$ Temperature of  $22 \pm 3^{\circ}$  Celsius

## 2.3 EUT Setup

The EUT was powered by 12 VDC (Marine Battery) unless specified and set to transmit continuously on the default frequency channels.

| Channel | Frequency |
|---------|-----------|
|         | GHz       |
| Low     | 24.028    |
| Mid     | 24.125    |
| High    | 24.220    |



Prepared for: Ainstein AI

# 3 Test Results

### 3.1 Radiated Emissions, Fundamental & Harmonics

Test: FCC Part 15.249

Test Result: Complies

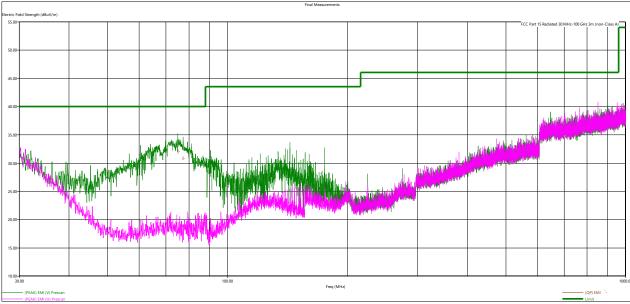
#### 3.1.1 Test Description

The analyzer was set to a resolution bandwidth of 8 MHz and a video bandwidth of 50 MHz for fundamental power measurements. The resolution bandwidth was set to 1 MHz and video bandwidth set to 3 MHz for harmonic measurements. The results were compared against the limits published in FCC Part 15.249.

#### 3.1.2 Test Results

No radiated emissions measurements were found in excess of the limits. Test result data can be seen below.

### 3.1.3 Test Environment


Testing was performed at the NCEE Labs Lincoln facility. Laboratory environmental conditions varied slightly throughout the test:

Relative humidity of  $33 \pm 5\%$ Temperature of  $22 \pm 2^{\circ}$  C

### 3.1.4 Test Setup

For measurements from 24 – 100 GHz, RF absorber was not used. The antennas used was a directional antenna and all measurements were performed line-of-sight. Reflections from the floor or any other surface were not a significant factor in the measurements. Note that a ferrite was wrapped on power leads with one loop to decrease the reflections from the battery. In this case battery is considered an auxiliary equipment. See Section 2.3 for further details.

| ncee. | Report Number: | R20190604-21-E2 | Rev | А |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Ainstein Al     |     |   |



## 3.1.5 Test Pictures and/or Figures

Figure 1 - Radiated Emissions Data Plot, 30M-1GHz, Receive mode

| Frequency | Level  | Limit  | Margin | Height | Angle  | Polarity |
|-----------|--------|--------|--------|--------|--------|----------|
| MHz       | dBµV/m | dBµV/m | dB     | cm     | deg    |          |
| 74.995200 | 31.99  | 40.00  | 8.01   | 117.00 | 231.00 | V        |
| 77.340960 | 30.77  | 40.00  | 9.23   | 120.00 | 339.00 | V        |

| Table 3 - Radiated Emissions | Quasi-Peak Data | , 30MHz – 24 | GHz, Receive mode |
|------------------------------|-----------------|--------------|-------------------|
|                              |                 |              |                   |

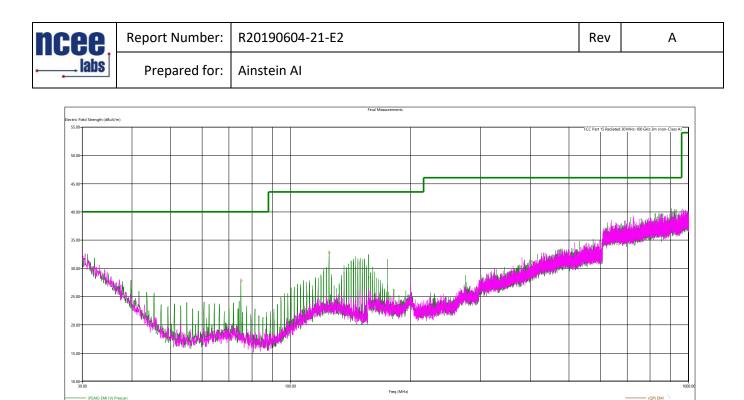
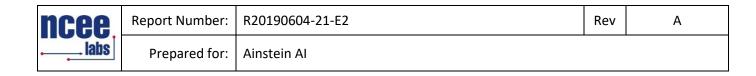




Figure 2 - Radiated Emissions Data Plot, 30M-1GHz, Low Channel

| Frequency  | Level  | Limit  | Margin | Height | Angle  | Polarity |
|------------|--------|--------|--------|--------|--------|----------|
| MHz        | dBµV/m | dBµV/m | dB     | cm     | deg    |          |
| 74.990640  | 27.73  | 40.00  | 12.27  | 121.00 | 52.00  | V        |
| 124.958880 | 32.72  | 43.52  | 10.80  | 105.00 | 70.00  | V        |
| 157.089360 | 28.29  | 43.52  | 15.23  | 105.00 | 279.00 | V        |

 Table 4 - Radiated Emissions Quasi-Peak Data, 30MHz – 24 GHz, Low Channel



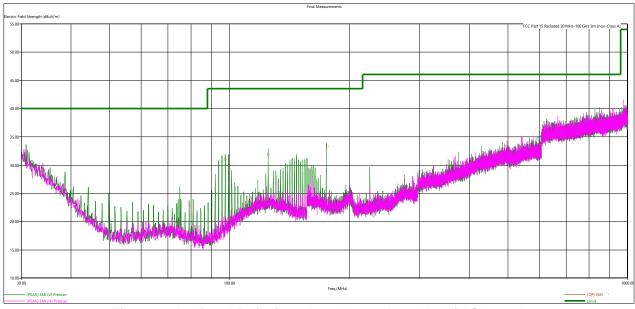



Figure 3 - Radiated Emissions Data Plot, 30M-1GHz, Mid Channel

| Frequency  | Level  | Limit  | Margin | Height | Angle  | Polarity |
|------------|--------|--------|--------|--------|--------|----------|
| MHz        | dBµV/m | dBµV/m | dB     | cm     | deg    |          |
| 97.578720  | 30.96  | 43.52  | 12.56  | 115.00 | 69.00  | V        |
| 124.999200 | 31.84  | 43.52  | 11.68  | 108.00 | 121.00 | V        |
| 175.015920 | 33.29  | 43.52  | 10.23  | 106.00 | 134.00 | V        |

#### Table 5 - Radiated Emissions Quasi-Peak Data, 30MHz – 24 GHz, Mid Channel

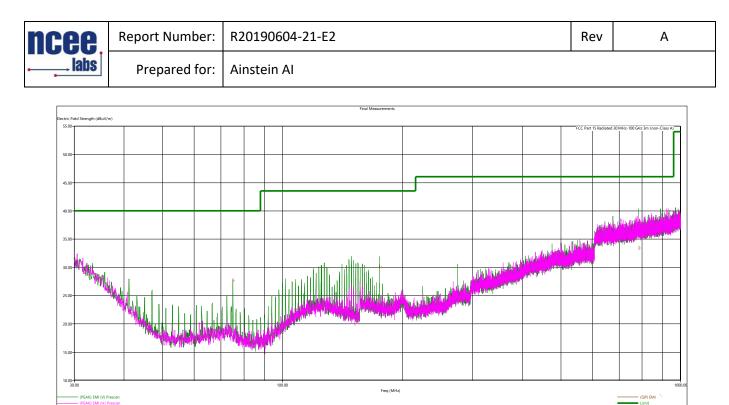



Figure 4 - Radiated Emissions Data Plot, 30M-1GHz, High Channel

| Frequency  | Level  | Limit  | Margin | Height | Angle  | Polarity |
|------------|--------|--------|--------|--------|--------|----------|
| MHz        | dBµV/m | dBµV/m | dB     | cm     | deg    |          |
| 75.012960  | 27.61  | 40.00  | 12.39  | 134.00 | 360.00 | V        |
| 174.980880 | 30.08  | 43.52  | 13.44  | 119.00 | 315.00 | V        |
| 784.543680 | 33.39  | 46.02  | 12.63  | 247.00 | 313.00 | V        |

Table 6 - Radiated Emissions Quasi-Peak Data, 30MHz – 24 GHz, High Channel

| ncee, | Report Number:         R20190604-21-E2           Prepared for:         Ainstein AI | R20190604-21-E2 | Rev | А |
|-------|------------------------------------------------------------------------------------|-----------------|-----|---|
|       | Prepared for:                                                                      | Ainstein Al     |     |   |

#### Table 7 - Fundamental and Harmonic Emissions Data

|         |           |               |                  |               | Fundam            | nental                                                       |                         |                          |                                 |        |
|---------|-----------|---------------|------------------|---------------|-------------------|--------------------------------------------------------------|-------------------------|--------------------------|---------------------------------|--------|
| Channel | Frequency | SA<br>reading | Test<br>Distance | Cable<br>Loss | Antenna<br>Factor | Average<br>Field<br>Strength<br>level at<br>test<br>distance | Corrected<br>level @ 3m | Duty cycle<br>correction | Average<br>Limit Part<br>15.249 | Margin |
|         | GHz       | dBmV          | m                | dB            | dB                | dBmV/m                                                       | dBmV/m                  | dB                       | dBmv/m                          | dB     |
| Low     | 24.028    | 21.922        | 1                | 1.31          | 45.564            | 46.096                                                       | 36.554                  | 22.7                     | 47.96                           | 11.41  |
| Mid     | 24.124    | 20.357        | 1                | 1.31          | 45.502            | 44.469                                                       | 34.927                  | 22.7                     | 47.96                           | 13.03  |
| High    | 24.22     | 21.873        | 1                | 1.31          | 45.502            | 45.985                                                       | 36.443                  | 22.7                     | 47.96                           | 11.51  |

Corrected Level at 3m= SA reading+ Cable Loss + Antenna Factor+20log (Test Distance/3)-Duty cycle correction

|         |           |               |                  |               | Fundam            | nental                                                    |                         |                          |                              |        |
|---------|-----------|---------------|------------------|---------------|-------------------|-----------------------------------------------------------|-------------------------|--------------------------|------------------------------|--------|
| Channel | Frequency | SA<br>reading | Test<br>Distance | Cable<br>Loss | Antenna<br>Factor | Peak<br>Field<br>Strength<br>level at<br>test<br>distance | Corrected<br>level @ 3m | Duty cycle<br>correction | Peak<br>Limit Part<br>15.249 | Margin |
|         | GHz       | dBmV          | m                | dB            | dB                | dBmV/m                                                    | dBmV/m                  | dB                       | dBmv/m                       | dB     |
| Low     | 24.028    | 21.922        | 1                | 1.31          | 45.564            | 68.796                                                    | 59.254                  | 22.7                     | 67.96                        | 8.71   |
| Mid     | 24.124    | 20.357        | 1                | 1.31          | 45.502            | 67.169                                                    | 57.169                  | So y                     | 67.96                        | 10.79  |
| High    | 24.22     | 21.873        | 1                | 1.31          | 45.502            | 68.685                                                    | 59.143                  | 22.7                     | 67.96                        | 8.82   |

Corrected Level at 3m= SA reading+ Cable Loss + Antenna Factor+20log (Test Distance/3)-Duty cycle correction



Prepared for: Ainstein AI

|         |          |           |               | ŀ                | larmonics-       | Peak           |                   |                            |                           |                                      |        |
|---------|----------|-----------|---------------|------------------|------------------|----------------|-------------------|----------------------------|---------------------------|--------------------------------------|--------|
| Channel | Harmonic | Frequency | SA<br>reading | Test<br>Distance | Mixer<br>Factor* | Cable<br>Loss* | Antenna<br>Factor | Field<br>Strength<br>Level | Field<br>Strength<br>@ 3m | Limit at<br>3m<br>FCC Part<br>15.249 | Margin |
|         |          | GHz       | dBmV/m        | m                | dB               | dB             | dB                | dBmV/m                     | dBmV/m                    | dBmV/m                               |        |
| Low     | 2nd      | 48.158000 | -48.818       | 0.5              | 21.9             | 4.2            | 40.92             | 18.20                      | 2.63                      | 27.96                                | 25.32  |
| Mid     | 2nd      | 48.250000 | -49.187       | 0.5              | 21.9             | 4.2            | 40.93             | 17.84                      | 2.28                      | 27.96                                | 25.68  |
| High    | 2nd      | 48.344000 | -49.242       | 0.5              | 22.1             | 4.2            | 40.95             | 18.01                      | 2.44                      | 27.96                                | 25.51  |
| Low     | 3rd      | 72.237000 | -21.517       | 0.5              | 0                | 0              | 43.44             | 21.92                      | 6.36                      | 27.96                                | 21.60  |
| Mid     | 3rd      | 72.375000 | -25.824       | 0.5              | 0                | 0              | 43.44             | 17.61                      | 2.05                      | 27.96                                | 25.91  |
| High    | 3rd      | 72.516000 | -21.369       | 0.5              | 0                | 0              | 43.47             | 22.10                      | 6.54                      | 27.96                                | 21.42  |

|         | Harmonics- Average |           |               |                  |                  |                |                   |                            |                           |                                      |        |  |  |  |
|---------|--------------------|-----------|---------------|------------------|------------------|----------------|-------------------|----------------------------|---------------------------|--------------------------------------|--------|--|--|--|
| Channel | Harmonic           | Frequency | SA<br>Reading | Test<br>Distance | Mixer<br>Factor* | Cable<br>Loss* | Antenna<br>Factor | Field<br>Strength<br>Level | Field<br>Strength<br>@ 3m | Limit at<br>3m FCC<br>Part<br>15.249 | Margin |  |  |  |
|         |                    | GHz       | dBmV/m        | m                | dB               | dB             | dB                | dBmV/m                     | dBmV/m                    | dBmV/m                               |        |  |  |  |
| Low     | 2nd                | 48.158000 | -71.518       | 0.5              | 21.9             | 4.2            | 40.92             | -4.50                      | -20.07                    | 7.96                                 | 28.02  |  |  |  |
| Mid     | 2nd                | 48.250000 | -71.887       | 0.5              | 21.9             | 4.2            | 40.93             | -4.86                      | -20.42                    | 7.96                                 | 28.38  |  |  |  |
| High    | 2nd                | 48.344000 | -71.942       | 0.5              | 22.1             | 4.2            | 40.95             | -4.69                      | -20.26                    | 7.96                                 | 28.21  |  |  |  |
| Low     | 3rd                | 72.237000 | -44.217       | 0.5              | 0                | 0              | 43.44             | -0.78                      | -16.34                    | 7.96                                 | 24.30  |  |  |  |
| Mid     | 3rd                | 72.375000 | -48.524       | 0.5              | 0                | 0              | 43.44             | -5.09                      | -20.65                    | 7.96                                 | 28.61  |  |  |  |
| High    | 3rd                | 72.516000 | -44.069       | 0.5              | 0                | 0              | 43.47             | -0.60                      | -16.16                    | 7.96                                 | 24.12  |  |  |  |

All measurements were made with peak detector with max hold trace unless noted otherwise. Raw average value is obtained by applying the duty cycle correction to the peak values. See following page for limit, duty cycle correction and correction factors.

\*This value is 0 if raw value includes these factors or losses.



А

Rev

#### Duty cycle corrections:

The transmitter 600  $\mu s$  ON time and 8.2 ms period (see operation description, Section 3) duty cycle correction = -22.7 dB

#### Limit calculations:

Fundamental limit: 250 mV/m at 3 meters = 47.96 dBmV/m

Harmonic limit: 2.5 mV/m at 3 meters = 7.96 dBmV/m

#### **Correction Field strength calculations**

Corrected PK Measurement = Un-corrected PK field strength (dBmV/m) + correction factors total (dB)

Corrected AVG Measurement = Un-corrected PK field strength (dBmV/m) + correction factors total (dB) – Duty cycle correction (dB)

| ncee. | Report Number:R20190604-21-E2Prepared for:Ainstein AI | R20190604-21-E2 | Rev | А |
|-------|-------------------------------------------------------|-----------------|-----|---|
|       | Prepared for:                                         | Ainstein Al     |     |   |

#### Plots:

| Keysight Spectrum Analyzer - Swept S           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                            |                                                                      |
|------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------|----------------------------|----------------------------------------------------------------------|
| LT   RF PRESEL 50 Ω D     /BW:3 dB RBW 10.0    | NFE F             | PNO: Fast 🕞 Tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INT SOURCE OFF | ALIGN AUTO<br>Avg Ty<br>Avg Hol | pe: Log-Pwr<br>ld:>100/100 | 11:35:42 AM Nov 20, 202<br>TRACE 1 2 3 4 5<br>TYPE MWWWW<br>DET PNNN |
| 10 dB/div Ref 30.00 dBi                        | nV                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 | M                          | kr1 24.026 9 GH<br>21.922 dBm                                        |
| 20.0                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | \                               |                            |                                                                      |
| 0.00                                           |                   | Jerrar and a second sec |                | A Stranger and a stranger at    | have taken a               |                                                                      |
| 10.0<br><b>united pression</b><br>20.0<br>30.0 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                            | ป <i>ู่ไปส์</i> เก่าที่สุดในเห็นไป ครือเมืองในสูงอยู่                |
| 40.0                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                            |                                                                      |
| 50.0<br>60.0                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                            |                                                                      |
| enter 24.02800 GHz<br>Res BW 8 MHz             |                   | #VBW 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHz            |                                 | Sweep                      | Span 100.0 MH<br>1.000 ms (1001 pts                                  |
| IKR MODE TRC SCL                               | ×<br>24.026 9 GHz | ۲<br>21.922 dBmV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FUNCTION       | FUNCTION WIDTH                  | FU                         | NCTION VALUE                                                         |
| 2<br>3<br>4<br>5                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                            |                                                                      |
| 6<br>7<br>8                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                            |                                                                      |
| 9                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                            |                                                                      |
| G                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <b>I</b> STATUS                 |                            | >                                                                    |

Figure 5 - Analyzer Measurement – Fundamental, Channel Low

Uncorrected measurement as recorded on spectrum analyzer

| ncee, | Report Number:         R20190604-21-E2           Prepared for:         Ainstein Al | R20190604-21-E2 | Rev | А |
|-------|------------------------------------------------------------------------------------|-----------------|-----|---|
|       | Prepared for:                                                                      | Ainstein Al     |     |   |

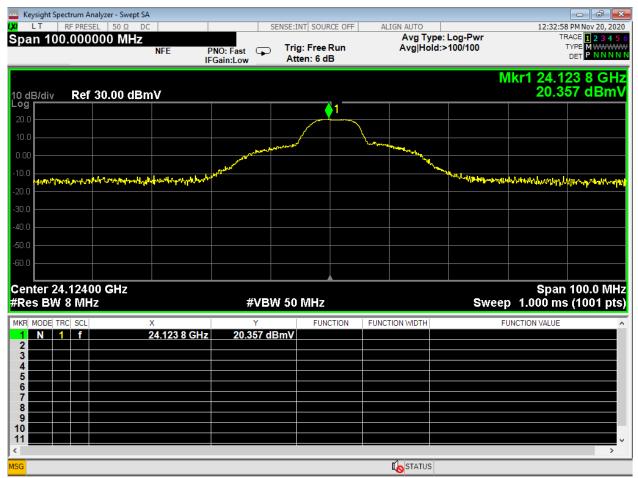



Figure 6 - Analyzer Measurement – Fundamental, Channel Mid

Uncorrected measurement as recorded on spectrum analyzer

| ncee. | Report Number:R20190604-21-E2IabsPrepared for:Ainstein AI | R20190604-21-E2 | Rev | А |
|-------|-----------------------------------------------------------|-----------------|-----|---|
|       | Prepared for:                                             | Ainstein Al     |     |   |

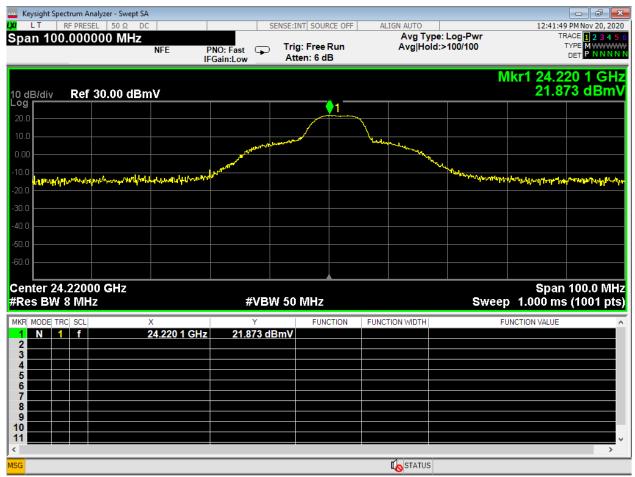



Figure 7 - Analyzer Measurement – Fundamental, Channel High

Uncorrected measurement as recorded on spectrum analyzer



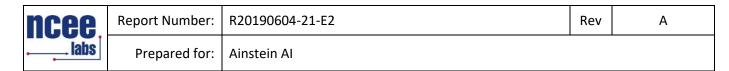
## 3.2 Band-Edges and Occupied Bandwidth

Test Method: ANSI C63.10-2013, Section(s) 6.10.5, 6.10.6, 6.9.2

#### 3.2.1 Limits of band-Edge measurements:

For emissions outside of the allowed band of operation, the emission level needs to be 50dB under the maximum fundamental field strength or general 15.209 limits. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

The limit from FCC Part 15.209 for all frequencies above 960 MHz is 500  $\mu\text{V/m}$  at 3m.


 $500 \ \mu V/m = 20 \log (500) = 54 \ dB \mu V/m$ at 3m average

Peak limit = average limit + 20 dB=74 dBµV/m at 3m peak

| MHz                      | MHz                 | MHz           | GHz         |
|--------------------------|---------------------|---------------|-------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | (2)         |
| 13.36-13.41              |                     |               |             |

#### 3.2.2 Test procedures:

The EUT was oriented as to produce the maximum emission levels. The resolution bandwidth was set to 1 MHz (unrestricted), 1 MHz (restricted). The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209.



Measurements were performed as radiated measurements in the same manner as Section 3.1 of this report.

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 1 MHz VBW. The occupied bandwidth was measured using the spectrum analyzers 99% occupied bandwidth setting.

#### **3.2.3** Deviations from test standard:

No deviation.

#### 3.2.4 Test setup:

Unrestricted band-edge measurements were done at 1m test distance. Restricted band-edge measurements were done at 2m test distance.

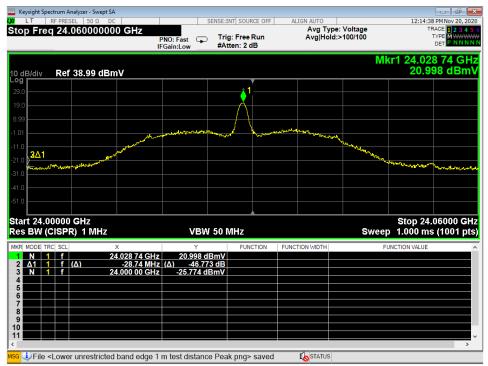
#### 3.2.5 EUT operating conditions:

The EUT was powered by 12 VDC unless specified and set to transmit continuously on the lowest frequency channel, and the highest frequency channel.

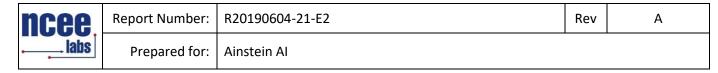
|             | Unrestricted Band Edges                                                                                                                                                             |        |         |   |      |      |        |         |        |        |        |                                  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---|------|------|--------|---------|--------|--------|--------|----------------------------------|--|--|
| Band Edge   | and Edge F Frequen Fundamental Edge Test Duty cycle Cable Antenna Band Edge FS Edge FS Part 5.2<br>cy SA Reading SA Distance Correction* Loss Factor Edge FS level @ level @ 15.209 |        |         |   |      |      |        |         |        |        |        | Margin<br>to<br>15.209<br>Limits |  |  |
|             | GHz                                                                                                                                                                                 | dBmV/m | dBmV    | m | dB   | dB   | dB     | dBmV/m  | dBmV/m | dBµv/m | dBµv/m | dB                               |  |  |
| Peak LBE    | 24                                                                                                                                                                                  | 20.998 | -25.774 | 1 | 0    | 1.31 | 45.564 | 21.1    | 11.558 | 71.558 | 74     | 2.442                            |  |  |
| Average LBE | 24                                                                                                                                                                                  | 20.573 | -36.289 | 1 | 22.7 | 1.31 | 45.564 | -12.115 | -21.66 | 38.343 | 54     | 15.657                           |  |  |
| Peak HBE    | 24.25                                                                                                                                                                               | 21.222 | -23.869 | 1 | 0    | 1.31 | 45.502 | 22.943  | 13.401 | 73.401 | 74     | 0.599                            |  |  |
| Average HBE | 24.25                                                                                                                                                                               | 20.713 | -42.161 | 1 | 22.7 | 1.31 | 45.502 | -18.049 | -27.59 | 32.409 | 54     | 21.591                           |  |  |

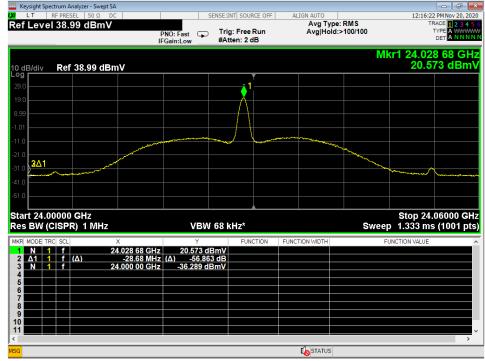
#### Test results:

Band Edge FS Level @ 3m= SA reading+ Cable Loss + Antenna Factor+20log (Test Distance/3)-Duty cycle correction \* Duty cycle is 0 if it's not applicable

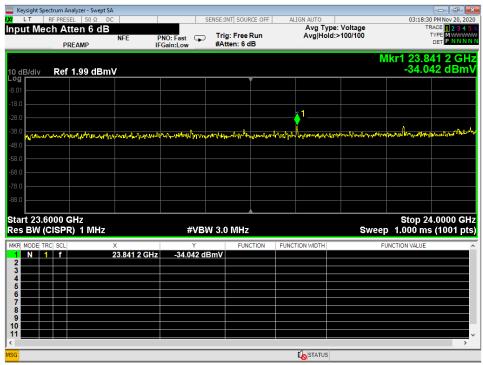



Prepared for: Ainstein AI

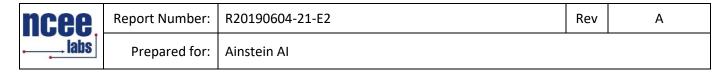

|                | Restricted Band Edges |                           |               |                      |               |                   |                                |                  |                  |                         |        |  |  |  |  |
|----------------|-----------------------|---------------------------|---------------|----------------------|---------------|-------------------|--------------------------------|------------------|------------------|-------------------------|--------|--|--|--|--|
| Band<br>Edge   | Frequency<br>Range    | Duty cycle<br>correction* | SA<br>reading | Test<br>Distanc<br>e | Cable<br>Loss | Antenna<br>Factor | FS level<br>@ test<br>distance | FS level<br>@ 3m | FS level<br>@ 3m | Limit<br>Part<br>15.209 | Margin |  |  |  |  |
|                | GHz                   | dB                        | dBmV          | m                    | dB            | dB                | dBmV/m                         | dBmV/m           | dBµv/m           | dBµv/m                  |        |  |  |  |  |
| Peak LBE       | 23.6-24               | 0                         | -34.042       | 2                    | 1.31          | 45.564            | 12.832                         | 9.310            | 69.310           | 74                      | 4.690  |  |  |  |  |
| Average<br>LBE | 23.6-24               | 22.7                      | -39.271       | 2                    | 1.31          | 45.564            | 7.603                          | -18.619          | 41.381           | 54                      | 12.619 |  |  |  |  |
| Peak HBE       | 31.2-31.8             | 0                         | -40.119       | 2                    | 3.035         | 47.368            | 10.284                         | 6.762            | 66.762           | 74                      | 7.238  |  |  |  |  |
| Average<br>HBE | 31.2-31.8             | 22.7                      | -55.482       | 2                    | 3.035         | 47.368            | -5.079                         | -31.301          | 28.699           | 54                      | 25.301 |  |  |  |  |

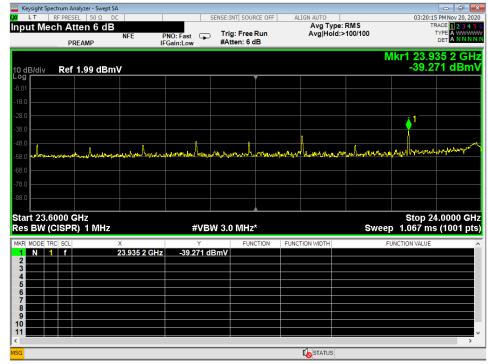

Band Edge FS Level @ 3m= SA reading+ Cable Loss + Antenna Factor+20log (Test Distance/3)-Duty cycle correction \* Duty cycle is 0 if it's not applicable

## Band Edges

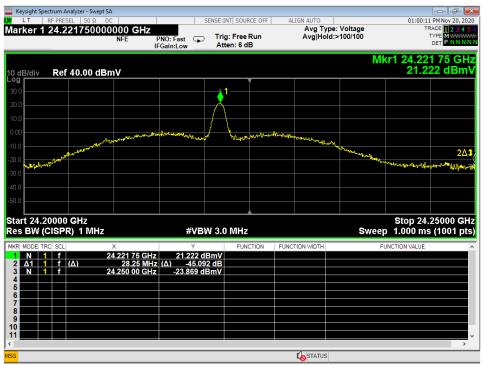



**Figure 8 – Lower Band Edge, 24.00 GHz, Peak, Unrestricted** Uncorrected measurement as recorded on spectrum analyzer, 1 m test distance

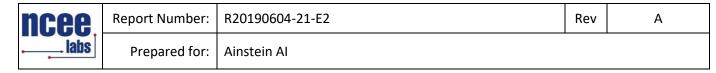


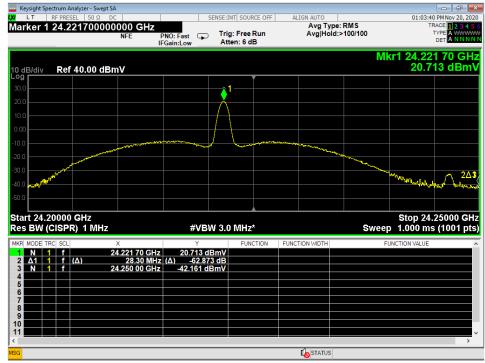




**Figure 9 – Lower Band Edge, 24.00 GHz, Average, Unrestricted** Uncorrected measurement as recorded on spectrum analyzer, 1 m test distance

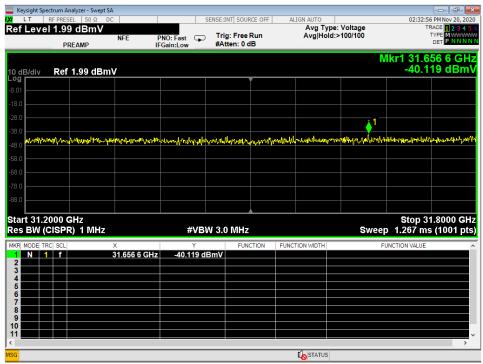



**Figure 10 – Lower Band Edge, 24.00 GHz, Peak, Restricted** Uncorrected measurement as recorded on spectrum analyzer, 2 m test distance




**Figure 11 – Lower Band Edge, 24.00 GHz, Average, Restricted** Uncorrected measurement as recorded on spectrum analyzer, 2 m test distance

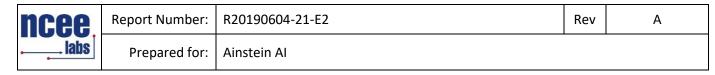



**Figure 12 – Higher Band Edge, 24.25 GHz, Peak, Unrestricted** Uncorrected measurement as recorded on spectrum analyzer, 1 m test distance





**Figure 13 – Higher Band Edge, 24.25 GHz, Average, Unrestricted** Uncorrected measurement as recorded on spectrum analyzer, 1 m test distance




**Figure 14 – Higher Band Edge, 24.25 GHz, Peak, Restricted** Uncorrected measurement as recorded on spectrum analyzer, 2 m test distance



| Keysight Spectrum Analyzer -           L T         RF PRESEL         50           ef Level 1.99 dB | Ω DC<br>mV                              |                                   | NT SOURCE OFF | ALIGN AUTO<br>Avg Typ | e: RMS<br>l:>100/100                                      | T                                                                  | PM Nov 20, 2<br>RACE 1 2 3 4<br>TYPE A #### |
|----------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|---------------|-----------------------|-----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|
| PREAMP                                                                                             |                                         |                                   | ten: 0 dB     | Avginoid              | 1.2100/100                                                |                                                                    | DET A NN                                    |
|                                                                                                    |                                         |                                   |               |                       | Ι                                                         | /kr1 31.6                                                          | 06 2 G                                      |
| dB/div Ref 1.99                                                                                    | dBmV                                    |                                   |               |                       |                                                           |                                                                    | 82 dBr                                      |
| pg                                                                                                 |                                         |                                   | ľ             |                       |                                                           |                                                                    |                                             |
| .01                                                                                                |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
| 8.0                                                                                                |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
| 8.0                                                                                                |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
| 8.0                                                                                                |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
| 8.0                                                                                                |                                         |                                   |               | ^                     | 1                                                         |                                                                    |                                             |
| 8.0 granty grand and an                                                                            | ก <b>ะ</b> หมู่ใจแก้นไม่เป็นของมาไปประก | المالية المراجد ومعادية المساولية | walashhar     | NIN THE ARE SHOWN     | when have produced and and and and and and and and and an | <sup>4</sup> ∳≠₩ <sup>1</sup> ₩ <sup>4</sup> ₩₽₩ <sup>4</sup> ₩₩₩₩ | "with the second                            |
| 8.0                                                                                                |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
| 8.0                                                                                                |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
| 8.0                                                                                                |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
|                                                                                                    |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
| tart 31.2000 GHz<br>es BW (CISPR) 1 I                                                              | <b>1</b> 11-1                           | #VBW 3.0                          | nn⊔⇒×         |                       | Puree                                                     | 3′Stop 3<br>p 1.600 ms                                             | 1.8000 C                                    |
| es dw (CISPR) I I                                                                                  | MINZ                                    |                                   |               |                       |                                                           |                                                                    | 5 (1001)                                    |
|                                                                                                    |                                         |                                   |               |                       |                                                           |                                                                    |                                             |
|                                                                                                    | X<br>31.606.2 GHz                       | -55 482 dBmV                      | FUNCTION      | FUNCTION WIDTH        | F                                                         | UNCTION VALUE                                                      |                                             |
| 1 N 1 f<br>2                                                                                       | ×<br>31.606 2 GHz                       |                                   | FUNCTION      | FUNCTION WIDTH        | F                                                         | UNCTION VALUE                                                      |                                             |
| 1 N 1 f<br>2                                                                                       |                                         |                                   | FUNCTION      | FUNCTION WIDTH        | F                                                         | UNCTION VALUE                                                      |                                             |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                              |                                         |                                   | FUNCTION      | FUNCTION WIDTH        | F                                                         | UNCTION VALUE                                                      |                                             |
| 1         N         1         f           2                                                        |                                         |                                   | FUNCTION      | FUNCTION WIDTH        | F                                                         | UNCTION VALUE                                                      |                                             |
| 1 N 1 f<br>2 3<br>3 4<br>5                                                                         |                                         |                                   | FUNCTION      | FUNCTION WIDTH        | F                                                         | UNCTION VALUE                                                      |                                             |
| 1         N         1         f           2                                                        |                                         |                                   | FUNCTION      |                       | F                                                         | UNCTION VALUE                                                      |                                             |
| 1         N         1         f           2         3                                              |                                         |                                   | FUNCTION      |                       | F                                                         | UNCTION VALUE                                                      |                                             |

**Figure 15 – Higher Band Edge, 24.25 GHz, Average, Restricted** Uncorrected measurement as recorded on spectrum analyzer, 2 m test distance



## Occupied Bandwidth

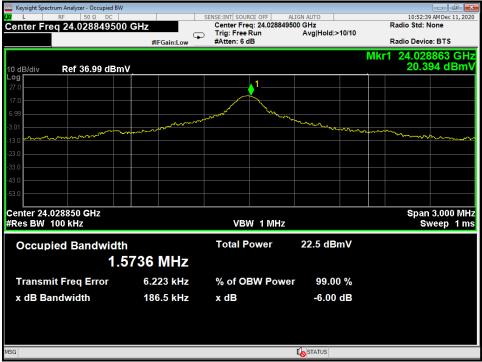
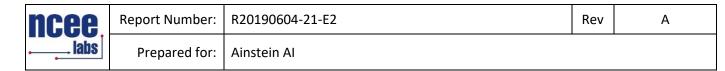




Figure 16 – Occupied Bandwidth, Low channel

The occupied bandwidth of the Low channel was found to be the largest.



# Annex A - Sample Calculation

#### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB $\mu$ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB $\mu$ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$ 

The 48.1 dB $\mu$ V/m value can be mathematically converted to its corresponding level in  $\mu$ V/m.

Level in  $\mu$ V/m = Common Antilogarithm [(48.1 dB $\mu$ V/m)/20]= 254.1  $\mu$ V/m

AV is calculated by the taking the  $20^{100}(T_{on}/100)$  where  $T_{on}$  is the maximum transmission time in any 100ms window.

| ncee. | Report Number: | R20190604-21-E2 | Rev | А |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Ainstein Al     |     |   |

#### **EIRP Calculations**

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)<sup>2</sup> / [30 x Gain (numeric)]

Power (watts) =  $10^{Power} (dBm)/10 \times 1000$ 

Field Strength ( $dB\mu V/m$ ) = Field Strength (dBm) = 107 (for 50 $\Omega$  measurement systems)

Field Strength  $(V/m) = 10^{Field Strength} (dB\mu V/m) / 20] / 10^{6}$ 

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = (FS \times d^2)/30 = FS [(d^2)/30] = FS [0.3]$ 

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = -95.23$ 

10log(10<sup>^</sup>) is the conversion from micro to milli



Prepared for: Ainstein Al

# **Annex B – Measurement Uncertainty**

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

| Test                        | Frequency Range | Uncertainty Value (dB) |
|-----------------------------|-----------------|------------------------|
| Radiated Emissions, 3m      | 30MHz - 1GHz    | 3.82                   |
| Radiated Emissions, 3m      | 1GHz - 18GHz    | 4.44                   |
| Emissions limits, conducted | 150kHz – 18GHz  | ±3.30 dB               |

Expanded uncertainty values are calculated to a confidence level of 95%.

CISPR 16-4-2:2011 was used to calculate the above values.

| ncee. | Report Number: | R20190604-21-E2 | Rev | А |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Ainstein Al     |     |   |

# Annex C – Test Equipment

#### 3.2.1 Test equipment

| Serial No. | Manufacturer    | Model      | Description         | Last Cal.     | Calibration due |
|------------|-----------------|------------|---------------------|---------------|-----------------|
| A091418    | SunAR RF Motion | JB1        | Bicon Antenna       | 6 Mar 2020    | 6 Mar 2022      |
| 6415       | EMCO-ETS        | 3115       | DRG Horn            | 16 Mar 2020   | 16 Mar 2022     |
| 2576       | ETS             | 3116       | Horn Antenna        | 9 Mar 2020    | 9 Mar 2022      |
| MY59050109 | Keysight        | N9038A     | MXE Signal Analyzer | 23 April 2019 | 23 April 2021   |
| MY56400083 | Keysight        | N9038A     | MXE Signal Analyzer | 5 May 2020    | 5 May 2022      |
| MY51391050 | Keysight        | M1970V-002 | Mixer               | 13 Apr 2019   | 13 Apr 2021     |
| 32/2016    | Pasternack      | PE9881-24  | Horn Antenna        | CNR***        | CNR***          |
| 3903A03916 | Agilent         | 11970Q     | Mixer               | CNR**         | CNR**           |
| Ncee1      | Pasternack      | SH122-23   | Horn Antenna        | CNR***        | CNR***          |
| 181004-2   | OML             | DPL313B    | Diplexer            | CNR**         | CNR**           |

\*\*Calibration Not Required, internal verification \*\*\*Calibration not required, standard gain horn antenna.

All mixers and pre-amplifiers were calibrated with associated cables.

| DESCRIPTION AND<br>MANUFACTURER                           | MODEL<br>NO. | SERIAL NO. | LAST<br>CALIBRATION<br>DATE | CALIBRATION<br>DUE DATE |
|-----------------------------------------------------------|--------------|------------|-----------------------------|-------------------------|
| Trilithic High Pass Filter*                               | 6HC330       | 23042      | April 14, 2020              | April 14, 2022          |
| MiniCircuits High Pass Filter*                            | VHF-1320+    | 15542      | April 14, 2020              | April 14, 2022          |
| RF Cable (preamplifier to antenna)*                       | MFR-57500    | 01-07-002  | April 14, 2020              | April 14, 2022          |
| RF Cable (antenna to 10m chamber bulkhead)*               | FSCM 64639   | 01E3872    | April 14, 2020              | April 14, 2022          |
| RF Cable (10m chamber bulkhead to control room bulkhead)* | FSCM 64639   | 01E3874    | April 14, 2020              | April 14, 2022          |
| RF Cable (control room bulkhead to test receiver)*        | FSCM 64639   | 01F1206    | April 14, 2020              | April 14, 2022          |
| N connector bulkhead (10m chamber)*                       | PE9128       | NCEEBH1    | April 14, 2020              | April 14, 2022          |
| N connector bulkhead (control room)*                      | PE9128       | NCEEBH2    | April 14, 2020              | April 14, 2022          |

\*Internal Characterization \*\* Extended Cal

| ncee. | Report Number: | R20190604-21-E2 | Rev | А |
|-------|----------------|-----------------|-----|---|
| labs  | Prepared for:  | Ainstein Al     |     |   |

# **REPORT END**