

Engineering and Testing for EMC and Safety Compliance

APPLICATION FOR FCC CLASS B

CERTIFICATION RECEIVER

Topaz3, L.L.C. 10828 NW Air World Drive Kansas City, MO 64153 USA

> *MODEL: WX80 FCC ID: 07KWX80*

> > March 30, 2001

STANDARDS REFERENCED FOR THIS REPORT					
Part 2; 1999	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL				
	RULES AND REGULATIONS				
Part 15; 1999	RADIO FREQUENCY DEVICES				
ANSI C63.4-1992	STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL				
	COMPUTER AND PERIPHERALS				
ANSI/TIA/EIA 603-1; 1998	ADDENDUM TO ANSI/TIA/EIA 603-1992				

FREQUENCY RANGE MHZ	OUTPUT POWER (W)	FREQUENCY TOLERANCE	EMISSION DESIGNATOR
162.400-162.550	N/A	N/A	N/A

REPORT PREPARED BY:

Test Engineer: Franck Schuppius

Rhein Tech Laboratories, Inc.

Document Number: 2001073 / QRTL01-067

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.

Table of Contents

1 G	ENERAL INFORMATION	
1.1 1.2 1.3 1.4	Modifications Related Submittal(s)/Grant(s) Test Methodology Test Facility	3
2 S	YSTEM TEST CONFIGURATION	4
2.1 2.2 2.3 2.4	JUSTIFICATION EXERCISING THE EUT Test System Details Test System Configuration Photograph	4
3 C	ONFORMANCE STATEMENT	6
4 E	MISSIONS EQUIPMENT LIST	7
5 C	CONDUCTED EMISSIONS	9
5.1 5.2	CONDUCTED EMISSIONS MEASUREMENTS Conducted Emissions Data (channel 3 (162.475Mhz))	
6 R	ADIATED EMISSIONS MEASUREMENTS	
	1.1 RADIATED EMISSION DATA (channel 3 (162.475Mhz)) 1.2 Radiated Emissions	
7 P	RODUCT DESCRIPTION	
8 L	ABEL INFORMATION	
9 M	IANUAL	14
10	SCHEMATICS	
11	BLOCK DIAGRAM	
12	EXTERNAL PHOTOGRAPHS	
13	INTERNAL PHOTOGRAPHS	
14	TEST CONFIGURATION PHOTOGRAPHS	
14.1		
14.2	RADIATED CONFIGURATION PHOTOGRAPHS	

1 GENERAL INFORMATION

The following Application for FCC Type Certification of a Weather Receiver is prepared on behalf of *Topaz3*, *L.L.C.* in accordance with Part 2, and Part 15, Subparts A and B of the Federal Communications Commissions rules and regulations. The Equipment Under Test (EUT) was the *Model: WX80, FCC ID: 07KWX80*. The test results reported in this document relate only to the item that was tested.

All measurements contained in this Application were conducted in accordance with ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Some accessories are used to increase sensitivity and prevent overloading of the measuring instrument. These are explained in this report. Calibration checks are performed regularly on the instruments, and all accessories including the high pass filter, preamplifier and cables.

1.1 MODIFICATIONS

No modifications were made to the EUT during testing.

1.2 RELATED SUBMITTAL(S)/GRANT(S)

This is an original certification submission.

1.3 TEST METHODOLOGY

Radiated testing was performed according to the procedures in ANSI C63.4 1992. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.4 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

2 SYSTEM TEST CONFIGURATION

2.1 JUSTIFICATION

To complete the test configuration required by the FCC, the EUT was configured to receive a signal generated from a signal generator output connected to an antenna radiating at 162.475 MHz. The EUT's antenna was positioned for optimal reception. The EUT's IF value 21.4 MHz, local oscillators 183.75 MHz, and crystal oscillators and harmonics were investigated. All modes were investigated and tested, including standby mode and receiver mode. Channel 3, the middle channel at 162.475 MHz was investigated and tested per FCC Rule 15.31(m). Other oscillators investigated and tested are 20.945 MHz and 12.8 MHz. The final radiated data was taken with the EUT locked to a set frequency the channel 3 at 162.475MHz from the signal generator.

2.2 EXERCISING THE EUT

The EUT was exercised by receiving radiated signal at 162.475 MHz from an HP Signal Generator.

2.3 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

EXTERNAL PERIPHERALS

PART	MANUFACTURER	MODEL	SERIAL NUMBER	FCC ID	CABLE	RTL
					DESCRIPTION	BAR
						CODE
WEATHER MONITOR	MAXON AMERICA	WX80	SAMPLE #2	O7KWX80	UNSHIELDED	013185
(EUT)	INC.		(EXTRA)		POWER	
SYNTHESIZED SIGNAL	HEWLETT	8660C	1947A02956	DOC	UNSHIELDED	N/A
GENERATOR	PACKARD				POWER	

2.4 TEST SYSTEM CONFIGURATION PHOTOGRAPH

3 CONFORMANCE STATEMENT

STANDARDS REFERENCED FOR THIS REPORT					
Part 2; 1999	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL				
	RULES AND REGULATIONS				
Part 15; 1999	RADIO FREQUENCY DEVICES				
ANSI C63.4-1992	STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL				
	COMPUTER AND PERIPHERALS				
ANSI/TIA/EIA 603-1; 1998	ADDENDUM TO ANSI/TIA/EIA 603-1992				

FREQUENCY RANGE MHZ	FREQUENCY RANGE MHZ OUTPUT POWER (W)		EMISSION DESIGNATOR	
162.400-162.550	N/A	N/A	N/A	

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described above. Modifications were not made during testing to the equipment in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the ANSI C63.4 test methodology.

Signature:

Date: March 30, 2001

Typed/Printed Name: Desmond A. Fraser

Position: President (NVLAP Signatory)

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 20061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

4 EMISSIONS EQUIPMENT LIST

RTL Asset Number	Manufacturer	Model	Part Type	Serial Number	Calibration due date	
900969	Hewlett Packard	85650A	Quasi-Peak Adapter (30 Hz – 40 GHz)	2412A00414	03/23/01	
900929	Hewlett Packard	85650A	Quasi-Peak Adapter (30 Hz – 40 GHz)	2811A01276	03/28/01	
900901	Hewlett Packard	85650A	Quasi-Peak Adapter (30 Hz – 40 GHz)	3145A01599	11/02/01	
900339	Hewlett Packard	85650A	Quasi-Peak Adapter (30 Hz – 40 GHz)	2521A00743	03/27/01	
900042	Hewlett Packard	85650A	Quasi-Peak Adapter (30 Hz – 40 GHz)	2521A01032	11/05/01	
900924	Amplifier Research	75A220	Amplifier (10 kHz – 220 MHz)		N/A	
900933	Hewlett Packard	11975A	Power Amplifier (2 - 8 GHz)	2304A00348	11/15/01	
901067	Hewlett Packard	8903B	Audio Analyzer	2303A00307	06/28/01	
901055	Hewlett Packard	8901A Opt. 002- 003	Modulation Analyzer	2545A04102	06/08/01	
900926	Hewlett Packard	8753D	RF Vector Network Analyzer	3410A09659	03/28/01	
901089	Hewlett Packard	HP875ET	Transmission/Reflection Network Analyzer	US39170052	N/A	
900968	Hewlett Packard	8567A	Spectrum Analyzer (10 kHz – 1.5 GHz)	2602A00160	03/23/01	
900903	Hewlett Packard	8567A	Spectrum Analyzer (10 kHz – 1.5 GHz)	2841A00614	11/02/01	
900897	Hewlett Packard	8567A	Spectrum Analyzer (10 kHz – 1.5 GHz)	2727A00535	11/08/01	
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz – 22 GHz)	3138A07771	03/27/01	
900912	Hewlett Packard	8568A		2634A02704	08/02/01	
900824	Hewlett Packard	8591E		3710A06135	11/14/01	
900724	ARA	LPB-2520	Log Periodic / Biconical Antenna (25-1000 MHz)	1037	2/1/01	
900725	ARA	LPB-2520	Log Periodic / Biconical Antenna (25-1000 MHz)	1036	07/12/01	
900967	A.H. Systems	TDS-206/535-1 through TDS-206/535-4	Tuned Dipole set (30 – 1000 MHz)	126, 128, 129, 132	12/15/00	
900154	Compliance Design	Roberts Dipole	Adjustable Elements Dipole antenna (30- 1000MHz)	N/A	7/26/01	
900814	Electro-Metrics	RGA -60	Double Ridges Guide Antenna (1-18 GHz)	2310	2/26/01	
900081	EMCO	3146	Log-Periodic Antenna (200-1000 MHz)	1850		
900800	ЕМСО	3301B	Active Monopole (Rod antenna) (30 Hz – 50 MHz)	9809-4071	05/02/01	
900151	Rohde and Schwarz	HFH2-Z2	Loop Antenna (9kHz-30 MHz)	82825/019	05/26/01	
900791	Schaffner – Chase	CSL6112	Bilog antenna (30 MHz – 2GHz)	2099	2/22/01	
901053	Schaffner – Chase	CBL6112B	Bilog Chase antenna (200 MHz – 2 GHz)	2648	05/24/01	
900060	Hewlett Packard	86634B	Auxiliary Section for External Pulse Modulator	1314A02913	11/08/01	
901041	ACO Pacific	511E	Sound Level Calibrator	028751	In calibration	
900970	Hewlett Packard	85662A	Spectrum Analyzer Display	254211239	03/23/01	
900930	Hewlett Packard	85662A	Spectrum Analyzer Display	3144A20839	03/28/01	
900911	Hewlett Packard	85662A	Spectrum Analyzer Display	2542A12739	08/02/01	
900902	Hewlett Packard	85662A	Spectrum Analyzer Display	2848A17585	11/02/01	
900896	Hewlett Packard	85662A	Spectrum Analyzer Display	2816A16471	11/02/01	
900914	Hewlett Packard	8546OA	RF Filter Section, (100 KHz to 6.5 GHz)	3330A00107	11/07/01	
901057	Hewlett Packard	3336B	Synthesizer/Level Generator	2514A02585	06/21/01	
900059	Hewlett Packard	8660C	Signal Generator (9 KHz – 3200 MHz)	1947A02956	11/08/01	
900960	Hewlett Packard	8444A	Tracking Generator $(0.5 - 1500 \text{MHz})$	2325A07827	03/08/01	
900917	Hewlett Packard	8648C	Synthesized. Signal Generator (9 KHz – 3200 MHz)	3537A01741	03/28/01	

Page 7 of 25 FCC ID: O7KWX80

360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

RTL Asset Number Manufacturer		Manufacturer Model		Serial Number	Calibration due date
900821	Hewlett Packard	33120A	15 MHz Function / Arbitrary Waveform Generator	US36029992	11/14/01
900059	Hewlett Packard	8660C	Synthesized. Signal Generator (9 kHz –3200 MHz)	1947A02956	11/08/01
900195	Tektronix	CFG280	Function Generator (0.1 Hz – 11 MHz)	TW12167	N/A
900927	Tektronix	ASG 100	Audio Signal Generator	B03274 V2.3	N/A
900268	Taylor	5565	Hygrometer / Thermometer	N/A	09/05/01
901056	Hewlett Packard	8954A, Opt.H03	Transceiver Interface	2924A00830	06/02/01
901088	Hewlett Packard	8954A	Transceiver Interface	2146A00139	07/28/01
901082	AFJ International	AFJ LS16	LISN (9 kHz - 30 MHz)	16010020081	06/16/01
901083	AFJ International	AFJ LS16	LISN (9 kHz – 30 MHz)	16010020082	06/16/01
901084	AFJ International	AFJ LS16	LISN (9 kHz – 30 MHz)	16010020080	06/16/01
901090	Bajog electronic	4V-100/200	LISN (150 kHz - 30 MHz)	00-44-007	08/03/01
900726	Solar	7225-1	LISN	N/A	03/29/01
900727	Solar	7225-1	LISN	N/A	03/29/01
900078	Solar	7225-1	LISN	N/A	03/29/01
900077	Solar	7225-1	LISN	N/A	03/29/01
901054	Hewlett Packard	HP 3586B	Selective Level Meter	1928A01892	06/08/01
900793	Hewlett Packard	432A	Thermistor Power Meter	1848a22632	N/A
900721	Hewlett Packard	8447D	Preamplifier (0.1-1300 MHz)	2727A05397	N/A
900889	Hewlett Packard	85685A	RF Preselector for HP 8566B or 8568B (20Hz-2GHz)	3146A01309	11/14/01
900566	Amplifier Research	FP 2000	Isotropic Field Probe	20760	08/29/01
900854	Solar Electronics Co	9119-IN	RF Current Probe	972501	
900849	Solar Electronics Co	9121-IN	Injection Probe (10 MHz – 1 GHz)	953501	
900848	Solar Electronics Co	9320-IN	RF Current Probe	990521	
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 KHz – 6.5 GHz)	3325A00159	03/29/01

5 CONDUCTED EMISSIONS

5.1 CONDUCTED EMISSIONS MEASUREMENTS

The power line conducted emission measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50 ohm / 50 microhenry Line Impedance Stabilization Network (EUT LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 400 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 400 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. No video filter less than 10 times the resolution bandwidth was used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 450 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in this report.

5.2 CONDUCTED EMISSIONS DATA (Channel 3 (162.475MHz))

	Temperature: 72°F Humidity: 41%									
Emission	Test	Analyzer	Site	Emission	FCC B	FCC B				
Frequency	Detector	Reading	Correction	Level	Limit	Margin				
(MHz)		(dBuV)	Factor	(dBuV)	(dBuV)	(dBuV)				
			(dB)							
0.534	Pk	39.7	0.8	40.5	48.0	-7.5				
0.664	Pk	33.3	0.8	34.1	48.0	-13.9				
0.901	Pk	23.5	0.8	24.3	48.0	-23.7				
1.004	Pk	20.8	0.9	21.7	48.0	-26.3				
7.035	Pk	18.6	2.2	20.8	48.0	-27.2				
14.620	Pk	19.4	3.4	22.8	48.0	-25.2				
22.500	Pk	18.1	4.1	22.2	48.0	-25.8				

LINE 1 (NEUTRAL SIDE)

LINE 2 (HOT SIDE)

	Temperature: 72°F Humidity: 41%									
Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	FCC B Limit (dBuV)	FCC B Margin (dBuV)				
0.539	Pk	39.5	0.8	40.3	48.0	-7.7				
0.651	Pk	34.7	0.8	35.5	48.0	-12.5				
0.876	Pk	26.5	0.8	27.3	48.0	-20.7				
1.004	Pk	22.8	0.9	23.7	48.0	-24.3				
9.205	Pk	18.7	2.6	21.3	48.0	-26.7				
14.410	Pk	18.1	3.4	21.5	48.0	-26.5				
27.360	Pk	19.1	4.4	23.5	48.0	-24.5				

TEST PERSONNEL:

Signature

Date: 3/26/2001

Typed/Printed Name: Franck Schuppius

FCC Certification Report 2001073 / QRTL01-067 Page 9 of 25 FCC ID: O7KWX80

6 RADIATED EMISSIONS MEASUREMENTS

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one meter and three meter distances, in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane. The spectrum was examined from 30 MHz to 1000 MHz using a Hewlett Packard 8566B spectrum analyzer, a Hewlett Packard 85650A quasi-peak adapter, and EMCO log periodic and biconical antenna. In order to gain sensitivity, a HP8447 preamplifier was connected in series between the antenna and the input of the spectrum analyzer.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations. The spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. No video filter less than 10 times the resolution bandwidth was used. When any clock exceeds 108 MHz, the EUT was tested between 1 to 2 Gigahertz in peak mode with the resolution bandwidth set at 1 MHz as stated in ANSI C63.4. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.

6.1.1 RADIATED EMISSION DATA (Channel 3 (162.475MHz))

6.1.2 RADIATED EMISSIONS

			Temperat	ture: 28°F	Hum	idity: 30%			
Emission	Test	Antenna	Turntable	Antenna	Analyzer	Site	Emission		
Frequency	Detector	Polarity	Azimuth	Height	Reading	Correction	Level	Limit	Margin
(MHz)	*	(H/V)	(deg)	(m)	(dBuV)	Factor	(dBuV/m)	(dBuV/m)	(dB)
						(dB/m)			
183.875	Qp	Н	180	1.4	42.8	-18.1	24.7	43.5	-18.8
256.000	Qp	V	90	1.6	31.5	-14.7	16.8	46.0	-29.2
268.800	Qp	V	180	1.4	29.0	-14.4	14.6	46.0	-31.4
367.750	Qp	V	320	2.1	41.8	-10.8	31.0	46.0	-15.0
551.625	Qp	V	90	1.6	35.4	-5.7	29.7	46.0	-16.3
735.500	Qp	V	180	1.6	36.1	-3.9	32.2	46.0	-13.8

*All readings are quasi-peak, unless stated otherwise.

TEST PERSONNEL:

Signature_

Date: 3/26/2001

Typed/Printed Name: Franck Schuppius