Standy Co., Lto CTA Participation of the standard stand Standard stand Standard stan

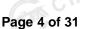
Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

TEST FOOD		FDODT
CIN FCC P	ART 15 SUBPART C TEST R	EPORI
	FCC PART 15.247	
Report Reference No	: CTA22061000402	
FCC ID	: : 2A4LQ-CLZ101	
Compiled by (position+printed name+signatu	ure): File administrators Kevin Liu	kevin line
Supervised by (position+printed name+signatu	ure): Project Engineer Kevin Liu	Testing reemology C
Approved by (position+printed name+signatu	Sure): RF Manager Eric Wang	3 Evic appendived
Date of issue	: Jun. 18, 2022	TIN
Testing Laboratory Name	Shenzhen CTA Testing Technolog	y Co., Ltd.
Address	Room 106, Building 1, Yibaolai Indus Fuhai Street, Bao' an District, Shen	strial Park, Qiaotou Community, zhen, China
Applicant's name	Shenzhen Cheluzhe technology co	o., LTD
Address	10th Floor,Building A3,New Era Gon : No.2 Shihuan Road,Shilong Commu Baoan District, Shenzhen,China	
Test specification	CTAIL	TING
Standard	: FCC Part 15.247	TATESIN
Shenzhen CTA Testing Techn	ology Co., Ltd. All rights reserved.	C VII
Shenzhen CTA Testing Techno material. Shenzhen CTA Testing	aced in whole or in part for non-commercia logy Co., Ltd. is acknowledged as copyrig g Technology Co., Ltd. takes no responsite om the reader's interpretation of the reprod	ht owner and source of the sility for and will not assume
Equipment description		
Trade Mark		2
	Shenzhen Cheluzhe technology co.,	LID
Model/Type reference		TESI
	CLZ102, CLZ103, CLZ105, CLZ1 CPL110, CPL111, CPL112, CPL1 : CPL118, CF1201, CF1202, CF12 CF1207, CF1208, AI886, AI888, BOX138	13, CPL115, CPL116, CPL117, 03, CF1204, CF1205, CF1206,
Modulation		
	From 2402MHz to 2480MHz	
	DC 5.0V From external circuit	TESTING
Result	: PASS	

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn


Rep	ort No.: CTA220610004	02		Page 2 of 31	
	CTATESTING		TEST REPOR	т	
	Equipment under Test	E	wireless Carplay	CTATESTING	
٦	Model /Type	-	CLZ101		
ESTIN	Listed Models	ESTI	CPL110, CPL111, CPL112, C CPL118, CF1201, CF1202, C	CLZ106, CLZ107, CLZ108, CLZ109, CPL113, CPL115, CPL116, CPL117, CF1203, CF1204, CF1205, CF1206, 88, Al999, R13, BOX135, BOX136,	
	Applicant	:	Shenzhen Cheluzhe technolo	bgy co., LTD	
ļ	Address	:	10th Floor,Building A3,New E No.2 Shihuan Road,Shilong (Baoan District, Shenzhen,Ch	Community, Shiyan Street,	
	Manufacturer Address	G	Shenzhen Cheluzhe technolo 10th Floor,Building A3,New E No.2 Shihuan Road,Shilong (Baoan District, Shenzhen,Ch	ra Gongrong Industrial Park, Community,Shiyan Street,	
	Test Res	sult:		PASS	- CTA

The test report merely corresponds to the test sample.

CTATESTIN

It is not permitted to copy extracts of these test result without the written permission of the test on CTATESTING laboratory.

	STING	Contents	
	rATES		
T C	TEST STANDARDS		4
E .		-C	<u></u>
A DESTRUCTION OF THE PARTY OF T			-
<u>2</u>	<u>SUMMARY</u>		<u>5</u>
2.1	General Remarks		5
2.2	Product Description		5
2.3	Equipment Under Test		5
2.4	Short description of the Equipment un	ider Test (EUT)	5
2.5	EUT operation mode		6
2.6 2.7	Block Diagram of Test Setup Related Submittal(s) / Grant (s)		6 6
2.7	Modifications		6
2.0	Modifications		U
<u>3</u>	TEST ENVIRONMENT		<u>7</u>
3.1	Address of the test laboratory	GA CTATI	25 7
3.2	Test Facility	CTA'	7
3.3	Environmental conditions		7
3.4	Summary of measurement results		8
3.5	Statement of the measurement uncert	ainty	8
3.6	Equipments Used during the Test		9
	ESTIN		
4	TEST CONDITIONS AND RE	SULTS	10
Carlo C		-C111	<u></u>
67			40
4.1 4.2	AC Power Conducted Emission		10
4.2 4.3	Radiated Emissions and Band Edge Maximum Peak Output Power		13 20
4.3 4.4	Power Spectral Density	ES. CTATESTING	20
4.5	6dB Bandwidth		23
4.6	Out-of-band Emissions		25
4.7	Antenna Requirement		29
5	TEST SETUR BHOTOS OF T		2.0
<u>5</u>	TEST SETUP PHOTOS OF T	<u>HE EUT</u>	<u> 30</u>
<u>6</u>	PHOTOS OF THE EUT	G	<u> 31</u>
	GVI		
		CIL	
		CA CTATES.	

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247 CTATESTING

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		TATESTING	
Date of receipt of test sample		Jun. 01, 2022	
Testing commenced on		Jun. 01, 2022	C
Testing concluded on	:	Jun. 18, 2022	

2.2 Product Description

Testing commenced on	: Jun. 01, 2022
Testing concluded on	i Jun. 18, 2022
2.2 Product Descrip	tion
Product Description:	wireless Carplay
Model/Type reference:	CLZ101
Power supply:	DC 5.0V From external circuit
PC information (Auxiliary test supplied by testing Lab)	Model: E470C Trade:Thinkpad
PC Adapter information (Auxiliary test supplied by testing Lab)	Model: ADLX45NCC3A Input:AC 100-240V 50/60Hz Output:DC 20V 2.5A
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA220610004-1# (Engineer sample) CTA220610004-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	0.00 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Test Power supply system utilised			CIA CIA		CTATESTIN
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		Ο	12 V DC	Ο	24 V DC
TING			Other (specified in blank be	low)

DC 5V From external circuit

CTATESTING 2.4 Short description of the Equipment under Test (EUT)

This is a wireless Carplay .

For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
TEST		:
G	19	2440
Ĭ	TATES	an G
	37	2476
	38	2478
	39	2480
2.	6 Block Diagram of Test Setup	CTA TEC

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s) 2.7

CTATE This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

TEST ENVIRONMENT 3

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTATESTING Radiated Emission

Raulaleu Emission.		
Temperature:	al and the	23 ° C
Humidity:	A CONTRACTOR OF STREET, STREET	44 %
Atmospheric pressure:		950-1050mbar

AC Main Conducted testing: CTATES

Temperature:	24 ° C	
	16	
Humidity:	47 %	
TES		.0
Atmospheric pressure:	950-1050mbar	TING
G		
conducted testing:	Course C	11
Tomporaturo	21 ° C	

Conducted testing:

24 ° C
46 %
950-1050mbar
TATESTING

Test Specification clause	Test case	Test Mode	Test Channel		ecorded n Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	Lowest Middle	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
§15.247(d)	 TX spurious emissions conducted 	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	(ING -/-	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

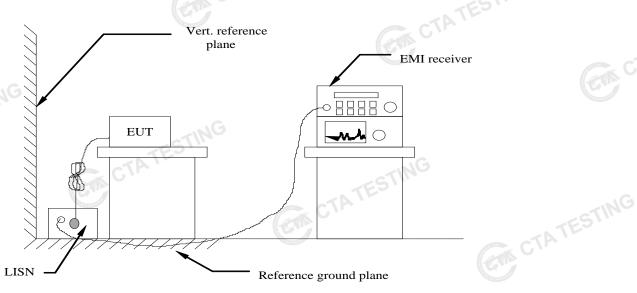
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :- \

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3.6 **Equipments Used during the Test**

	C. L										
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date					
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05					
TE	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05					
	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05					
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05					
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05					
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05					
-	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05					
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05					
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08/05					
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05					
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06					
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06					
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08/06					
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05					
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05					
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05					
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08/05					
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05					
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05					
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05					
F	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05					
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05					
			Con		Cm CT	ATES					

TEST CONDITIONS AND RESULTS 4

AC Power Conducted Emission 4.1

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

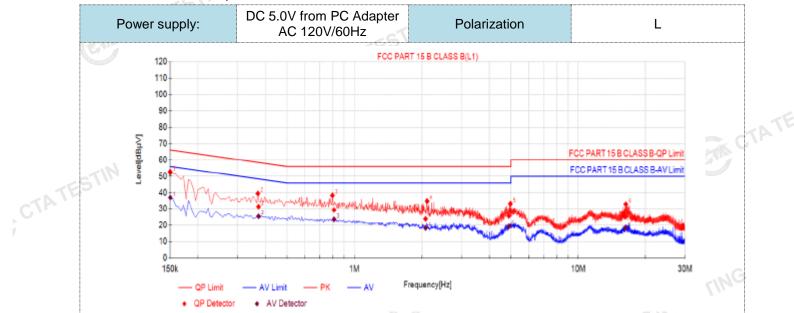
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Limit (c	lBuV)
Quasi-peak	Average
66 to 56*	56 to 46*
56	46
G 60	50
	Quasi-peak 66 to 56* 56

Decreases with the logarithm of the frequence

TEST RESULTS


Remark:

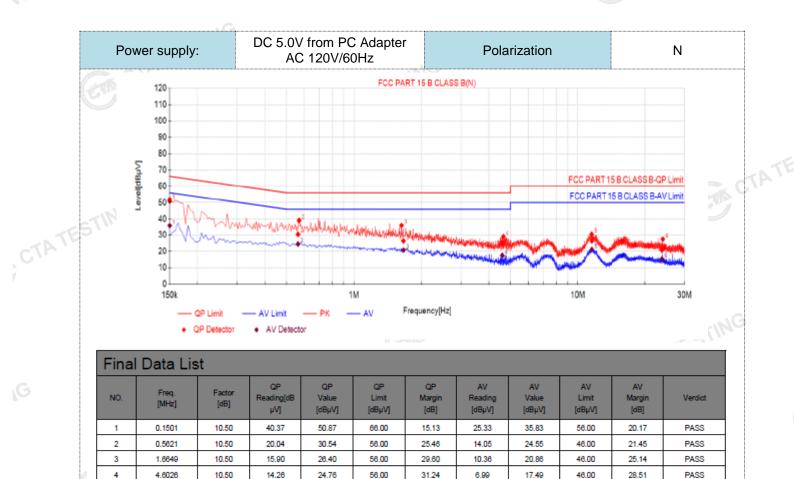
1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Page 11 of 31

CTATE CTATE

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

	Final Data List												
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
[1	0.1502	10.50	41.71	52.21	65.99	13.78	26.49	36.99	55.99	19.00	PASS	
[2	0.3727	10.50	20.91	31.41	58.44	27.03	15.03	25.53	48.44	22.91	PASS	
[3	0.8102	10.50	18.88	29.38	56.00	26.62	13.20	23.70	46.00	22.30	PASS	
	4	2.0807	10.50	13.46	23.96	56.00	32.04	7.83	18.33	46.00	27.67	PASS	
	5	4.9028	10.50	15.27	25.77	56.00	30.23	8.78	19.28	46.00	26.72	PASS	
	6	16.2365	10.50	14.69	25.19	60.00	34.81	7.86	18.36	50.00	31.64	PASS	


Note:1).QP Value $(dB\mu V) = QP$ Reading $(dB\mu V) +$ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATEST

Page 12 of 31

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

15.93

10 15

11.5603

23.7744

5

6

10.50

10.50

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

26.43

20.65

60.00

60.00

33.57

39.35

10.74

4.96

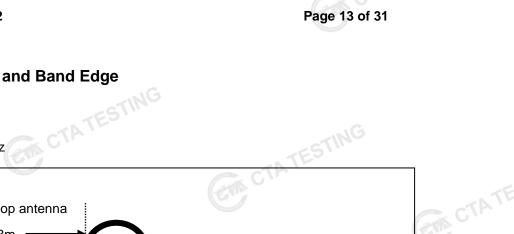
21.24

15.46

50.00

50.00

28.76

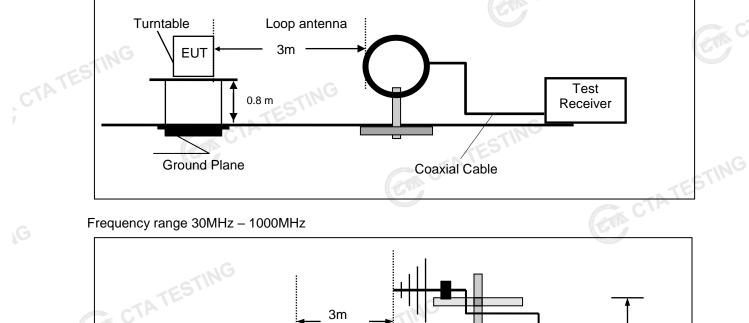

34 54

PASS

PASS

CAR CTATE

- 3). QPMargin(dB) = QP Limit (dBµV) QP Value (dBµV) CTATESTIN
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTING


1m to 4m

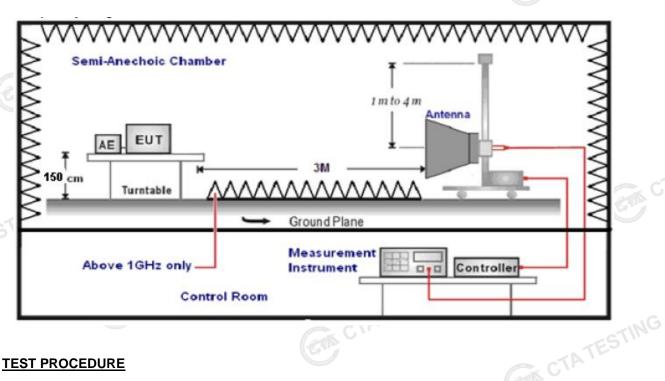
Coaxial Cable

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

0.8m

Frequency range above 1GHz-25GHz


Ground Plane

Turntable

Test

Receiver

EUT

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5. frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	Contra Co
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	and the second se
18GHz-25GHz	Horn Anternna	1	
	6 H 1 6 H 1		

Setting test receiver/spectrum as following table states: 7.

	Test Frequency range	Test Receiver/Spectrum Setting	Detector
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
515	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
101	and a second sec	Peak Value: RBW=1MHz/VBW=3MHz,	TING
	1GHz-40GHz	Sweep time=Auto	Peak
	IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Feak
		Sweep time=Auto	P

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		
	e cità	14
Shenzhen CTA Te	esting Technology Co., Ltd.	

Transd=AF +CL-AG

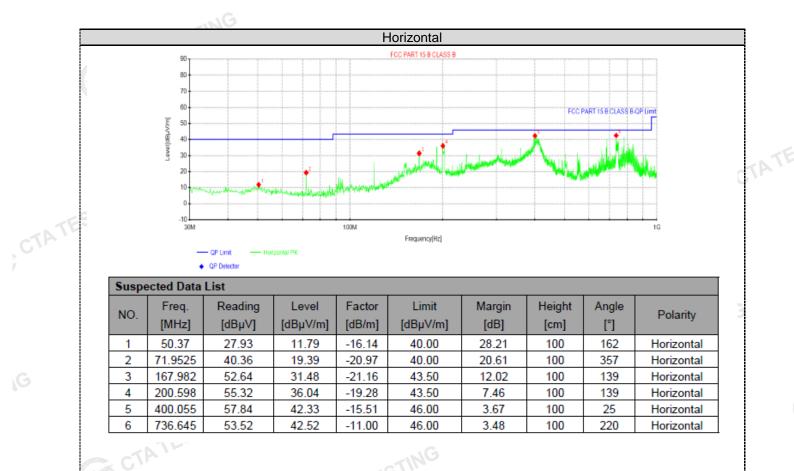
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.05	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS


Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

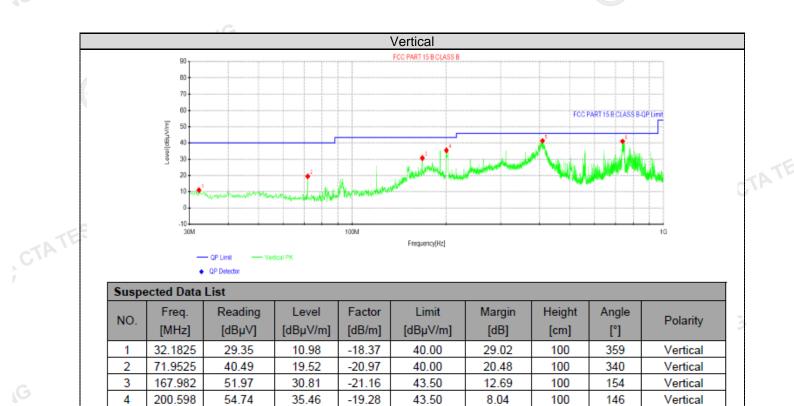
For 30MHz-1GHz

CIATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)


5

6

408.542

738.342

Page 17 of 31

46.00

46.00

4.62

4.98

100

100

CTA

65

146

Vertical

Vertical

GA CTATE

	CTATE	
Note:	1).Level (dBµV/m)= Reading (dBµV)+ Factor	(dB/m)

41.38

41.02

56.85

51.98

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

-15.47

-10.96

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 18 of 31

For 1GHz to 25GHz

	GFSK (above 1GHz)											
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	ORIZONTA	NL			
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)			
4804.00	59.00	PK	74	15.00	63.27	32.33	5.12	41.72	-4.27			
4804.00	43.71	AV	54	10.29	47.98	32.33	5.12	41.72	-4.27			
7206.00	52.73	PK	74	21.27	53.25	36.6	6.49	43.61	-0.52			
7206.00	40.32	AV	54	13.68	40.84	36.6	6.49	43.61	-0.52			

	Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL			
CTA	Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
ÿ.	4804.00	59.56	PK	74	14.44	63.83	32.33	5.12	41.72	-4.27		
	4804.00	44.05	AV	54	9.95	48.32	32.33	5.12	41.72	-4.27		
	7206.00	53.44	PK	74	20.56	53.96	36.6	6.49	43.61	-0.52		
	7206.00 40.65 AV		54	13.35	41.17	36.6	6.49	43.61	-0.52			
					G	1		- TEO				

Freque	ncy(MHz)):	24	40	Pola	arity:	H	IORIZONT/	AL.
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.08	PK	74	13.92	63.96	32.6	5.34	41.82	-3.88
4880.00	42.99	AV	54	11.01	46.87	32.6	5.34	41.82	-3.88
7320.00	53.62	PK	74	20.38	53.73	36.8	6.81	43.72	-0.11
7320.00	39.94	AV	54	14.06	40.05	36.8	6.81	43.72	-0.11
With the second second					-		G		

			100						
Freque	ncy(MHz)	:	24	40	Pola	arity:		VERTICAL	-
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.65	PK	74	14.35	63.53	32.6	5.34	41.82	-3.88
4880.00	43.08	AV	54	10.92	46.96	32.6	5.34	41.82	-3.88
7320.00	54.51	PK	74	19.49	54.62	36.8	6.81	43.72	-0.11
7320.00	41.48	AV	54	12.52	41.59	36.8	6.81	43.72	-0.11
			GTIN	•					

Frequency(MHz):			24	80	Polarity: HORIZO		IORIZONTA	ONTAL	
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.34	PK	74	14.66	62.42	32.73	5.66	41.47	-3.08
4960.00	43.76	AV	54	10.24	46.84	32.73	5.66	41.47	-3.08
7440.00	53.41	PK	74	20.59	52.96	37.04	7.25	43.84	0.45
7440.00	40.56	PK	54	13.44	40.11	37.04	7.25	43.84	0.45

Frequency(MHz):			24	80	Pola	arity:		VERTICAL	-
Frequency (MHz)	Lev	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.75	PK	74	14.25	62.83	32.73	5.66	41.47	-3.08
4960.00	43.09	AV	54	10.91	46.17	32.73	5.66	41.47	-3.08
7440.00	54.08	PK	74	19.92	53.63	37.04	7.25	43.84	0.45
7440.00	41.24	PK	54	12.76	40.79	37.04	7.25	43.84	0.45
REMARKS					6	Contraction of the second			AT.
			Shenzhen	CTA Testing	Technology	Co., Ltd.			

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

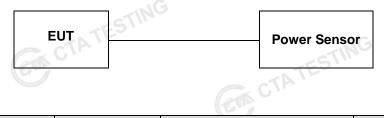
Results of Band Edges Test (Radiated)

		-	G	GFS	SK .	- 0	TES		
Frequency(MHz):			24	02	Pola	arity:	Н	ORIZONTA	NL .
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.75	PK	74	15.25	69.17	27.42	4.31	42.15	-10.42
2390.00	42.49	AV	54	11.51	52.91	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)):	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Lev (dBu	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.42	PK	74	14.58	69.84	27.42	4.31	42.15	-10.42
2390.00	42.65	AV	54	11.35	53.07	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)		24	80	-	arity:	HORIZONTAL		
Frequency (MHz)	Lev	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.92	PK	74	15.08	69.03	27.7	4.47	42.28	-10.11
2483.50	40.46	AV	54	13.54	50.57	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)):	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	59.52	PK	74	14.48	69.63	27.7	4.47	42.28	-10.11
2483.50	00.02		54	13.38	50.73	27.7	4.47	42.28	-10.11

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

4.3 **Maximum Peak Output Power**


Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Test Results		CTATE CTATE		TESTING
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-0.41		
GFSK 1Mbps	5 19	0.21	30.00	Pass
TATEST	39	0.60		

Note: 1.The test results including the cable lose.S

CTATESTING

4.4 **Power Spectral Density**

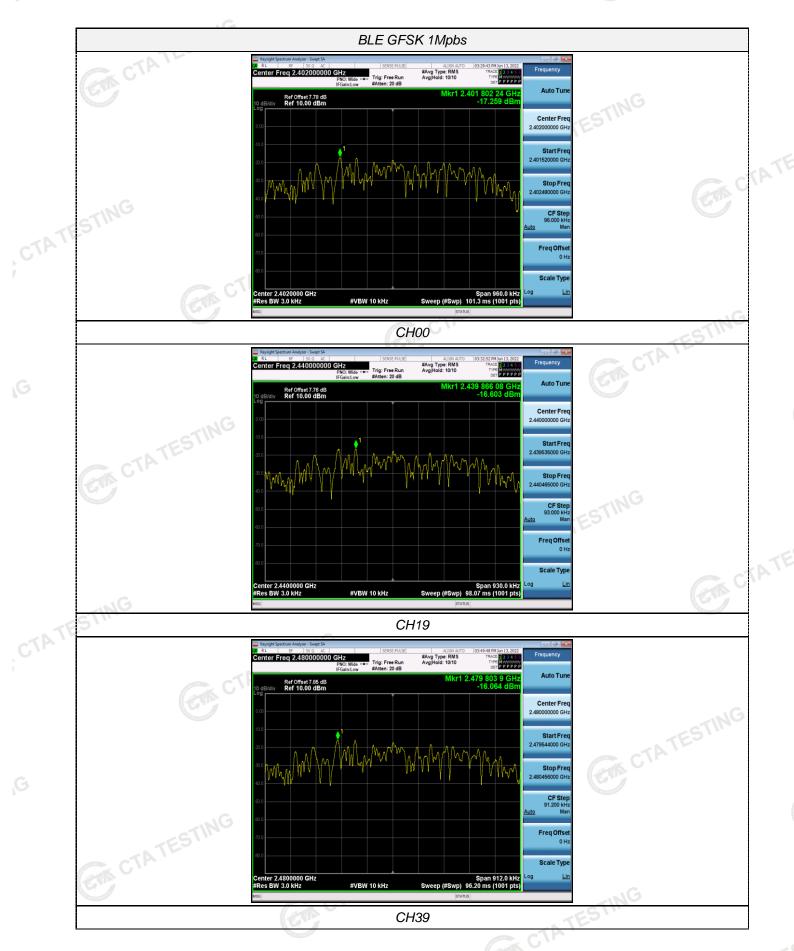
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


	TESTIC	
EUT	TATE	SPECTRUM
	Gran C VI	ANALYZER

Test Results

	Test Results		Gun C I				
	Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result		
	STIN	00	-17.26		23 000		
CTATE	GFSK 1Mbps	19	-16.60	8.00	Pass		
G		39	-16.06				
	Test plot as follows	CTATES		STING			
			GA CTA .		CTATESTIN		

Test plot as follows:

Page 22 of 31

4.5 6dB Bandwidth

Limit

TESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

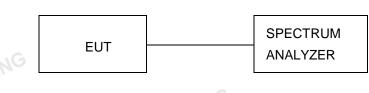
Test Configuration

Test Results

G		ANALYZ	ER	
Test Results				CTATESTINC
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	G 00	0.640		
GFSK 1Mbps	19	0.620	≥500	Pass
TATES	39	0.608		
Test plot as follows:	(CA)	TATESTING	CTATESTIN	G

Page 24 of 31

4.6 **Out-of-band Emissions**

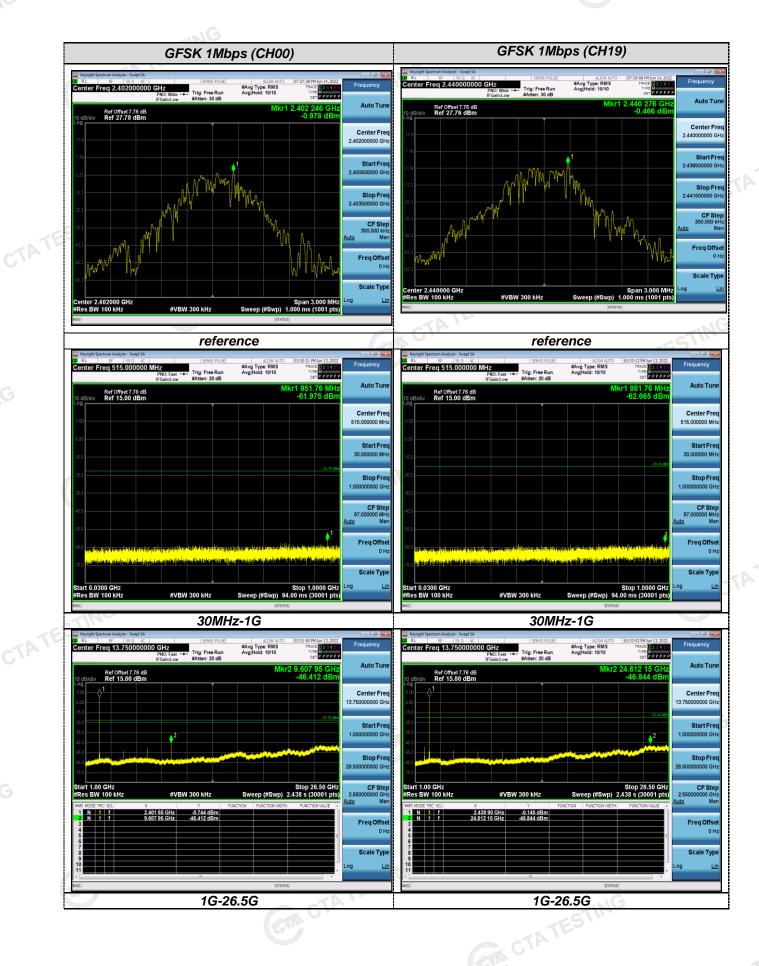

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

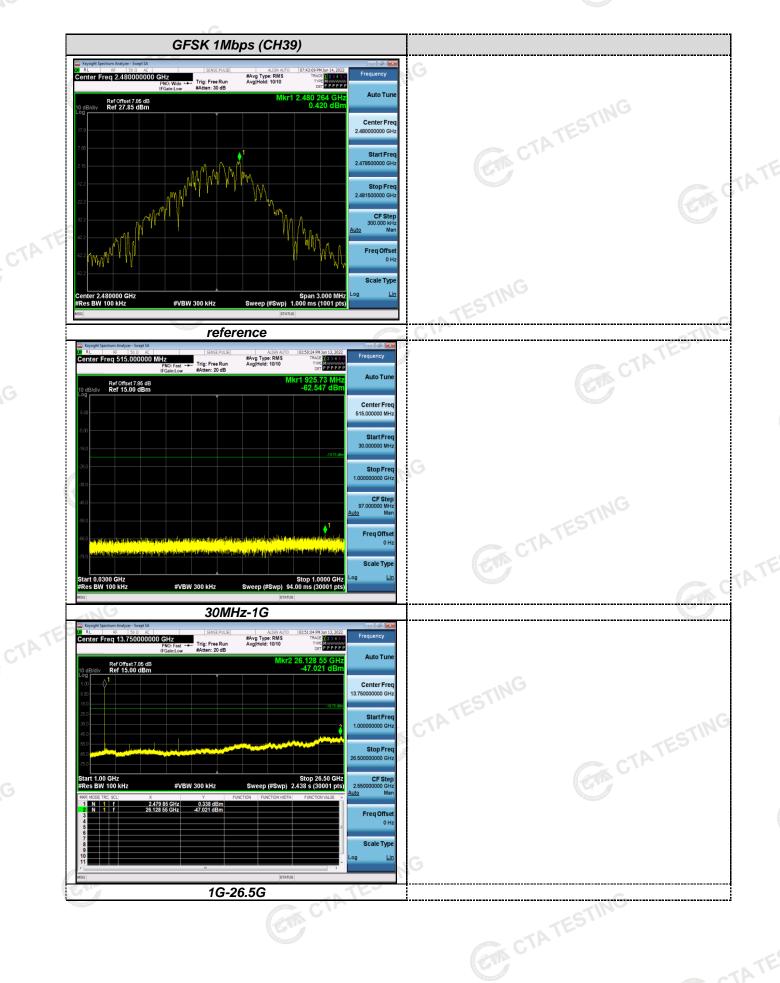
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTIN

Page 26 of 31

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

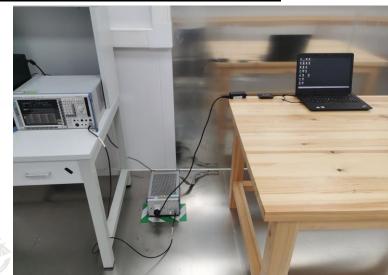
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


Antenna Connected Construction

The maximum gain of antenna was 0.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATESTING

TING

5 Test Setup Photos of the EUT

